Vladimir Voevodsky—An appreciation
Author:
Marc Levine
Journal:
Bull. Amer. Math. Soc. 55 (2018), 405-425
MSC (2010):
Primary 14F42, 19E15; Secondary 55P42
DOI:
https://doi.org/10.1090/bull/1637
Published electronically:
July 30, 2018
MathSciNet review:
3854071
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a brief résumé of some of the works of the late Vladimir Voevodsky.
- A. Ananyevskiy, G. Garkusha, I. Panin, Cancellation theorem for framed motives of algebraic varieties. arXiv:1601.06642 [math.KT]
- J. Ayoub, A guide to (étale)motivic sheaves, http://user.math.uzh.ch/ayoub/PDF-Files/ICM2014.pdf
- Joseph Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 1, 1–145 (French, with English and French summaries). MR 3205601, DOI https://doi.org/10.24033/asens.2210
- Joseph Ayoub and Steven Zucker, Relative Artin motives and the reductive Borel-Serre compactification of a locally symmetric variety, Invent. Math. 188 (2012), no. 2, 277–427. MR 2909768, DOI https://doi.org/10.1007/s00222-011-0349-0
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque 315 (2007), vi+364 pp. (2008) (French, with English and French summaries). MR 2438151
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque 314 (2007), x+466 pp. (2008) (French, with English and French summaries). MR 2423375
- S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3, 537–568. MR 1269719
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- D.-C. Cisinski, A. A. Khan. Brave new motivic homotopy theory II: Homotopy invariant K-theory. arXiv:1705.03340 [math.AT]
- Denis-Charles Cisinski and Frédéric Déglise, Integral mixed motives in equal characteristic, Doc. Math. Extra vol.: Alexander S. Merkurjev’s sixtieth birthday (2015), 145–194. MR 3404379
- Denis-Charles Cisinski and Frédéric Déglise, Étale motives, Compos. Math. 152 (2016), no. 3, 556–666. MR 3477640, DOI https://doi.org/10.1112/S0010437X15007459
- D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives. arXiv:0912.2110 [math.AG]
- Guillermo Cortiñas, Christian Haesemeyer, Mark E. Walker, and Charles Weibel, Toric varieties, monoid schemes and cdh descent, J. Reine Angew. Math. 698 (2015), 1–54. MR 3294649, DOI https://doi.org/10.1515/crelle-2012-0123
- G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, A negative answer to a question of Bass, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1187–1200. MR 2748413, DOI https://doi.org/10.1090/S0002-9939-2010-10728-1
- G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, Bass’ $NK$ groups and cdh-fibrant Hochschild homology, Invent. Math. 181 (2010), no. 2, 421–448. MR 2657430, DOI https://doi.org/10.1007/s00222-010-0253-z
- G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, Cyclic homology, cdh-cohomology and negative $K$-theory, Ann. of Math. (2) 167 (2008), no. 2, 549–573. MR 2415380, DOI https://doi.org/10.4007/annals.2008.167.549
- G. Cortiñas, C. Haesemeyer, and C. Weibel, $K$-regularity, $cdh$-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21 (2008), no. 2, 547–561. MR 2373359, DOI https://doi.org/10.1090/S0894-0347-07-00571-1
- F. Déglise, F. Jin, and A. A. Khan, Fundamental classes in motivic homotopy theory. arXiv:1805.05920 [math. AG]
- P. Deligne, Voevodsky’s lectures on cross functors Fall 2001. Lecture notes, http://www.math.ias.edu/vladimir/files/2015_{t}ransfer_{f}rom_{p}s_{d}elnotes01.pdf
- E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, and M. Yakerson, Motivic infinite loop spaces. arXiv:1711.05248 [math.AG]
- Eric M. Friedlander, Michael Rapoport, and Andrei Suslin, The mathematical work of the 2002 Fields medalists, Notices Amer. Math. Soc. 50 (2003), no. 2, 212–217. MR 1951107
- Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic $K$-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875 (English, with English and French summaries). MR 1949356, DOI https://doi.org/10.1016/S0012-9593%2802%2901109-6
- G. Garkusha, A. Neshitov, I. Panin, Framed motives of relative motivic spheres. arXiv:1604.02732 [math.KT]
- G. Garkusha, I. Panin, Framed motives of algebraic varieties (after V. Voevodsky). arXiv:1409.4372 [math.KT]
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
- Javier J. Gutiérrez, Oliver Röndigs, Markus Spitzweck, and Paul Arne Østvær, Motivic slices and coloured operads, J. Topol. 5 (2012), no. 3, 727–755. MR 2971612, DOI https://doi.org/10.1112/jtopol/jts015
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- Marc Hoyois, The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017), 197–279. MR 3570135, DOI https://doi.org/10.1016/j.aim.2016.09.031
- Marc Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015), 173–226. MR 3341470, DOI https://doi.org/10.1515/crelle-2013-0038
- Marc Hoyois, Shane Kelly, and Paul Arne Østvær, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 12, 3813–3849. MR 3730515, DOI https://doi.org/10.4171/JEMS/754
- J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–552. MR 1787949
- Bruno Kahn, La conjecture de Milnor (d’après V. Voevodsky) [MR1627119], Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 1105–1149 (French, with English summary). MR 2181840
- Bruno Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque 245 (1997), Exp. No. 834, 5, 379–418 (French, with French summary). Séminaire Bourbaki, Vol. 1996/97. MR 1627119
- Moritz Kerz, Florian Strunk, and Georg Tamme, Algebraic $K$-theory and descent for blow-ups, Invent. Math. 211 (2018), no. 2, 523–577. MR 3748313, DOI https://doi.org/10.1007/s00222-017-0752-2
- Moritz Kerz and Florian Strunk, On the vanishing of negative homotopy $K$-theory, J. Pure Appl. Algebra 221 (2017), no. 7, 1641–1644. MR 3614971, DOI https://doi.org/10.1016/j.jpaa.2016.12.021
- A. A. Khan, Brave new motivic homotopy theory I. arXiv:1610.06871 [math.AT]
- M. Levine, The intrinsic stable normal cone. arXiv:1703.03056 [math.AG]
- Marc Levine, A comparison of motivic and classical stable homotopy theories, J. Topol. 7 (2014), no. 2, 327–362. MR 3217623, DOI https://doi.org/10.1112/jtopol/jtt031
- Marc Levine, The homotopy coniveau tower, J. Topol. 1 (2008), no. 1, 217–267. MR 2365658, DOI https://doi.org/10.1112/jtopol/jtm004
- Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 1811558
- Fabien Morel, An introduction to $\Bbb A^1$-homotopy theory, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 357–441. MR 2175638
- Niko Naumann, Markus Spitzweck, and Paul Arne Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009), 551–593. MR 2565902
- Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, On Voevodsky’s algebraic $K$-theory spectrum, Algebraic topology, Abel Symp., vol. 4, Springer, Berlin, 2009, pp. 279–330. MR 2597741, DOI https://doi.org/10.1007/978-3-642-01200-6_10
- Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008), no. 2, 211–226. MR 2475610
- Pablo Pelaez, Multiplicative properties of the slice filtration, Astérisque 335 (2011), xvi+289 (English, with English and French summaries). MR 2807904
- Oliver Röndigs and Paul Arne Østvær, Slices of hermitian $K$-theory and Milnor’s conjecture on quadratic forms, Geom. Topol. 20 (2016), no. 2, 1157–1212. MR 3493102, DOI https://doi.org/10.2140/gt.2016.20.1157
- O. Röndigs, M. Spitzweck, and P. A. Østvær, The first stable homotopy groups of motivic spheres. arXiv:1604.00365 math.AT
- Oliver Röndigs and Paul Arne Østvær, Motives and modules over motivic cohomology, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 751–754 (English, with English and French summaries). MR 2227753, DOI https://doi.org/10.1016/j.crma.2006.03.013
- M. Spitzweck, A commutative $\P ^1$-spectrum representing motivic cohomology over Dedekind domains. arXiv:1207.4078 [math.AG]
- Markus Spitzweck, Relations between slices and quotients of the algebraic cobordism spectrum, Homology Homotopy Appl. 12 (2010), no. 2, 335–351. MR 2771593
- Fabien Morel and Vladimir Voevodsky, ${\bf A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI https://doi.org/10.1016/0001-8708%2871%2990041-7
- Andrei Suslin, Algebraic $K$-theory and motivic cohomology, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 342–351. MR 1403935
- Andrei Suslin, Voevodsky’s proof of the Milnor conjecture, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 173–188. MR 1700298
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI https://doi.org/10.4007/annals.2011.174.1.11
- Vladimir Voevodsky, Motivic Eilenberg-Maclane spaces, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 1–99. MR 2737977, DOI https://doi.org/10.1007/s10240-010-0024-9
- Vladimir Voevodsky, Cancellation theorem, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 671–685. MR 2804268
- V. Voevodsky, On the zero slice of the sphere spectrum, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 106–115; English transl., Proc. Steklov Inst. Math. 3(246) (2004), 93–102. MR 2101286
- Vladimir Voevodsky, Motivic cohomology with ${\bf Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104. MR 2031199, DOI https://doi.org/10.1007/s10240-003-0010-6
- Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198, DOI https://doi.org/10.1007/s10240-003-0009-z
- Vladimir Voevodsky, Open problems in the motivic stable homotopy theory. I, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998) Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 3–34. MR 1977582
- Vladimir Voevodsky, A possible new approach to the motivic spectral sequence for algebraic $K$-theory, Recent progress in homotopy theory (Baltimore, MD, 2000) Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 371–379. MR 1890744, DOI https://doi.org/10.1090/conm/293/04956
- Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351–355. MR 1883180, DOI https://doi.org/10.1155/S107379280210403X
- Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, Princeton, NJ, 2000. MR 1764197
- Vladimir Voevodsky, $\mathbf A^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
- V. Voevodsky, Homology of schemes, Selecta Math. (N.S.) 2 (1996), no. 1, 111–153. MR 1403354, DOI https://doi.org/10.1007/BF01587941
- V. Voevodsky, Notes on framed correspondences, http://www.math.ias.edu/vladimir/ files/framed.pdf
- C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346–372. MR 2529300, DOI https://doi.org/10.1112/jtopol/jtp013
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 14F42, 19E15, 55P42
Retrieve articles in all journals with MSC (2010): 14F42, 19E15, 55P42
Additional Information
Marc Levine
Affiliation:
Fakultät Mathematik, Universität Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
MR Author ID:
113315
Email:
marc.levine@uni-due.de
Received by editor(s):
July 3, 2018
Published electronically:
July 30, 2018
Additional Notes:
The author is supported by the DFG through the SFB Transregio 45 and the SPP 1786 “Homotopy theory and algebraic geometry”.
Article copyright:
© Copyright 2018
American Mathematical Society