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A fundamental phenomenon in the statistical study of large complex systems is
that of universality : in the limit where the number N of components of the system
goes to infinity, the distribution of various natural statistics of that system, after
suitable normalisation, will often converge (in a suitable probabilistic sense) to a
universal limiting distribution, the nature of which is largely independent of the
microscopic features of the individual components of such a system. For instance,
the two most fundamental theorems in probability can both be interpreted as basic
examples of universality:

• Law of large numbers. If X1, X2, . . . are independent and identically dis-
tributed (or iid for short) real random variables of finite first moment
E|Xi| < ∞ with the normalisation EXi = 0, then the normalised aver-
ages X1+···+XN

N converge in probability to the deterministic constant 0.
• Central limit theorem. If X1, X2, . . . are iid real random variables of finite
second moment E|Xi|2 < ∞ with the normalisation EXi = 0,EX2

i = 1,

then the normalised averages X1+···+XN√
N

converge in distribution to the

normal distribution N(0, 1) of mean zero and variance once.

Note here how the distribution of the individual random variables Xi has almost
no bearing on the universal limiting distribution (which is 0 in the law of large
numbers, or N(0, 1) in the central limit theorem), so long as they are suitably
normalised and obey some finite moment condition. In particular, these laws are
equally valid for continuous random variables (such as Gaussian variables with law
N(0, 1)) as they are for discrete random variables (such as the Bernoulli distribution
that takes values in {−1,+1}, with an equal probability of each).

These basic examples of universality are now extremely well understood, with
many proofs, generalisations, refinements, and other variants. However, there is
another instance of the universality phenomenon, originating from the study of
random matrices, for which a satisfactory understanding has only begun to emerge
in the last few decades, and even then only for certain classes of random models of
interest. Roughly speaking, the book of Baik, Deift, and Suidan [3] describes the
progress on understanding such universality for “integrable” models which admit
exact determinantal formulae for their statistics, while the book of Erős and Yau
[8] describes the progress for “Wigner” type models which admit a useful heat flow
dynamics that allows such models to approach a “Gaussian” type equilibrium state.
It is interesting that while these two sources of universality (determinantal structure
and heat flow structure) seem to operate in completely different ways (and to an
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almost disjoint class of random models), the final results of the methods developed
to exploit these two sources are remarkably similar, suggesting that the universality
phenomenon is far broader than what any single technique can establish on its own.

Let us now give a more precise example of a universality result. Let N be a
large integer, and consider a Wigner random matrix ensemble given by a random
Hermitian N ×N matrix H = (hij)1≤i,j≤N , hji = hji, where the upper triangular
entries hij , 1 ≤ i, j ≤ N are jointly independent, and all have mean zero and
variance 1/N :

Ehij = 0; E|hij |2 =
1

N
.

The 1
N normalisation is convenient in order to keep the eigenvalues of H of bounded

size. For technical reasons one often imposes an additional decay hypothesis on the
distribution of these variables; a typical one is the subexponential decay hypothesis

P(|hij | ≥ N−1/2λ) ≤ C exp(−λθ)

for all λ > 0 and i, j, and some constants C, θ > 0 independent of N .
The most important example of a Wigner ensemble is that of the Gaussian Uni-

tary Ensemble (GUE), in which hij are distributed according to a complex Gaussian
of mean zero and variance 1/N when i �= j, and a real Gaussian of mean zero and
variance 1/N when i = j. The terminology can be explained by observing that if
H is drawn from the GUE, then for any unitary matrix U ∈ U(N), the random
matrix UHU−1 has the same distribution as H. At the opposite extreme, another
example of a Wigner ensemble is a (normalised) symmetric Bernoulli random ma-

trix, in which all the entries hij take values in {−1/
√
N,+1/

√
N} with an equal

probability of 1/2 of each.
The famous Wigner semicircle law [20] asserts that in the limit N → ∞, the

spectrum of H is asymptotically distributed according to the semicircular measure
ρsc(x) dx, where ρsc : R → R+ is the function

ρsc(x) :=
1

2π
max(4− x2, 0)1/2.

More precisely, if one lets λ1 ≥ · · · ≥ λN denote the N (necessarily real) eigenvalues
of H in descending order, then for any interval [a, b], the random variable

1

N
#{1 ≤ i ≤ n : λi ∈ [a, b]}

converges in probability to
∫ b

a
ρ(x) dx. One can interpret this universal semicircle

law as a “noncommutative” version of the central limit theorem; this can be made
precise using the formalism of free probability.

Among other things, the semicircle law suggests that the largest eigenvalue λ1

should converge in probability to 2, which is indeed the case. Given this “law of
large numbers”, it is then natural to inquire as to a “central limit theorem” that
measures how this random variable λ1 fluctuates around this universal limiting value
of 2. Such a central limit theorem exists, but the universal limit is somewhat of a
surprise: the normalised1 random variable N2/3(λ1 − 2) converges in distribution

1In [3] a slightly different normalisation for HN is used, so that λ1 fluctuates around
√
2 rather

than 2.
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to the Tracy–Widom distribution

(1) lim
N→∞

P(N2/3(λ1 − 2) ≤ t) = exp(−
∫ ∞

t

(s− t)u(s)2 ds)

where u : s 	→ u(s) is the (unique, global) solution of the Painlevé II equation

u′′ = su+ 2u3

with boundary condition u(s) ∼ Ai(s) as s → +∞ (where Ai(s) is the Airy func-
tion).

This remarkable law for the normalised largest eigenvalue N2/3(λ1 − 2)—resem-
bling a distorted version of the normal distribution—was first established in the
case of GUE by Tracy and Widom [17]. A derivation can be found in [3, Chapter
6.5] and is a good illustration of several of the techniques covered in that text.
Firstly, one views the probability density function of the GUE as a constant mul-

tiple of e−Ntr(H2)/2 dH, where dH is Lebesgue measure on the space of Hermitian
matrices. A relatively straightforward calculation then lets one describe the dis-
tribution dμGUE = ρN (λ1, . . . , λN )dλ1 · · · dλN of the eigenvalues λ1, . . . , λN of H
as a determinantal point process, in which the joint probability density function
ρN (λ1, . . . , λN ) of the eigenvalues is shown to be proportional to a determinant
det(K(λi, λj))1≤i,j≤N , where the kernel K can be described using a formula of
Christoffel and Darboux in terms of orthogonal polynomials with respect to the

one-dimensional measure e−Nx2/2 dx associated to the GUE measure—that is to
say, the classical Hermite polynomials. The probability P(N2/3(λ1 − 2) ≤ t) can
then be expressed as a Fredholm determinant det(1−Kt,N ) for an explicit integral
operator Kt,N with kernel a truncated and rescaled version of K. Near the edge
λ1 ≈ 2 of the spectrum, the Hermite polynomials have asymptotics controlled by
the Airy function Ai(s), and so K and Kt,N do so as well. So it remains to com-
pute the Fredholm determinant det(1 − At) corresponding to a limiting operator
At of Kt,N . Taking logarithmic determinants, it suffices to calculate the resolvent
(1 − At)

−1. This operator can be expressed via some algebraic manipulations in
terms of the resolvent of a certain matrix Cauchy integral operator, which can
in turn be interpreted in terms of a solution to a Riemann–Hilbert problem—the
problem of locating a matrix-valued function m on the exterior of a contour in
the complex plane, which obeys a specified jump condition across that contour,
as well as some other technical regularity properties. One can then differentiate
this function m with respect to the parameter t and use the uniqueness theory
for Riemann–Hilbert problems to obtain a differential equation for m which can
eventually be transformed to the Painléve II equation.

Variants of this computation can also be established in the bulk of the spectrum,
for instance giving a limiting distribution (known as the Gaudin–Mehta distribu-
tion) for the normalised eigenvalue gaps γcN(λi+1 − λi), where i = (c+ o(1))N for
some 0 < c < 1, where 0 < γc < ∞ is a normalisation factor depending on c that
can be expressed in terms of the semicircular density ρsc. One can also compute
the asymptotics of other bulk quantities relating to eigenvalue gaps in the bulk,
such as normalised k-point correlation functions. See [8] for details. For the sake
of exposition we shall restrict our discussion here mostly to the edge case.

The above computations were specific to the GUE model, but the Tracy–Widom
distribution is highly universal, appearing as the limiting distribution in many
other contexts. For instance, the methods above largely extend to other unitarily
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invariant models, in which the density e−Ntr(H2)/2 dH is replaced by more general
densities e−NtrV (H) dH for various potential functions V , with the main difference
being that the orthogonal polynomials are now with respect to a more general mea-
sure, but with the same Tracy–Widom law emerging in the (suitably normalised)
limit under reasonable hypotheses on V (as well as Gaudin–Mehta laws emerging in
the bulk); see for instance the text [5] for details. Such ensembles are not Wigner
ensembles in general, because the upper diagonal entries will be correlated with
each other rather than being jointly independent due to couplings in the Hamilton-
ian trV (H). Nevertheless, as discussed extensively in [8], it is now known that the
Tracy–Widom law is also the universal limiting distribution for any other Wigner
ensemble than GUE, despite the fact that for general ensembles of Wigner type
the determinantal structure is not directly present. Initially, this particular uni-
versality result at the edge was proven (under an additional symmetry hypothesis)
by a sophisticated application of the moment method [15], but the method did not
extend to the bulk and it was difficult to relax the additional hypotheses on the
matrix ensemble. In recent years, a more flexible “three-stage” procedure has been
developed for demonstrating this and many further universality results in Wigner-
type models (although some of the more advanced results still need to deviate from
this procedure). This procedure is the main focus of the text [8].

The three-stage procedure exploits a heat flow structure within the class of
Wigner ensembles that connects an arbitrary such ensemble to the well-understood
GUE ensemble. Indeed, ifH = H0 is a Wigner random matrix, one can consider the
random matrices Ht for t > 0 from H0 by the matrix Ornstein–Uhlenbeck process

dHt =
1√
N

dBt −
1

2
Ht dt,

where Bt is a Hermitian matrix Brownian motion process indepedent of H0. Then
for each t > 0, Ht has the same distribution as an average

(2) e−t/2H0 +
√
1− e−tHG,

where HG is drawn from GUE independently of H0. In particular, if H0 is a Wigner
random matrix, then so is each Ht, and Ht converges in distribution to GUE as
t → +∞.

This heat flow was first studied by Dyson [6], who observed that the eigenvalues
λi = λi(t) of Ht evolve by what is now known as Dyson Brownian motion:

dλi =
1√
N

dBi −
λi

2
dt+

1

N

∑
j �=i

1

λi − λj
dt,

where Bi are independent Brownian motions. Formally, this flow is the gradient
flow associated to the GUE eigenvalue measure dμGUE mentioned previously. Us-
ing informal arguments, Dyson conjectured that this flow should relax to global
equilibrium in unit time scales t ∼ 1, but should relax to a local equilibrium (at
scales comparable to the average eigenvalue spacing) at much smaller time scales,
such as t ∼ N−1+ε for any ε > 0. In his words,

The picture of the gas coming into equilibrium in two well-separated
stages, with microscopic and macroscopic time scales, is suggested
with the help of physical intuition. A rigorous proof that this pic-
ture is accurate would require a much deeper mathematical analy-
sis.
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The first step in this direction was taken by Johansson [10], who studied Wigner
matrices which were Gaussian divisible at some unit time scale t ∼ 1, which meant
that they were distributed according to a law of the form (2) for that value of t. He
found that for such class of matrices, the joint distribution function still enjoyed a
(more complicated) determinantal structure, and was able to exploit this to obtain
some universal limiting behaviour in the bulk.

A different approach of this, closer to the spirit of Dyson’s analysis, was subse-
quently worked out by Erdős, Schlein, and Yau [7] and presented (in streamlined
form) in [8]. Their methods are an extension of the classical theory of Bakry and

Émery [1] that studied multidimensional diffusive processes with respect to an equi-
librium measure dμ = 1

Z e−H(x) dx on a Euclidean space RN . Roughly speaking,
their finding was that if the underlying Hamiltonian H obeyed good convexity
properties, then the convergence to equilibrium was quite fast, and furthermore the
quantitative estimates relating to this convergence could be used to obtain good
log-Sobolev estimates relating such quantites as the entropy

S(f) :=

∫
RN

f log f dμ

and Dirichlet energy

D(
√
f) :=

∫
RN

|∇
√

f |2 dμ

for any reasonable test function f : RN → R+. In the case of Dyson Brownian
motion, the associated Hamiltonian H takes the form

H(λ1, . . . , λN ) =
1

2

N∑
i=1

λ2
i −

2

N

∑
1≤i<j≤N

log(λi − λj).

This Hamiltonian is indeed convex, and Bakry–Émery theory can be used to largely
recover the results of Johansson at unit time scales t ∼ 1 by showing that Gaussian
divisible measures and GUE measures are asymptotically indistinguishable with
respect to various classes of test functions f . However, in [7] it was also shown
that one can obtain results at shorter time scales t ∼ N−1+ε by exploiting the
stronger convexity properties of H in certain directions, as anticipated by Dyson.
To adapt the Bakry–Émery theory to this nonisotropic context, Erdős, Schlein, and
Yau introduced a (slightly artificial) modified Hamiltonian,

H̃(λ) = H(λ) +
1

2τ

N∑
i=1

(λj − γj)
2,

where 0 < τ  1 is a timescale parameter and γj is the “classical location” of
λj—the deterministic location of λj predicted by the semicircle law via the formula∫ γj

−∞ ρsc(x) dx = j
N . This Hamiltonian replaces the Dyson Brownian motion with

a somewhat different flow, now known as the local relaxation flow, but because
the new Hamiltonian H̃ now enjoys strong convexity in all directions, the local
relaxation flow can be used to establish good log-Sobolev estimates (with μ =
1
Z e−H(x) dx replaced by a modified measure 1

Z̃ e−H̃(x) dx). To use these estimates,

it is first necessary to show that the eigenvalues λj of the random matrix H are
close enough to their classical locations γj that the effect of the correction term
1
2τ

∑N
i=1(λj − γj)

2 on the equilibrium measure μ is manageable. To establish this
fact (known as eigenvalue rigidity) requires a refinement of the Wigner semicircle
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law that is now known as the local semicircle law. This can in turn be established
by a detailed analysis of the resolvents (H − z)−1 for various complex numbers z,
in particular utilising a self-consistent equation that relates these N ×N resolvents
in several ways to analogous N − 1 × N − 1 or N − 2 × N − 2 resolvents arising
from minors of H. Again, we refer the reader to [8] for details.

By combining the first stage of local semicircular laws with the second stage of
local relaxation flow analysis, one can extend the universality results of Johansson
to a significantly larger class of Wigner type ensembles, which have the Gaussian di-
visible form (2) for a very small value t = N−1+ε of t. To remove the requirement of
Gaussian divisibility completely and obtain a fully satisfactory universality result,
one uses comparison methods, which form the third and final stage of the Erdős–
Schlein–Yau paradigm. The phenomenon being exploited here is that if Wigner
matrix ensembles H = (hij)1≤i,j≤N , H ′ = (h′

ij)1≤i,j≤N have very similar moments

(for instance, if Eha
ij ≈ E(h′

ij)
a for a = 0, 1, 2, 3), then the spectral statistics of H

will also be very close in distribution to the corresponding statistics of H ′. The
simplest way to demonstrate this phenomenon follows a classical argument of Lin-
deberg [11] which he used to prove the central limit theorem, and it is based on
exchanging the entries of H with the entries of H ′ one pair at a time (keeping the
matrix self-adjoint throughout) and using perturbative methods to measure how
the spectral statistics vary with each such replacement. This is easiest to establish
for the resolvents (H−z)−1 which obey a number of very useful identities regarding
their behaviour under perturbation, but the method can also be adapted to other
statistics, such as individual eigenvalues. As with the second stage, the local semi-
circle law from the first stage plays a key role in the estimates needed to make the
Lindeberg exchange method work. See for instance [16] for an early instance of this
technique (which was in turn inspired by previous use of the Lindeberg method in
random matrix theory in [4]). Because any Wigner matrix H0 is close in moments
to the slightly Gaussian divisible counterpart (2) when t = N−1+ε is small, this
three-stage argument now completes the demonstration of universality of the nor-
malised largest eigenvalue N2/3(λ1 − 2), and similar arguments also apply in the
bulk.

Laws such as the Tracy–Widom law have also arisen in many contexts that do
not initially seem to bear any relationship to random matrix theory. A simple
combinatorial example comes from Ulam’s problem [18] on the longest increasing
sequence that one can find inside a random permutation π(1), . . . , π(N) of the first
N natural numbers {1, . . . , N}. If one denotes this length by 	N , then it can be
shown that the normalised expectation 1√

N
E	N converges to 2, a result first es-

tablished in [19] and [12]. In later work culminating in [2], it was found that the

normalised fluctuation �N−2
√
N

N1/6 converged in distribution as N → ∞ to precisely
the same Tracy–Widom law (1) that appeared in the random matrix theory setting!
One can begin to partially explain this seemingly amazing coincidence by using the
famous Robinson–Schensted correspondence ([13], [14]) between permutations and
pairs of standard Young tableaux of equal shape to re-interpret 	N as the longest
length of a Young diagram of size N drawn using the natural Plancherel measure
arising from the representation theory of SN . The well-known correspondence prin-
ciple between quantum mechanics and classical mechanics in physics suggests that
representation theory can be viewed as a “discretised” or “quantised” version of
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continuous branches of mathematics such as symplectic geometry or random ma-
trix theory. As discussed in [3], these statistics are also related to the statistics of
discrete nonintersecting random walks, while the eigenvalues of GUE can similarly
be related to statistics of nonintersecting Brownian motions, giving a more tangible
link between the two random variables.

The next step is to try to express the distribution of 	N in a determinantal
form. As it turns out, this is not easy to achieve directly, but one must first pass
to a “Poissonised” version of 	N in which the random permutation on N elements
(which can be described in terms of a randomN -element subset of the unit square) is
replaced instead by a random Poisson process on the unit square of total intensity
N . The two statistics are closely related to each other, as discussed in [3]. A
formula of Gessel [9] then describes the statistics of the Poisson analogue LN of 	N
as the determinant of a certain Toeplitz matrix (φj−k)0≤j,k≤n−1 for some explicit
coefficients φk. It is then possible to use the theory of Riemann–Hilbert problems to
write this determinant in terms of a Fredholm determinant det(1−Kn) that closely
resembles the Fredholm determinant appearing in the random matrix setting. To
compute the limiting statistics as N (and n) go to infinity, one has to compute the
asymptotics of various contour integrals, which can be done by the classical saddle
point (or “steepest descent”) method.

The book [3] under review treats all of these calculations (and many related
calculations for other statistics of these types) in great detail and in a largely self-
contained fashion. A particular strength of the text is the detailed treatment of
the combinatorics of Young tableaux and related objects such as Schur polynomi-
als and the Robinson–Schensted and Robinson–Schensted–Knuth correspondences;
the constructions and derivations here do not require any representation-theoretic
background and are well suited for students coming from a probability or random
matrix theory background. The book also covers the basics of the theory of orthog-
onal polynomials, determinantal processes, Riemann–Hilbert problems and Dyson
Brownian motion, and the correlation functions of unitarily invariant ensembles,
although these topics are also covered well in many other modern random matrix
theory texts. Many further examples of both discrete and continuous random mod-
els exhibiting the same universal laws, such as the fluctuations of the Aztec diamond
or asymptotics of direct last passage percolation, are also discussed in some depth.
This book is thus a valuable resource for students and researchers in these fields.
My only criticism would be that while the book does an excellent job of presenting
all the necessary theory and calculations to compute the asymptotics of all the
random systems studied, it does not dwell much on explaining why these particular
universal laws arise (for instance, why one would expect Painléve equations to play
any role in the subject), and what the most essential feature of the random systems
is that is responsible for that universality. But that is more a failing of our current
understanding of the subject than of the book and its authors in particular.

Similarly, the book [8] gives a fully self-contained and careful treatment of all
aspects of the three-stage procedure needed to establish universality for Wigner type
models. The text wisely does not aim to cover the strongest and most general results
in the literature, instead focusing on the most representative results to convey the
key ideas, although the last chapter does discuss several further generalisations,
variants, and historical notes. The methods here give a satisfying explanation
of the universality phenomenon in the case of Wigner models as primarily being
a consequence of the rapid convergence to local equilibrium of Dyson Brownian
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motion, although (as with [3]) we still do not have a fully intuitive explanation
as to why it is specific laws such as the Tracy–Widom law that end up being the
universal limiting distribution.

Both texts cover material that is already contained in several papers scattered
across the literature, but they give a streamlined and coherent presentation of their
respective topics. Together, the two books, while very orthogonal in content, repre-
sent the two most fruitful methods we currently have to understand the universality
phenomenon for random matrix models and their discrete counterparts, and they
will serve as an excellent starting point for students in this area.

References
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