Tverberg’s theorem is 50 years old: A survey
Authors:
Imre Bárány and Pablo Soberón
Journal:
Bull. Amer. Math. Soc. 55 (2018), 459-492
MSC (2010):
Primary 52A35, 52A37
DOI:
https://doi.org/10.1090/bull/1634
Published electronically:
June 19, 2018
MathSciNet review:
3854075
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This survey presents an overview of the advances around Tverberg’s theorem, focusing on the last two decades. We discuss the topological, linear-algebraic, and combinatorial aspects of Tverberg’s theorem and its applications. The survey contains several open problems and conjectures.
- N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman, Point selections and weak $\varepsilon$-nets for convex hulls, Combin. Probab. Comput. 1 (1992), no. 03, 189–200.
- N. Alon, P. Frankl, and L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1986), no. 1, 359–370. MR 857448, DOI https://doi.org/10.1090/S0002-9947-1986-0857448-8
- Noga Alon and Daniel J. Kleitman, Piercing convex sets and the Hadwiger-Debrunner $(p,q)$-problem, Adv. Math. 96 (1992), no. 1, 103–112. MR 1185788, DOI https://doi.org/10.1016/0001-8708%2892%2990052-M
- Nina Amenta, Jesús A. De Loera, and Pablo Soberón, Helly’s theorem: new variations and applications, Algebraic and geometric methods in discrete mathematics, Contemp. Math., vol. 685, Amer. Math. Soc., Providence, RI, 2017, pp. 55–95. MR 3625571, DOI https://doi.org/10.1090/conm/685
- Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila, and Luis Montejano, Very colorful theorems, Discrete Comput. Geom. 42 (2009), no. 2, 142–154. MR 2519872, DOI https://doi.org/10.1007/s00454-009-9180-4
- J. L. Arocha, J. Bracho, L. Montejano, and J. L. Ramírez Alfonsín, Transversals to the convex hulls of all $k$-sets of discrete subsets of $\Bbb R^n$, J. Combin. Theory Ser. A 118 (2011), no. 1, 197–207. MR 2737193, DOI https://doi.org/10.1016/j.jcta.2010.09.003
- M. Asada, R. Chen, F. Frick, F. Huang, M. Polevy, D. Stoner, L. H. Tsang, and Z. Wellner, On Reay’s relaxed Tverberg conjecture and generalizations of Conway’s thrackle conjecture, arXiv:1608.04279 (2016).
- D. Avis, The $m$-core properly contains the $m$-divisible pints in space, Pattern Recognition Letters 14 (1993), 703–705.
- S. Avvakumov, I. Mabillard, A. Skopenkov, and U. Wagner, Eliminating higher-multiplicity intersections, III. Codimension $2$, arXiv:1511.03501 (2015).
- E. G. Bajmóczy and I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 3-4, 347–350 (1980). MR 565677, DOI https://doi.org/10.1007/BF01896131
- Imre Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), no. 2-3, 141–152. MR 676720, DOI https://doi.org/10.1016/0012-365X%2882%2990115-7
- Imre Bárány, Helge Tverberg is eighty: a personal tribute, European J. Combin. 66 (2017), 24–27. MR 3692134, DOI https://doi.org/10.1016/j.ejc.2017.06.015
- Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler, Tverberg’s theorem at 50: extensions and counterexamples, Notices Amer. Math. Soc. 63 (2016), no. 7, 732–739. MR 3495518, DOI https://doi.org/10.1090/noti1415
- I. Bárány, Z. Füredi, and L. Lovász, On the number of halving planes, Combinatorica 10 (1990), 175–183.
- Imre Bárány, Gil Kalai, and Roy Meshulam, A Tverberg type theorem for matroids, A journey through discrete mathematics, Springer, Cham, 2017, pp. 115–121. MR 3726596
- I. Bárány and D. G. Larman, A colored version of Tverberg’s theorem, J. London Math. Soc. (2) 45 (1992), no. 2, 314–320. MR 1171558, DOI https://doi.org/10.1112/jlms/s2-45.2.314
- Imre Bárány and Shmuel Onn, Colourful linear programming and its relatives, Math. Oper. Res. 22 (1997), no. 3, 550–567. MR 1467385, DOI https://doi.org/10.1287/moor.22.3.550
- I. Bárány, S. B. Shlosman, and A. Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), no. 1, 158–164. MR 602247, DOI https://doi.org/10.1112/jlms/s2-23.1.158
- I. Bárány and P. Soberón, Tverberg plus minus, arXiv:1612.05630 (2017).
- David E. Bell, A theorem concerning the integer lattice, Studies in Appl. Math. 56 (1976/77), no. 2, 187–188. MR 462617, DOI https://doi.org/10.1002/sapm1977562187
- Károly Bezdek and Aart Blokhuis, The Radon number of the three-dimensional integer lattice, Discrete Comput. Geom. 30 (2003), no. 2, 181–184. U.S.-Hungarian Workshops on Discrete Geometry and Convexity (Budapest, 1999/Auburn, AL, 2000). MR 2007959, DOI https://doi.org/10.1007/s00454-003-0003-8
- B. J. Birch, On $3N$ points in a plane, Proc. Cambridge Philos. Soc. 55 (1959), 289–293. MR 109315, DOI https://doi.org/10.1017/s0305004100034071
- P. V. M. Blagojević, A. S. Dimitrijević Blagojević, and G. M. Ziegler, The topological transversal Tverberg theorem plus constraints, 2016. “Discrete and Intuitive Geometry–László Fejes Tóth 100 Festschrift” (G. Ambrus, I. Bárány, K. J. Böröczky, G. Fejes Tóth, J. Pach, eds.), Bolyai Society Mathematical Studies series (to appear).
- Pavle V. M. Blagojević, Florian Frick, and Günter M. Ziegler, Tverberg plus constraints, Bull. Lond. Math. Soc. 46 (2014), no. 5, 953–967. MR 3262197, DOI https://doi.org/10.1112/blms/bdu049
- P. V. M. Blagojević, F. Frick, and G. M. Ziegler, Barycenters of Polytope Skeleta and Counterexamples to the Topological Tverberg Conjecture, via Constraints, http://arxiv.org/abs/1510.07984 (2017). J. Europ. Math. Soc. (to appear).
- P. V. M. Blagojević, A. Haase, and G. M. Ziegler, Tverberg-type theorems for matroids: A counterexample and a proof, arXiv:1705.03624 (2017).
- Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler, Optimal bounds for a colorful Tverberg-Vrećica type problem, Adv. Math. 226 (2011), no. 6, 5198–5215. MR 2775898, DOI https://doi.org/10.1016/j.aim.2011.01.009
- Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler, Optimal bounds for the colored Tverberg problem, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 739–754. MR 3336834, DOI https://doi.org/10.4171/JEMS/516
- P. V. M. Blagojević and G. M. Ziegler, Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story, Journey through discrete mathematics. a tribute to jiří matoušek, 2017, pp. 273–341.
- E. Boros and Z. Füredi, The number of triangles covering the center of an $n$-set, Geom. Dedicata 17 (1984), no. 1, 69–77. MR 771183, DOI https://doi.org/10.1007/BF00181519
- B. Bukh, Radon partitions in convexity spaces, arXiv:1009.2384 (2010).
- Boris Bukh, Po-Shen Loh, and Gabriel Nivasch, Classifying unavoidable Tverberg partitions, J. Comput. Geom. 8 (2017), no. 1, 174–205. MR 3670821
- Boris Bukh, Jiří Matoušek, and Gabriel Nivasch, Stabbing simplices by points and flats, Discrete Comput. Geom. 43 (2010), no. 2, 321–338. MR 2579699, DOI https://doi.org/10.1007/s00454-008-9124-4
- Boris Bukh, Jiří Matoušek, and Gabriel Nivasch, Lower bounds for weak epsilon-nets and stair-convexity, Israel J. Math. 182 (2011), 199–208. MR 2783971, DOI https://doi.org/10.1007/s11856-011-0029-1
- Boris Bukh and Gabriel Nivasch, One-sided epsilon-approximants, A journey through discrete mathematics, Springer, Cham, 2017, pp. 343–356. MR 3726603
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI https://doi.org/10.1007/BF01449883
- Timothy M. Chan, An optimal randomized algorithm for maximum Tukey depth, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2004, pp. 430–436. MR 2291081
- J. Chappelon, L. Martínez-Sandoval, L. Montejano, L. P. Montejano, and J. L. Ramírez Alfonsín, Complete Kneser transversals, Adv. in Appl. Math. 82 (2017), 83–101. MR 3566087, DOI https://doi.org/10.1016/j.aam.2016.07.004
- J. A. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg, arXiv:1706.05975 (2017). Bull. Amer. Math. Soc. (to appear).
- Ennio De Giorgi, Selected papers, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013. [Author name on title page: Ennio Giorgi]; Edited by Luigi Ambrosio, Gianni Dal Maso, Marco Forti, Mario Miranda and Sergio Spagnolo; Reprint of the 2006 edition [MR2229237]. MR 3185411
- Jesús A. De Loera, Reuben N. La Haye, David Rolnick, and Pablo Soberón, Quantitative combinatorial geometry for continuous parameters, Discrete Comput. Geom. 57 (2017), no. 2, 318–334. MR 3602856, DOI https://doi.org/10.1007/s00454-016-9857-4
- Jesus A. De Loera, Reuben N. La Haye, David Rolnick, and Pablo Soberón, Quantitative Tverberg theorems over lattices and other discrete sets, Discrete Comput. Geom. 58 (2017), no. 2, 435–448. MR 3679944, DOI https://doi.org/10.1007/s00454-016-9858-3
- Jean-Paul Doignon, Convexity in cristallographical lattices, J. Geom. 3 (1973), 71–85. MR 387090, DOI https://doi.org/10.1007/BF01949705
- Albrecht Dold, Simple proofs of some Borsuk-Ulam results, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 65–69. MR 711043, DOI https://doi.org/10.1090/conm/019/711043
- V. L. Dol’nikov, A certain combinatorial inequality, Siberian Math. J. 29 (1988), no. 3, 375–379.
- V. L. Dol′nikov, A generalization of the sandwich theorem, Mat. Zametki 52 (1992), no. 2, 27–37, 155 (Russian, with Russian summary); English transl., Math. Notes 52 (1992), no. 1-2, 771–779 (1993). MR 1187871, DOI https://doi.org/10.1007/BF01236771
- Jürgen Eckhoff, Radon’s theorem revisited, Contributions to geometry (Proc. Geom. Sympos., Siegen, 1978) Birkhäuser, Basel-Boston, Mass., 1979, pp. 164–185. MR 568498
- Jürgen Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 389–448. MR 1242986
- Jürgen Eckhoff, The partition conjecture, Discrete Math. 221 (2000), no. 1-3, 61–78. Selected papers in honor of Ludwig Danzer. MR 1778908, DOI https://doi.org/10.1016/S0012-365X%2899%2900386-6
- Paul Erdős and Miklós Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), no. 2, 181–192. MR 726456, DOI https://doi.org/10.1007/BF02579292
- A. Flores, Über $n$-dimensionale Komplexe, die im $R_{2n+1}$ absolut selbstverschlungen sind, Ergebnisse eines Math. Kolloquiums 6 (1933/1934), 4–7.
- David Forge, Michel Las Vergnas, and Peter Schuchert, 10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope, European J. Combin. 22 (2001), no. 5, 705–708. Combinatorial geometries (Luminy, 1999). MR 1845494, DOI https://doi.org/10.1006/eujc.2000.0490
- F. Frick, Counterexamples to the topological Tverberg conjecture, Oberwolfach Reports 12 (2015), no. 1, 318–321.
- F. Frick, Chromatic numbers of stable Kneser hypergraphs via topological Tverberg-type theorems, arXiv:1710.09434 (2017).
- Florian Frick, Intersection patterns of finite sets and of convex sets, Proc. Amer. Math. Soc. 145 (2017), no. 7, 2827–2842. MR 3637933, DOI https://doi.org/10.1090/proc/13443
- Natalia García-Colín, Miguel Raggi, and Edgardo Roldán-Pensado, A note on the tolerant Tverberg theorem, Discrete Comput. Geom. 58 (2017), no. 3, 746–754. MR 3690670, DOI https://doi.org/10.1007/s00454-017-9875-x
- Stéphane Gaubert and Frédéric Meunier, Carathéodory, Helly and the others in the max-plus world, Discrete Comput. Geom. 43 (2010), no. 3, 648–662. MR 2587842, DOI https://doi.org/10.1007/s00454-009-9207-x
- Mikhail Gromov, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal. 20 (2010), no. 2, 416–526. MR 2671284, DOI https://doi.org/10.1007/s00039-010-0073-8
- Branko Grünbaum, Convex polytopes, 2nd ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. MR 1976856
- Stephan Hell, On the number of Tverberg partitions in the prime power case, European J. Combin. 28 (2007), no. 1, 347–355. MR 2261824, DOI https://doi.org/10.1016/j.ejc.2005.06.005
- Stephan Hell, On the number of Birch partitions, Discrete Comput. Geom. 40 (2008), no. 4, 586–594. MR 2453329, DOI https://doi.org/10.1007/s00454-008-9083-9
- Stephan Hell, Tverberg’s theorem with constraints, J. Combin. Theory Ser. A 115 (2008), no. 8, 1402–1416. MR 2455585, DOI https://doi.org/10.1016/j.jcta.2008.02.007
- Stephan Hell, On the number of colored Birch and Tverberg partitions, Electron. J. Combin. 21 (2014), no. 3, Paper 3.23, 12. MR 3262260
- Andreas F. Holmsen, The intersection of a matroid and an oriented matroid, Adv. Math. 290 (2016), 1–14. MR 3451916, DOI https://doi.org/10.1016/j.aim.2015.11.040
- Robert E. Jamison-Waldner, Partition numbers for trees and ordered sets, Pacific J. Math. 96 (1981), no. 1, 115–140. MR 634767
- Gil Kalai, Combinatorics with a geometric flavor, Geom. Funct. Anal. Special Volume (2000), 742–791. GAFA 2000 (Tel Aviv, 1999). MR 1826270, DOI https://doi.org/10.1007/978-3-0346-0425-3_7
- Gil Kalai and Roy Meshulam, A topological colorful Helly theorem, Adv. Math. 191 (2005), no. 2, 305–311. MR 2103215, DOI https://doi.org/10.1016/j.aim.2004.03.009
- E. R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1933), no. 1, 72–78 (German). MR 3069580, DOI https://doi.org/10.1007/BF02940628
- Roman N. Karasev, Tverberg’s transversal conjecture and analogues of nonembeddability theorems for transversals, Discrete Comput. Geom. 38 (2007), no. 3, 513–525. MR 2352706, DOI https://doi.org/10.1007/s00454-007-1355-2
- R. N. Karasëv, Dual theorems on a central point and their generalizations, Mat. Sb. 199 (2008), no. 10, 41–62 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 9-10, 1459–1479. MR 2473811, DOI https://doi.org/10.1070/SM2008v199n10ABEH003968
- R. N. Karasev, Tverberg-type theorems for intersecting by rays, Discrete Comput. Geom. 45 (2011), no. 2, 340–347. MR 2765534, DOI https://doi.org/10.1007/s00454-010-9294-8
- Roman Karasev, A simpler proof of the Boros-Füredi-Bárány-Pach-Gromov theorem, Discrete Comput. Geom. 47 (2012), no. 3, 492–495. MR 2891243, DOI https://doi.org/10.1007/s00454-011-9332-1
- Paul Kirchberger, Über Tchebychefsche Annäherungsmethoden, Math. Ann. 57 (1903), no. 4, 509–540 (German). MR 1511222, DOI https://doi.org/10.1007/BF01445182
- Emanuel Knill, Raymond Laflamme, and Lorenza Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84 (2000), no. 11, 2525–2528. MR 1745959, DOI https://doi.org/10.1103/PhysRevLett.84.2525
- Igor Kříž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 333 (1992), no. 2, 567–577. MR 1081939, DOI https://doi.org/10.1090/S0002-9947-1992-1081939-3
- D. G. Larman, On sets projectively equivalent to the vertices of a convex polytope, Bull. London Math. Soc. 4 (1972), 6–12. MR 307040, DOI https://doi.org/10.1112/blms/4.1.6
- Bernt Lindström, A theorem on families of sets, J. Combinatorial Theory Ser. A 13 (1972), 274–277. MR 304183, DOI https://doi.org/10.1016/0097-3165%2872%2990030-1
- L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), no. 3, 319–324. MR 514625, DOI https://doi.org/10.1016/0097-3165%2878%2990022-5
- L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114/115 (1989), 439–454. MR 986889, DOI https://doi.org/10.1016/0024-3795%2889%2990475-8
- I. Mabillard and U. Wagner, Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems, arXiv:1508.02349 (2015).
- A. Magazinov and A. Pór, An improvement on the Rado bound for the centerline depth, arXiv:1603.01641 (2016).
- Alexander Magazinov and Pablo Soberón, Positive-fraction intersection results and variations of weak epsilon-nets, Monatsh. Math. 183 (2017), no. 1, 165–176. MR 3634351, DOI https://doi.org/10.1007/s00605-016-0892-2
- Jiří Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, 2002. MR 1899299
- Gary L. Miller and Donald R. Sheehy, Approximate centerpoints with proofs, Comput. Geom. 43 (2010), no. 8, 647–654. MR 2652912, DOI https://doi.org/10.1016/j.comgeo.2010.04.006
- Wolfgang Mulzer and Yannik Stein, Algorithms for tolerant Tverberg partitions, Internat. J. Comput. Geom. Appl. 24 (2014), no. 4, 261–273. MR 3349914, DOI https://doi.org/10.1142/S0218195914600073
- Wolfgang Mulzer and Daniel Werner, Approximating Tverberg points in linear time for any fixed dimension, Discrete Comput. Geom. 50 (2013), no. 2, 520–535. MR 3090531, DOI https://doi.org/10.1007/s00454-013-9528-7
- Shmuel Onn, On the geometry and computational complexity of Radon partitions in the integer lattice, SIAM J. Discrete Math. 4 (1991), no. 3, 436–446. MR 1105949, DOI https://doi.org/10.1137/0404039
- M. Özaydin, Equivariant maps for the symmetric group, 1987. Unpublished preprint, University of Winsconsin-Madison.
- János Pach, A Tverberg-type result on multicolored simplices, Comput. Geom. 10 (1998), no. 2, 71–76. MR 1614605, DOI https://doi.org/10.1016/S0925-7721%2897%2900022-9
- Micha A. Perles and Moriah Sigron, Some variations on Tverberg’s theorem, Israel J. Math. 216 (2016), no. 2, 957–972. MR 3557472, DOI https://doi.org/10.1007/s11856-016-1434-2
- A. Pór, Colorful theorems in convexity, 1997. Diploma thesis, Eötovös University, Budapest.
- A. Pór, Universality of vector sequences and universality of Tverberg partitions, arXiv:1805.07197 (2018).
- Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI https://doi.org/10.1007/BF01464231
- J. L. Ramírez Alfonsín, Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes, European J. Combin. 22 (2001), no. 5, 723–731. Combinatorial geometries (Luminy, 1999). MR 1845496, DOI https://doi.org/10.1006/eujc.2000.0492
- John R. Reay, An extension of Radon’s theorem, Illinois J. Math. 12 (1968), 184–189. MR 225230
- John R. Reay, Several generalizations of Tverberg’s theorem, Israel J. Math. 34 (1979), no. 3, 238–244 (1980). MR 570883, DOI https://doi.org/10.1007/BF02760885
- D. Rolnick and P. Soberón, Algorithms for Tverberg’s theorem via centerpoint theorems, arXiv:1601.03083v2 (2016).
- David Rolnick and Pablo Soberón, Quantitative $(p,q)$ theorems in combinatorial geometry, Discrete Math. 340 (2017), no. 10, 2516–2527. MR 3674153, DOI https://doi.org/10.1016/j.disc.2017.06.017
- Jean-Pierre Roudneff, Partitions of points into simplices with $k$-dimensional intersection. II. Proof of Reay’s conjecture in dimensions 4 and 5, European J. Combin. 22 (2001), no. 5, 745–765. Combinatorial geometries (Luminy, 1999). MR 1845498, DOI https://doi.org/10.1006/eujc.2000.0494
- Jean-Pierre Roudneff, Partitions of points into simplices with $k$-dimensional intersection. II. Proof of Reay’s conjecture in dimensions 4 and 5, European J. Combin. 22 (2001), no. 5, 745–765. Combinatorial geometries (Luminy, 1999). MR 1845498, DOI https://doi.org/10.1006/eujc.2000.0494
- Jean-Pierre Roudneff, New cases of Reay’s conjecture on partitions of points into simplices with $k$-dimensional intersection, European J. Combin. 30 (2009), no. 8, 1919–1943. MR 2552674, DOI https://doi.org/10.1016/j.ejc.2008.12.015
- P. J. Rousseeuw and M. Hubert, Depth in an arrangement of hyperplanes, Discrete Comput. Geom. 22 (1999), no. 2, 167–176. MR 1698539, DOI https://doi.org/10.1007/PL00009452
- K. S. Sarkaria, A generalized Kneser conjecture, J. Combin. Theory Ser. B 49 (1990), no. 2, 236–240. MR 1064678, DOI https://doi.org/10.1016/0095-8956%2890%2990029-Y
- K. S. Sarkaria, A generalized van Kampen-Flores theorem, Proc. Amer. Math. Soc. 111 (1991), no. 2, 559–565. MR 1004423, DOI https://doi.org/10.1090/S0002-9939-1991-1004423-6
- K. S. Sarkaria, Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), no. 2-3, 317–320. MR 1248921, DOI https://doi.org/10.1007/BF02808223
- Herbert E. Scarf, An observation on the structure of production sets with indivisibilities, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 9, 3637–3641. MR 452678, DOI https://doi.org/10.1073/pnas.74.9.3637
- G. Sierksma, Convexity without linearity; the dutch cheese problem, 1979. Mimeographed notes.
- Steven Simon, Average-value Tverberg partitions via finite Fourier analysis, Israel J. Math. 216 (2016), no. 2, 891–904. MR 3557470, DOI https://doi.org/10.1007/s11856-016-1432-4
- Pablo Soberón, Equal coefficients and tolerance in coloured Tverberg partitions, Combinatorica 35 (2015), no. 2, 235–252. MR 3347469, DOI https://doi.org/10.1007/s00493-014-2969-7
- P. Soberón, Helly-type theorems for the diameter, Bull. Lond. Math. Soc. 48 (2016), no. 4, 577–588. MR 3532134, DOI https://doi.org/10.1112/blms/bdw027
- P. Soberón, Tverberg partitions as epsilon-nets, arXiv:1711.11496 (2017). Comb. Probab. Comput. (to appear).
- Pablo Soberón, Robust Tverberg and colourful Carathéodory results via random choice, Combin. Probab. Comput. 27 (2018), no. 3, 427–440. MR 3788169, DOI https://doi.org/10.1017/S0963548317000591
- Pablo Soberón and Ricardo Strausz, A generalisation of Tverberg’s theorem, Discrete Comput. Geom. 47 (2012), no. 3, 455–460. MR 2891241, DOI https://doi.org/10.1007/s00454-011-9379-z
- H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128. MR 187147, DOI https://doi.org/10.1112/jlms/s1-41.1.123
- H. Tverberg, On equal unions of sets, Studies in Pure Mathematics (Presented to Richard Rado), 1971, pp. 249–250.
- H. Tverberg, A generalization of Radon’s theorem. II, Bull. Austral. Math. Soc. 24 (1981), no. 3, 321–325. MR 647358, DOI https://doi.org/10.1017/S0004972700004858
- Helge Tverberg, A combinatorial mathematician in Norway: some personal reflections, Discrete Math. 241 (2001), no. 1-3, 11–22. Selected papers in honor of Helge Tverberg. MR 1861403, DOI https://doi.org/10.1016/S0012-365X%2801%2900222-9
- Helge Tverberg and Siniša Vrećica, On generalizations of Radon’s theorem and the ham sandwich theorem, European J. Combin. 14 (1993), no. 3, 259–264. MR 1215336, DOI https://doi.org/10.1006/eujc.1993.1029
- A. Yu. Volovikov, On a topological generalization of Tverberg’s theorem, Mat. Zametki 59 (1996), no. 3, 454–456 (Russian); English transl., Math. Notes 59 (1996), no. 3-4, 324–325. MR 1399973, DOI https://doi.org/10.1007/BF02308547
- Siniša T. Vrećica, Tverberg’s conjecture, Discrete Comput. Geom. 29 (2003), no. 4, 505–510. MR 1976603, DOI https://doi.org/10.1007/s00454-003-0784-9
- Aleksandar Vučić and Rade T. Živaljević, Note on a conjecture of Sierksma, Discrete Comput. Geom. 9 (1993), no. 4, 339–349. MR 1206796, DOI https://doi.org/10.1007/BF02189327
- Siniša T. Vrećica and Rade T. Živaljević, New cases of the colored Tverberg theorem, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 325–334. MR 1310591, DOI https://doi.org/10.1090/conm/178/01908
- U. Wagner, On k-sets and applications, Ph.D. Thesis, 2003. https://doi.org/10.3929/ethz-a-004708408.
- Moshe J. White, On Tverberg partitions, Israel J. Math. 219 (2017), no. 2, 549–553. MR 3649599, DOI https://doi.org/10.1007/s11856-017-1490-2
- Hassler Whitney, The self-intersections of a smooth $n$-manifold in $2n$-space, Ann. of Math. (2) 45 (1944), 220–246. MR 10274, DOI https://doi.org/10.2307/1969265
- Rade T. Živaljević, The Tverberg-Vrećica problem and the combinatorial geometry on vector bundles, Israel J. Math. 111 (1999), 53–76. MR 1710731, DOI https://doi.org/10.1007/BF02810677
- Rade T. Živaljević and Siniša T. Vrećica, An extension of the ham sandwich theorem, Bull. London Math. Soc. 22 (1990), no. 2, 183–186. MR 1045292, DOI https://doi.org/10.1112/blms/22.2.183
- Rade T. Živaljević and Siniša T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory Ser. A 61 (1992), no. 2, 309–318. MR 1185000, DOI https://doi.org/10.1016/0097-3165%2892%2990028-S
- M. Yu. Zvagel’skiĭ, An elementary proof of Tverberg’s theorem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 353 (2008), no. Geometriya i Topologiya. 10, 54–61, 192.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 52A35, 52A37
Retrieve articles in all journals with MSC (2010): 52A35, 52A37
Additional Information
Imre Bárány
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1364 Budapest Pf. 127 Hungary; and Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom
MR Author ID:
30885
Email:
barany.imre@renyi.mta.hu
Pablo Soberón
Affiliation:
Mathematics Department, Northeastern University, Boston, Massachusetts 02115
MR Author ID:
924529
ORCID:
0000-0003-2347-4279
Email:
pablo.soberon@ciencias.unam.mx
Received by editor(s):
December 17, 2017
Published electronically:
June 19, 2018
Additional Notes:
The first author was partly supported by the National Science Foundation under Grant No. DMS-1440140 and was also supported by Hungarian National Research, Development and Innovation Office Grants No. K111827 and K116769.
Article copyright:
© Copyright 2018
American Mathematical Society