Book Reviews
Book reviews do not contain an abstract.
You may download the entire review from the links below.
- Full text review in PDF
- This review is available free of charge
- Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra by Isroil A. Ikromov and Detlef Müller
- Bull. Amer. Math. Soc. 57 (2020), 145-151
- Additional book information: Annals of Mathematical Studies, no. 194, Princeton University Press, Princeton, NJ, no. 194, 2016, viii+258 pp., ISBN 978-0-691-17055-8, List price US$165 (hardcover), US$75 (paperback)
References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy and asymptotics of integrals; Translated from the Russian by Hugh Porteous; Translation revised by the authors and James Montaldi. MR 966191, DOI 10.1007/978-1-4612-3940-6
- Jonathan Bennett, Anthony Carbery, and Terence Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261–302. MR 2275834, DOI 10.1007/s11511-006-0006-4
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- Jean Bourgain and Larry Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal. 21 (2011), no. 6, 1239–1295. MR 2860188, DOI 10.1007/s00039-011-0140-9
- Joaquim Bruna, Alexander Nagel, and Stephen Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. (2) 127 (1988), no. 2, 333–365. MR 932301, DOI 10.2307/2007057
- Stefan Buschenhenke, Detlef Müller, and Ana Vargas, A Fourier restriction theorem for a two-dimensional surface of finite type, Anal. PDE 10 (2017), no. 4, 817–891. MR 3649369, DOI 10.2140/apde.2017.10.817
- A. Carbery, C. E. Kenig, and S. N. Ziesler, Restriction for homogeneous polynomial surfaces in $\Bbb {R}^3$, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2367–2407. MR 3020102, DOI 10.1090/S0002-9947-2012-05685-6
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- Michael Greenblatt, Resolution of singularities in two dimensions and the stability of integrals, Adv. Math. 226 (2011), no. 2, 1772–1802. MR 2737800, DOI 10.1016/j.aim.2010.09.003
- Allan Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. MR 620265, DOI 10.1512/iumj.1981.30.30043
- Larry Guth, A restriction estimate using polynomial partitioning, J. Amer. Math. Soc. 29 (2016), no. 2, 371–413. MR 3454378, DOI 10.1090/jams827
- J. Hickman and K. M. Rogers, Improved Fourier restriction estimates in higher dimensions arXiv 1807.10940 (2018).
- Isroil A. Ikromov, Michael Kempe, and Detlef Müller, Estimates for maximal functions associated with hypersurfaces in $\Bbb R^3$ and related problems of harmonic analysis, Acta Math. 204 (2010), no. 2, 151–271. MR 2653054, DOI 10.1007/s11511-010-0047-6
- Isroil A. Ikromov and Detlef Müller, On adapted coordinate systems, Trans. Amer. Math. Soc. 363 (2011), no. 6, 2821–2848. MR 2775788, DOI 10.1090/S0002-9947-2011-04951-2
- Isroil A. Ikromov and Detlef Müller, Uniform estimates for the Fourier transform of surface carried measures in $\Bbb R^3$ and an application to Fourier restriction, J. Fourier Anal. Appl. 17 (2011), no. 6, 1292–1332. MR 2854839, DOI 10.1007/s00041-011-9191-4
- V. N. Karpushkin, A theorem on uniform estimates for oscillatory integrals with a phase depending on two variables, Trudy Sem. Petrovsk. 10 (1984), 150–169, 238 (Russian, with English summary). MR 778884
- Ákos Magyar, On Fourier restriction and the Newton polygon, Proc. Amer. Math. Soc. 137 (2009), no. 2, 615–625. MR 2448583, DOI 10.1090/S0002-9939-08-09510-5
- D. H. Phong and E. M. Stein, The Newton polyhedron and oscillatory integral operators, Acta Math. 179 (1997), no. 1, 105–152. MR 1484770, DOI 10.1007/BF02392721
- D. H. Phong, E. M. Stein, and J. A. Sturm, On the growth and stability of real-analytic functions, Amer. J. Math. 121 (1999), no. 3, 519–554. MR 1738409
- H. Schulz, On the decay of the Fourier transform of measures on hypersurfaces, generated by radial functions, and related restriction theorems, Preprint No. 1286, February 1990, Fachbereich Mathematik, TU Darmstadt.
- Bassam Shayya, Weighted restriction estimates using polynomial partitioning, Proc. Lond. Math. Soc. (3) 115 (2017), no. 3, 545–598. MR 3694293, DOI 10.1112/plms.12046
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
- T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359–1384. MR 2033842, DOI 10.1007/s00039-003-0449-0
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
- A. N. Varčenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Priložen. 10 (1976), no. 3, 13–38 (Russian). MR 422257
- H. Wang, A restriction estimate in $\mathbb {R}^3$ using brooms, arXiv 1802.04312 (2018).
- Thomas Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), no. 3, 661–698. MR 1836285, DOI 10.2307/2661365
Reviewer information
- Reviewer: Andreas Seeger
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Email: seeger@math.wisc.edu
Additional Information
- Journal: Bull. Amer. Math. Soc. 57 (2020), 145-151
- DOI: https://doi.org/10.1090/bull/1645
- Published electronically: August 22, 2018
- Review Copyright: © Copyright 2018 American Mathematical Society