Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Materials from mathematics

Author: Richard D. James
Journal: Bull. Amer. Math. Soc. 56 (2019), 1-28
MSC (2010): Primary 74N05; Secondary 74N30, 74N20, 82B26
Published electronically: August 30, 2018
MathSciNet review: 3886142
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: I survey some examples of materials whose recent discovery was based in an essential way on mathematical ideas. The main idea concerns compatibility, the fitting together of the phases of a material. Some of the emerging materials have the ability to change heat directly into electricity without the need of a separate electrical generator.

References [Enhancements On Off] (What's this?)

  • Edgar C. Bain, The nature of martensite, Trans. AIME 70 (1924), no. 1, 25.
  • Xavier Balandraud, Noemi Barrera, Paolo Biscari, Michel Grédiac, and Giovanni Zanzotto, Strain intermittency in shape-memory alloys, Physical Review B 91 (2015), no. 17, 174111.
  • J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), no. 1, 13–52. MR 906132, DOI
  • J. M. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Trans.: Phys. Sci. Eng. 338 (1992), no. 1650, 389.
  • John M. Ball, Pierluigi Cesana, and Ben Hambly, A probabilistic model for martensitic avalanches, MATEC Web of Conferences, vol. 33, EDP Sciences, 2015.
  • John M. Ball, Konstantinos Koumatos, and Hanuš Seiner, Nucleation of austenite in mechanically stabilized martensite by localized heating, Journal of Alloys and Compounds 577 (2013), S37–S42.
  • Noemi Barrera and Giovanni Zanzotto, Power-law behavior and avalanches in phase transformations, private communication (2017).
  • Pavel Bělík and Mitchell Luskin, Stability of microstructure for tetragonal to monoclinic martensitic transformations, M2AN Math. Model. Numer. Anal. 34 (2000), no. 3, 663–685. MR 1763530, DOI
  • Kaushik Bhattacharya, Microstructure of martensite, Oxford Series on Materials Modelling, Oxford University Press, Oxford, 2003. Why it forms and how it gives rise to the shape-memory effect. MR 2282631
  • Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto, and Johannes Zimmer, Crystal symmetry and the reversibility of martensitic transformations, Nature 428 (2004), no. 6978, 55–59.
  • Kaushik Bhattacharya and Robert V. Kohn, Symmetry, texture and the recoverable strain of shape-memory polycrystals, Acta Mater. 44 (1996), no. 2, 529–542.
  • Kaushik Bhattacharya, Bo Li, and Mitchell Luskin, The simply laminated microstructure in martensitic crystals that undergo a cubic-to-orthorhombic phase transformation, Arch. Ration. Mech. Anal. 149 (1999), no. 2, 123–154. MR 1719149, DOI
  • Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 949–956 (French, with English and French summaries). MR 1838776, DOI
  • X. Blanc, C. Le Bris, and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal. 164 (2002), no. 4, 341–381. MR 1933632, DOI
  • Antonio Capella and Felix Otto, A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 2, 273–327. MR 2911169, DOI
  • Allan Chan and Sergio Conti, Energy scaling and domain branching in solid-solid phase transitions, Singular phenomena and scaling in mathematical models, Springer, Cham, 2014, pp. 243–260. MR 3205044, DOI
  • Xian Chen, Yintao Song, Nobumichi Tamura, and Richard D. James, Determination of the stretch tensor for structural transformations, J. Mech. Phys. Solids 93 (2016), 34–43. MR 3520452, DOI
  • Xian Chen, Vijay Srivastava, Vivekanand Dabade, and Richard D. James, Study of the cofactor conditions: conditions of supercompatibility between phases, J. Mech. Phys. Solids 61 (2013), no. 12, 2566–2587. MR 3111578, DOI
  • Christoph Chluba, Wenwei Ge, Rodrigo Lima de Miranda, Julian Strobel, Lorenz Kienle, Eckhard Quandt, and Manfred Wuttig, Ultralow-fatigue shape memory alloy films, Science 348 (2015), no. 6238, 1004–1007.
  • Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman, Power-law distributions in empirical data, SIAM Rev. 51 (2009), no. 4, 661–703. MR 2563829, DOI
  • S. Conti, M. Klar, and B. Zwicknagl, Piecewise affine stress-free martensitic inclusions in planar nonlinear elasticity, Proc. A. 473 (2017), no. 2203, 20170235, 16. MR 3685479, DOI
  • J. Cui, Y. S. Chu, O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi, Combinatorial search of thermoelastic shape memory alloys with extremely small hysteresis width, Nature Materials (2006), 286–290.
  • Francesco Della Porta, Modeling moving interfaces in reversible martensitic transformations, preprint (2017).
  • R. Delville, S. Kasinathan, Z. Zhang, V. Humbeeck, R. D. James, and D. Schryvers, A transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys, Philosophical Magazine (2010), 177–195.
  • Weinan E, Weiqing Ren, and Eric Vanden-Eijnden, String method for the study of rare events, Physical Review B 66 (2002), no. 5, 052301.
  • J. L. Ericksen, On the Cauchy-Born rule, Math. Mech. Solids 13 (2008), no. 3-4, 199–220. MR 2412005, DOI
  • Leonhard Euler, Recherches physiques sur la nature des moindres parties de la matière (Opera omnia, III. 1: 6–15), Berlin Academy Memoires 1 (1745), 28–32.
  • L. C. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 363–416. MR 3360741, DOI
  • Irene Fonseca and Jan Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 3, 309–338 (English, with English and French summaries). MR 1450951, DOI
  • G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci. 12 (2002), no. 5, 445–478. MR 1923388, DOI
  • Hanlin Gu, Lars Bumke, Christoph Chluba, Eckhard Quandt, and Richard D. James, Phase engineering and supercompatibility of shape memory alloys, Materials Today 21 (2018), 265–277.
  • R. D. James and Z. Zhang, A way to search for multiferroic materials with unlikely combinations of physical properties, Magnetism and Structure in Functional Materials, Springer Series in Materials Science (A. Planes, L Manõsa, and A. Saxena, eds.), vol. 9, Springer-Verlag, Berlin, 2005, pp. 159–175.
  • R. D. James and Stefan Müller, Internal variables and fine-scale oscillations in micromagnetics, Contin. Mech. Thermodyn. 6 (1994), no. 4, 291–336. MR 1308877, DOI
  • Hans Knüpfer and Robert V. Kohn, Minimal energy for elastic inclusions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2127, 695–717. MR 2765222, DOI
  • Hans Knüpfer, Robert V. Kohn, and Felix Otto, Nucleation barriers for the cubic-to-tetragonal phase transformation, Comm. Pure Appl. Math. 66 (2013), no. 6, 867–904. MR 3043384, DOI
  • Robert V. Kohn, Energy-driven pattern formation, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 359–383. MR 2334197, DOI
  • Robert V. Kohn and Stefan Müller, Branching of twins near an austenite twinned-martensite interface, Philosophical Magazine A 66 (1992), no. 5, 697–715.
  • Robert V. Kohn and Stefan Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994), no. 4, 405–435. MR 1272383, DOI
  • K. Koumatos and A. Muehlemann, Optimality of general lattice transformations with applications to the Bain strain in steel, Proc. A. 472 (2016), no. 2188, 20150865, 20. MR 3501546, DOI
  • Jan Kristensen, A necessary and sufficient condition for lower semicontinuity, Nonlinear Anal. 120 (2015), 43–56. MR 3348045, DOI
  • Anna Levina, J. Michael Herrmann, and Theo Geisel, Dynamical synapses causing self-organized criticality in neural networks, Nature physics 3 (2007), no. 12, 857–860.
  • Mitchell Luskin, On the computation of crystalline microstructure, Acta numerica, 1996, Acta Numer., vol. 5, Cambridge Univ. Press, Cambridge, 1996, pp. 191–257. MR 1624603, DOI
  • Robert D. MacPherson and David J. Srolovitz, The von Neumann relation generalized to coarsening of three-dimensional microstructures, Nature 446 (2007), no. 7139, 1053–5.
  • I. D. Mayergoyz, Mathematical models of hysteresis, Springer-Verlag, New York, 1991. MR 1083150
  • Stefan Müller, Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85–210. MR 1731640, DOI
  • W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900–904. MR 78836
  • Mark E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemporary Physics 46 (2005), no. 5, 323–351.
  • Xiaoyue Ni, Julia R. Greer, Kaushik Bhattacharya, Richard D. James, and Xian Chen, Exceptional resilience of small-scale Au$_{30}$Cu$_{25}$Zn$_{45}$ under cyclic stress-induced phase transformation, Nano Letters 16 (2016), no. 12, 7621–7625.
  • Patent iNSIGHT Pro, Shape Memory Material Technology Insight Report, Tech. report, Gridlogics Technologies Pvt. Ltd., 2015.
  • Francisco-José Pérez-Reche, Marcelo Stipcich, Eduard Vives, Lluís Mañosa, Antoni Planes, and Michel Morin, Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales, Physical Review B 69 (2004), no. 6, 064101.
  • M. Pitteri, Reconciliation of local and global symmetries of crystals, J. Elasticity 14 (1984), no. 2, 175–190. MR 747059, DOI
  • Mario Pitteri and G. Zanzotto, Continuum models for phase transitions and twinning in crystals, Applied Mathematics (Boca Raton), vol. 19, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1996833
  • Guang-Rui Qian, Xiao Dong, Xiang-Feng Zhou, Yongjun Tian, Artem R Oganov, and Hui-Tian Wang, Variable cell nudged elastic band method for studying solid–solid structural phase transitions, Computer Physics Communications 184 (2013), no. 9, 2111–2118.
  • Angkana Rüland, The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity, Arch. Ration. Mech. Anal. 221 (2016), no. 1, 23–106. MR 3483891, DOI
  • Ekhard K. H. Salje, Avadh Saxena, and Antoni Planes, Avalanches in functional materials and geophysics, Springer, 2017.
  • James P. Sethna, Karin Dahmen, Sivan Kartha, James A. Krumhansl, Bruce W. Roberts, and Joel D. Shore, Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations, Physical Review Letters 70 (1993), no. 21, 3347.
  • Cyril Stanley Smith, Grain shapes and other metallurgical applications of topology, Metal interfaces: a seminar on metal interfaces held during the 33$^\textrm {rd}$ National Metal Congress and Exposition, October 13-19, Detroit (Cleveland), American Society for Metals, 1951, pp. 65–108.
  • Y. Song, X. Chen, V. Dabade, T. W. Shield, and R. D. James, Enhanced reversibility and unusual microstructure of a phase-transforming material, Nature 502 (2013), 85–88.
  • Yintao Song, Chris Leighton, and Richard D. James, Thermodynamics and energy conversion in Heusler alloys, Heusler Alloys, Springer, 2016, pp. 269–291.
  • Vijay Srivastava, Xian Chen, and Richard D. James, Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni$_{45}$Co$_{5}$Mn$_{40}$Sn$_{10}$, Appl. Phys. Lett. 97 (2010), no. 1, 014101.
  • Likun Tan and Kaushik Bhattacharya, Length scales and pinning of interfaces, Philos. Trans. Roy. Soc. A 374 (2016), no. 2066, 20150167, 17. MR 3479884, DOI
  • Florian Theil, A proof of crystallization in two dimensions, Comm. Math. Phys. 262 (2006), no. 1, 209–236. MR 2200888, DOI
  • Clarence Marvin Wayman, Introduction to the crystallography of martensitic transformations, Macmillan, 1964.
  • L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sci. et des Lettres de Varsovie 30 (1937), 212–234.
  • L. C. Young, Generalized surfaces in the calculus of variations, Ann. of Math. (2) 43 (1942), 84–103. MR 6023, DOI
  • L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1969. Foreword by Wendell H. Fleming. MR 0259704
  • Giovanni Zanzotto, The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallographica Section A: Foundations of Crystallography 52 (1996), no. 6, 839–849.
  • Nikolai A Zarkevich and Duane D Johnson, Shape-memory transformations of NiTi: minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states, Physical Review Letters 113 (2014), no. 26, 265701.
  • R. Zarnetta, R. Takahashi, M. L. Young, A. Savan, Y. Furuya, S. Thienhaus, B. Maaß, M. Rahim, J. Frenzel, H. Brunken, Y. S. Chu, V. Srivastava, R. D. James, I. Takeuchi, G. Eggeler, and A. Ludwig, Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability, Advanced Functional Materials (2010), 1917–1923.
  • Zhiyong Zhang, R. D. James, and Stefan Müller, Energy barriers and hysteresis in martensitic phase transformations, Acta Materialia (Invited Overview) 57 (2009), 2332–4352.
  • Barbara Zwicknagl, Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 355–421. MR 3211854, DOI

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 74N05, 74N30, 74N20, 82B26

Retrieve articles in all journals with MSC (2010): 74N05, 74N30, 74N20, 82B26

Additional Information

Richard D. James
Affiliation: Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455
MR Author ID: 93245

Received by editor(s): May 7, 2018
Published electronically: August 30, 2018
Additional Notes: This work was supported by ONR (N00014-14-1-0714), AFOSR (FA9550-15-1-0207), NSF (DMREF-1629026), and the MURI program (FA9550-18-0095, FA9550-16-1-0566)
Article copyright: © Copyright 2018 American Mathematical Society