Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 4007385
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Martin T. Barlow
Title: Random walks and heat kernels on graphs
Additional book information: London Mathematical Society Lecture Notes Series, Vol. 438, Cambridge University Press, Cambridge, 2017, xi+226 pp., ISBN 978-1-107-67442-4, US$80

References [Enhancements On Off] (What's this?)

  • Martin T. Barlow, Random walks and heat kernels on graphs, London Mathematical Society Lecture Note Series, vol. 438, Cambridge University Press, Cambridge, 2017. MR 3616731
  • Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635
  • Thomas Keith Carne, A transmutation formula for Markov chains, Bull. Sci. Math. (2) 109 (1985), no. 4, 399–405 (English, with French summary). MR 837740
  • Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199. MR 0402831
  • Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568
  • Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811
  • B. Hanin. Which neural net architectures give rise to exploding and vanishing gradients?, arXiv:1801.03744 (2018).
  • Gregory F. Lawler and Vlada Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010. MR 2677157
  • David A. Levin and Yuval Peres, Markov chains and mixing times, American Mathematical Society, Providence, RI, 2017. Second edition of [ MR2466937]; With contributions by Elizabeth L. Wilmer; With a chapter on “Coupling from the past” by James G. Propp and David B. Wilson. MR 3726904
  • Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42, Cambridge University Press, New York, 2016. MR 3616205
  • K. Pearson, The problem of the random walk, Nature (London) 72 (1905), 294.
  • J. W. Strutt, 3rd Baron Rayleigh, On the electromagnetic theory of light, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12 (1881), no 73, 81–101.
  • J. W. Strutt, 3rd Baron Rayleigh, The problem of random walk, Nature (London) 72 (1905), 318–325.
  • Frank Spitzer, Principles of random walk, 2nd ed., Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, Vol. 34. MR 0388547
  • Toshikazu Sunada, Discrete geometric analysis, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 51–83. MR 2459864, DOI
  • N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), no. 2, 215–239. MR 803093, DOI
  • Nicholas Th. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. (2) 109 (1985), no. 3, 225–252 (English, with French summary). MR 822826

Review Information:

Reviewer: Eviatar B. Procaccia
Affiliation: Department of Mathematics, Texas A&M University
Journal: Bull. Amer. Math. Soc. 56 (2019), 705-711
Published electronically: August 3, 2018
Review copyright: © Copyright 2018 American Mathematical Society