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Borel, Armand; Serre, Jean-Pierre

Le théorème de Riemann-Roch.

Bulletin de la Société Mathématique de France 86 (1958), 97–136.

The advent of sheaf theory has, amongst many things, brought with it a great
development of the classical theorem of Riemann-Roch. This paper is devoted to
Grothendieck’s version of the theorem. Grothendieck has generalized the theorem to
the point where not only is it more generally applicable than the F. Hirzebruch’s ver-
sion [Neue topologische Methoden in der algebraischen Geometrie, Springer-Verlag,
1956; MR0082174], but it depends on a simpler and more natural proof.

The paper originated from the notes of a seminar devoted to the work of Grothen-
dieck which the authors conducted in Princeton during the fall of 1957, and the
opening phrase asserts their essentially editorial role.

The result of this unusual three-way collaboration is a remarkably clear, short,
and highly motivated presentation of the Grothendieck theorem. Of necessity, such
an exposition is primarily directed at the expert, and the paper is quite hard going
for those of us who are not intimately acquainted with their basic references, in par-
ticular, with J.-P. Serre’s paper “Faisceaux algébriques cohérentes” [Ann. of Math.
(2) 61 (1955), 197–278; MR0068874], which unquestionably lays the foundation for
Grothendieck’s work. In their single-mindedness, the authors have also omitted an
introduction, and start off at once with preparatory material towards theorem I.

This first goal of theirs is the following: Let f : X → Y be a proper map of quasi-
projective varieties, let F be a coherent sheaf on X, and let the sheaves Rqf(F) on
Y be defined by Rqf(F)U = Hq(f−1(U);F) (U open in X). Then these sheaves
are also coherent.

This theorem has vital consequences for their study of the group K(X) which
they introduce next. If X is an algebraic variety (always over an arbitrary alge-
braically closed field) the group K(X) is defined as follows. Let F (X) denote the
free abelian group generated by coherent sheaves over X. Also, if E : 0 → F1 →
F → F2 → 0 is a short exact sequence of such sheaves, let Q(E) be the “word”
F−(F1+F2) in F (X). Now define K(X) as the quotient of F (X) modulo the sub-
group generated by Q(E) as E ranges over the short exact sequences. (We call this
construction the K-construction; it can clearly be applied to any category in which
short exact sequences are defined.) For example, if p is a point, then K(p) ≈ Z
(= the ring of integers), the isomorphism being determined by attaching to a sheaf
(which is merely a module over the ground-field in this case) its dimension. This

homomorphism is denoted by ch : K(p)
≈→ Z.

As will be seen, the Riemann-Roch theorem is a comparison statement about
K(X) and the Chow ring A(X) which is valid only on non-singular varieties. Ac-
cordingly, we will let A denote the category of quasi-projective non-singular varieties
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and their proper maps. On this category K(X) and A(X) partake of both a covari-
ant and a contravariant nature, and it is precisely to complete K(X) to a covariant
functor that theorem I is essential.

Grothendieck denotes this covariant homomorphism, induced by a map f : X →
Y in A, by f!, and defines it in this way: If F is a sheaf (coherent, algebraic,
will be understood hereafter) then f!(F) ∈ K(Y ) shall be the class of the word∑

q(−1)qRqf(F) in K(Y ). Because the sum is finite on objects in A this operation

is well defined, and its linear extension to F (X) is seen to vanish on words of the
form Q(E), thus inducing a homomorphism f! : K(X) → K(Y ).

The naturality condition (f ◦ g)! = f! ◦ g! is valid, and follows from the spectral
sequence which relates Rq(f ◦ g) to Rsf and Rtg. Thus the obvious “Euler char-
acteristic” nature of f! is essential not only for the vanishing of f! on Q(E), but
also for the naturality! Note also that if f : X → p is the map onto a point, then
ch f!(F) may be identified with

∑
(−1)q dimHq(X;F) = X(X;F); and it is an

expression of this sort which was evaluated by Hirzebruch in his topological version
of the Riemann-Roch theorem by a certain cohomology class. In short, f! is a very
“good” notion.

In the Grothendieck theory, the role of cohomology is taken over by the Chow ring
A(X), of cycles under linear equivalence, the product being defined by intersection.
On our category, A(X) also has a covariant side to it, namely f∗ : A(X) → A(Y ), de-
fined by the direct image of a cycle. However, f∗ is only an additive homomorphism.
The contravariant extension of A(X), i.e., f → f∗ where f∗ is induced by the in-
verse image of a cycle, is of course a ring homomorphism; and these two operations
are linked by the permanence law: f∗((x) · f∗(y)) = f∗(x) · y, x ∈ A(X), y ∈ A(Y ).

The contravariant properties of K(X) are best brought out with the aid of
the following theorem II: Let K1(X) be the group obtained by applying the K-
construction to the category of algebraic vector bundles over X,X ∈ A. Also, let
ε : K1(X) → K(X) be the homomorphism defined by the operation which assigns
to a bundle the sheaf of germs of its sections. Then ε is a bijection.

To a topologist at least, this theorem is reminiscent of the Poincarè duality the-
orem. In any case, by identifying K(X) with K1(X) one may induce the obvious
(inverse image of a bundle) contravariant extension of K1(X) to K(X). This ho-
momorphism is denoted by f !. Further, the ring structure of K1(X) induced by
the tensor product of bundles is now also impressed on K(X), and as the authors
show, the permanence relation is again valid: f!(x · f !(y)) = f!(x) · y for a map f
in A. This new interpretation of K(X) (i.e., as K1(X)) brings with it also a ring
homomorphism ch : K(X) → A(X)⊗Q which is natural on the contravariant side
(namely, ch(f !∗x) = f∗ch(x)) and agrees with our definition of ch on K(p). This
function is derived from the Chern character of bundles and can be characterized
by: (1) If L is a line bundle over X ∈ A, then ch(L) = ec = 1+ c+ c2/2!+ · · · , etc.,
where c = c1(L) is the class in A(X) of the zeros of a generic rational section of L;
(2) ch is a ring homomorphism; (3) the naturality condition already recorded. (See
the next review [MR0116023].)

In general, the identification of K1(X) with K(X) extends the notion of charac-
teristic classes from vector bundles to coherent sheaves. We will, in particular, have
need of the Todd-class, which on vector bundles is uniquely characterized by these
conditions: (1) If L is a line bundle over an object X in A, then T (L) = c/(1− ec),
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where c = c1(L) as defined earlier; (2) T is multiplicative: T (E+F ) = T (E) ·T (F );
(3) Tf ! = f∗T for maps in A.

This Todd class enters the answer to the following, in our context very natural,
question: How does ch : K(X) → A(X) ⊗ Q behave under the covariant homo-
morphisms f! and f∗? The answer to this question is precisely the Riemann-Roch
formula of Grothendieck: (Riemann-Roch theorem). Let f be a map X → Y , in
A. Then

ch{f!(x)} · T (Y ) = f∗{ch(x) · T (X)},
where x ∈ K(X), and T (X), T (Y ) denote the values of the Todd class on the
tangent bundles of X and Y respectively.

The Hirzebruch formula is an immediate corollary; just let f be the projection
onto a point, and let x be represented by a locally free sheaf F . Then the left-hand
side reduces to X(X;F) as remarked earlier, while the right-hand side gives the
coefficient of ch(F) · T (X) in the dimension of X, which Hirzebruch denotes by
κn(ch(F) · T (X)).

The great advantage of Grothendieck’s formulation is its dynamic nature. This
enables one to prove the general theorem by considering special situations. Notably
one concludes by the graph-construction that it is sufficient to prove the Riemann-
Roch theorem in the following two cases: (a) f : Y × P → Y is the projection onto
Y, P being a projective space; (b) f : Y → X is a closed imbedding. These are
then treated by quite different methods. To prove (a), the authors first prove a
Künneth type theorem to the effect that K(X)⊗K(P ) → K(X ×P ) is surjective.
This fact, together with the Riemann-Roch formula for the projection of P onto a
point—which is checked explicitly—proves (a). To establish (b), the authors first
treat a special case of Riemann-Roch theorem for Y a divisor on X. This special
case is quite simple and at the same time illuminating in that it essentially forces
the Todd class upon one, once one seeks a formula for the extent to which ch and
f! fail to commute. Here is the gist of the argument. Assume that i : Y ⊂ X is a
regular divisor of X, and let L be the line bundle it determines. Thus c1(L) = Y
and L|Y is the normal bundle of Y in X. We propose to compute both ch{i!(y)}
and i∗{ch(y)} and see by how much they differ when y ∈ K(Y ) is the class of the
structure sheaf OY , or, interpreted in K1(Y ), when Y is the class of the trivial
bundle 1. Let S(L−1) be the sheaf of germs of sections of L−1. Then multiplication
with a regular section in L which vanishes on Y gives rise to the exact sequence of
sheaves

0 → S(L−1) → OX → ÔY → 0,

where ÔY is the structure sheaf of Y trivially extended to X. Now one first verifies
that i!(OY ) is represented by ÔY . It therefore follows from our exact sequence that
i!(1) = 1 − L−1 (using the K1(X) version of K(X)), whence ch(i!(1)) = 1 − e−Y .
On the other hand, ch(1) = 1, whence i∗{ch(1)} = Y . So then

ch(i!1) = i∗{ch(1)} · T (L)−1 = i∗(T (i
!L)−1),

the last step following from the permanence relation. This expression is equivalent
to the Riemann-Roch formula with y = 1. Indeed if we multiply both sides by
T (X), use the permanence again on the right-hand side, and recall that i∗T (X) =
T (Y ) · T (i!L) (because i!L is the normal bundle to Y and T is multiplicative), the
above goes into ch(i!(1)T (X)) = i∗{T (Y )}, which is just the special Riemann-Roch
formula with X and Y reversed. Thus if a formula of the type we are seeking is
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at all possible, then the correction term will have to satisfy the axioms which were
prescribed for T .

To complete the case of an imbedding Y ⊂ X, the authors blow up X along
Y to obtain a new object X ′ in A, together with a projection f : X ′ → X. The
inverse image of Y under f ′ is then a regular divisor Y ′ of X ′, and by a series
of ingenious arguments, the Riemann-Roch theorem for f∗ is now reduced to the
special Riemann-Roch theorem for the injection Y ′ → X ′. The reduction is in a
sense the most difficult and certainly the most detailed step in the paper.

This then is a rough plan of the proof, and the methods of Serre [loc. cit.]
essentially suffice to carry out the program. There are occasions, however, where
the more abstract homological algebra of a previous paper by Grothendieck [Tôhoku
Math. J. (2) 9 (1957), 119–221; MR0102537] is useful.

Although the paper pursues its goal relentlessly, it is nevertheless so rich in
ideas and auxiliary results which are clearly more generally applicable, that I will
not even try to do justice to them.

It seems to me appropriate to close this review with a word of thanks to the
authors for presenting us with such an informal and tightly knit account of so
many interesting ideas. To my mind, this is the best method of mathematical
communication. Also, an account of this sort was especially needed in view of
Grothendieck’s chilling announcement which puts the topics discussed here into
Chapter 12—if we start counting with 1—of his already bulging foundation [Inst.

Hautes Études Sci. Publ. Math. No. 4 (1960)].
R. Bott

From MathSciNet, October 2019

MR0139181 (25 #2617) 57.30; 14.52

Atiyah, M. F.; Hirzebruch, F.

Vector bundles and homogeneous spaces.

Proc. Sympos. Pure Math., Vol. III, 7–38, American Mathematical Society,
Providence, R.I., 1961.

This paper summarizes some of the authors’ researches on the K-theory, with
special emphasis on the K-groups of a homogeneous space.

The authors start by defining the functors K−n (n ≥ 0) on the category of pairs
of finite CW complexes. This is done by setting K−n(X,Y ) equal to the homotopy
classes of basepoint-preserving maps of the nth suspension of X/Y into Z × BU ,
where BU is the universal base-space of the infinite unitary group. (When Y is
vacuous, X/Y is defined as the disjoint union of X with a point * which plays
the role of basepoint.) They then interpret the periodicity format Ω2BU 	 BU

as a canonical isomorphism K−n(X,Y )
�→ K−(n+2)(X,Y ), and thereby extend

the definition of Kn to all integers. Now they observe with the aid of the Puppe
sequence that the resulting functors {Kn} satisfy all the axioms of a cohomology
theory save the dimension axiom. They also define a graded ring structure for the
functorK(n) and are finally led to the “abbreviated” functor (X,Y ) → K∗(X,Y ) =
K0(X,Y ) +K−1(X,Y ) from pairs (X,Y ) to Z2-graded rings.

The study of this functor is now based on the following three of its proper-
ties: (1) If p is a point, then Kn(p) = Z (n even), Kn(p) = 0 (n odd). (This
is a restatement of the corresponding formula for πn(Z × BU ).) (2) The usual
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Chern-character extends to give a natural transformation of cohomology theories
K∗(X,Y ) � H∗(X,Y ;Q) which is a ring homomorphism. (Here the salient fact is
that the adjoint of the periodicity map, i.e., the map j : S2 × BU → BU takes the
universal character ch ∈ H∗∗(BU ;Q) into X ⊗ ch where X generates H2(S2).) (3)
There is a spectral sequence with E2-term H∗(X,Y ) which converges to a graded
group associated to K∗(X,Y ). Further, the differential operators in this sequence
raise dimension by an odd number. (This theorem may be interpreted as the proper
generalization of the Eilenberg-Steenrod uniqueness theorem; a spectral sequence of
the type H∗(X,Y ;K∗(p)) ⇒ K∗(X,Y ) exists whenever K∗ satisfies all the axioms
of Eilenberg-Steenrod, save possibly the dimension axiom.)

As an example of the power of this approach we cite the following immediate
corollary of (3): If H∗(X,Z) is free of torsion, then K∗(X) is (unnaturally) isomor-
phic to H∗(X), Z2-graded by the even and odd dimensional parts.

The more delicate results announced in this paper depend on the “differentiable
Riemann-Roch theorem” of the author [Bull. Amer. Math. Soc. 65 (1959), 276–
281; MR0110106]. With the aid of both these tools the authors are able to make
considerable progress in their program to prove the K-analogues of the theorems
about the ordinary cohomology of homogeneous spaces and the classifying spaces
of compact Lie groups.

R. Bott

From MathSciNet, October 2019

MR0338129 (49 #2895) 18F25

Quillen, Daniel

Higher algebraic K-theory. I.

Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst.,
Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer,
Berlin, 1973.

This article is the foundation paper of higher K-theory. In addition its tech-
niques allow one to apply the methods of homotopy theory to pure algebra whereas
formerly this had been possible only with homology and cohomology theory. In this
respect the long range impact of this paper may be as great as the fundamental
papers of homological algebra of the fifties.

First, the author assigns to every small category C a CW complex, BC, called
its classifying space. The space BC is just the geometrical realization of the nerve

NC of the category C, where n-simplexes of NC are given by diagrams C0
f1→

C1 → · · · fn→ Cn of C. This construction is quite old, but first appears in print in a
paper by G. Segal [Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 105–112;
MR0232393]. If C is an object of C, it corresponds to a vertex of BC, hence one
defines the homotopy groups πn(C, C) to be πn(BC, C) and the homology groups
Hn(C) = Hn(BC). For example, if G is a group (i.e., a category with one object,
all of whose morphisms are invertible) the BG is a space of type K(G, 1), so that
Hn(G) is the usual Eilenberg-MacLane integral homology of G.

A functor f : C → D between small categories induces a map Bf : BC → BD,
and a natural transformation τ between two functors f0, f1 : C → D gives rise to
a homotopy between Bf0 and Bf1. Using this, one sees that a pair of adjoint
functors, F : C → D and G : D → C, are such that BF and BG are inverse
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homotopy equivalences. In particular, a category C having an initial or terminal
object is such that BC is contractible.

The author has developed techniques, which he calls Theorems A and B, for
computing πn(C, C). To state these, we require the notions of the fibres f/D of
a functor f : C → D, where D is an object of D. The category f/D has objects
(C, u) where C ∈ object C and u : fC → D is an arrow of D. A morphism (C, u) →
(C ′, u′) is an arrow C

v→ C ′ such that u′ · f(v) = u. One defines analogously

categories D\f whose objects are pairs (C, u), D
u→ fC.

Theorem A: If, for each D, B(f/D) is contractible, then Bf : BC → BD is a
homotopy equivalence.

Theorem B: If for each arrow D → D′ in D the map B(f/D) → B(f/D′)
is a homotopy equivalence, then for any D0 ∈ objD, the diagram B(f/D0) →
B(C)

Bf→ B(D) is a fibre space. That is, the homotopy theoretic fibre of the map
Bf is B(f/D0), where the functor f/D0 → C is given by (C, u) �→ C. Consequently
one has the exact homotopy sequence · · · → πn+1(D, D0) → πn(f/D0, (C0, 1)) →
πn(C, C0) → πn(D, D0) → · · · , where C0 ∈ objC is such that fC0 = D0.

The K-theory exact sequences arise eventually as applications of Theorem B.
There are alternative versions of Theorems A and B involving the categories D\f .
In addition, if the functor f : C → D is pre-fibred or precofibred, then one can
replace the fibre categories by simpler categories f−1(D) in the statements of the-
orems A and B.

The author formalizes the notion of a category P with exact sequences. One
may define this to be a full additive subcategory P of an abelian category A such
that P is closed under extensions in A, i.e., if 0 → P ′ → A → P ′′ → 0 is exact in
A with P ′, P ′′ in P, then A ∈ objP also. The author calls P an exact category
and calls a diagram in P a short exact sequence if it is such in A. The notion of
exact category is shown to be intrinsic, admitting a characterization not involving

the ambient category A. For a short exact sequence 0 → P ′ i→ P
j→ P ′′ → 0, in

P, one calls i an injective arrow and j a surjective arrow.
Next he defines a category QP such that obj QP = objP. The arrows from

P to P ′ in QP are isomorphism classes of diagrams P
j← P1

i→ P ′ in P, where j
is surjective and i is injective. The composition is defined by requiring surjective
arrows [resp., injective arrows] to compose as they do in P, while to compose

the injective arrow P
i→ P ′ with the surjective arrow P ′ j← P ′′, one forms the

bicartesian square in P,

P
i−−−−→ P ′

j′
�
⏐
⏐ j

�
⏐
⏐

P1
i′−−−−→ P ′′,

and defines the composite to be the isomorphism class of the diagram P
j′← P1

i′→
P ′′. Next, the author establishes Theorem 1: π1(QP, 0) = K0(P), where K0(P) is
the Grothendieck group of P with relations given by short exact sequences of P.
With this as a guide, he defines Kn(P) = πn+1(QP, 0), n ≥ 1.

As an example, if A is a ring and P(A) is the category of finitely generated
projective A-modules, then the author has shown that Ω(BQP(A) 	 BGlA+ ×
K0(A), where BGlA+ is the space obtained from BGl(A) by killing E(A) in such a
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way as to preserve the integral homology [the author, New developments in topology
(Proc. Sympos. Algebraic Topology, Oxford, 1972), pp. 95–103, Cambridge Univ.
Press, London, 1974; MR0335604]. This result has not appeared in print yet,
although an outline of the proof by L. Breen may be found in “Un théorème de
finitude en K-théorie (d’après D. Quillen)”, Séminaire Bourbaki, 1973/74, Exp.
No. 438, Springer, Berlin (to appear). Consequently, Kn(P(A)) = Kn(A), where
Kn(A) =: pin(BGlA+×K0A). This is known to agree with Bass’s K1 and Milnor’s
K2 of rings.

There follows a plethora of results about the groups KnP, of which we quote
only two.

Corollary 1 to Theorem 2: Let M′ and M′′ be exact categories and let 0 →
F ′ → F → F ′′ → 0 be an exact sequence of exact functors from M′ → M′′; then
F∗ = F∗

′ + F∗
′′ : Ki(M

′) → Ki(M
′′).

Corollary 1 to Theorem 3: Let P be an exact subcategory of the exact category
M and assume that P is closed under extension in M; Assume further that (a) for
every exact sequence 0 → M′ → M → M′′ → 0 in M with M , M ′′ in P, then M ′ is
in P too, (b) given j : M → P surjective, there exists a surjective arrow j′ : P ′ → P
and an arrow f : P ′ → M in M such that jf = j′; let Pn be the full subcategory
of M consisting of M having P resolutions of length ≤ n (i.e., there exists an exact
sequence 0 → Pn → · · · → P0 → M → 0 with Pi ∈ objP), and put P∞ =

⋃
Pn;

then Ki(P)
∼=→ Ki(P1)

∼=→ · · ·
∼=→ Ki(P∞).

As an application of this result, the author proves the Corollary 2 to Theorem 3:
If A is a regular ring, then Ki(A) = Ki(Mod f(A)), where Mod f(A) is the category
of finitely generated A modules (a regular ring is a left Noetherian ring such that
every finitely generated left module has finite projective dimension).

If f : A → B is a ring homomorphism such that the A-module B has a finite
resolution by finitely generated projectives, then the author defines the transfer
map f∗ : Ki(B) → Ki(A). If in addition A and B are commutative and f∗ =
(B ⊗A (·))∗ : Ki(A) → Ki(B), then he proves the projection formula f∗(f

∗x · y) =
x · f∗(y) for x ∈ K0(A) and y ∈ Ki(B).

There follow two results about the K-theory of Abelian categories. Theorem
4: (Dévissage) Suppose that B is a nonempty full subcategory of A, closed under
taking subobjects, quotient objects, and finite products in A; suppose that every
object M of A has a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that

Mj/Mj−1 ∈ objB for each j; then Ki(B)
∼=→ Ki(A).

Theorem 5: (Localization): Let B be a Serre subcategory of A (so that, in
addition to the hypotheses of Theorem 4, B is closed under extensions in A); then
there is a long exact sequence

· · · → Kn+1(A/B) → Kn(B) → Kn(A) → Kn(A/B) → · · ·

A corollary of these results is the exact sequence · · ·→Kn+1(F )→
∐

mKn(A/m)→
Kn(A) → Kn(F ) → · · · , where A is a Dedekind ring with field of fractions F , and
m runs over the maximal ideals of A.

The remainder of the article is devoted to applications to ring theory and to
algebraic geometry. The main result of § 6 is Theorem 8: If A is a Noetherian ring,
then there are canonical isomorphisms (i) Ki

′(A[t]) ∼= Ki
′(A), (ii) Ki

′(A[t, t−1]) ∼=
Ki

′(A)⊕K ′
i−1(A). Here

Ki
′(A) =: Ki(Mod f(A)).
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Corollary (Fundamental theorem for regular rings): If A is regular, then Ki(A[t]) =
Ki(A) and Ki(A[t, t−1]) = Ki(A)⊕Ki−1(A).

Section 7 is devoted to the foundation of K-theory of schemes. For a scheme X
one sets Kq(X) = Kq(P(X)), where P(X) is the category of vector bundles on X.
If X is a Noetherian scheme, one sets Kq

′(X) = Kq(M(X)), where M(X) is the
abelian category of coherent sheaves of OX -modules. If X is regular, then Kq(X) =
Kq

′(X). In general Kq is a contravariant functor whereas Kq
′ is a contravariant

functor for flat morphisms of schemes. The author proves a projection formula (§ 7
Proposition 2.10): Suppose that f : X → Y is proper and of finite Tor dimension;
assume that X and Y have ample line bundles; then for x ∈ K0(X) and y ∈ Kq

′(γ)
one has f∗(x · f∗y) = f∗(x) · y ∈ Kq

′(y), where f∗(x) ∈ K0(γ).
If Z is a closed subscheme of X and U = X −Z, then (Proposition 3.2) there is

a long exact sequence · · · → K ′
q+1(U) → Kq

′(Z) → Kq
′(X) → Kq

′(U) → · · · , from
which follows the Mayer-Vietoris sequence · · · → K ′

q+1(U ∩ V ) → Kq
′(U ∪ V ) →

Kq
′(U)⊕Kq

′(V ) → Kq(U ∩ V ) → · · · for open sets U , V in X.
Next a homotopy property (Proposition 4.1): Let f : P → X be a flat map whose

fibres are affine spaces; then f∗ : Kq
′(X) → Kq

′(P ) is an isomorphism.
The author considers the filtration of M(X) by Serre subcategories Mp(X) of

coherent sheaves whose support is of codimension ≥ p. If x ∈ X, denote k(x) the
residue class field at x. Let Xp be the set of points x ∈ X such that the Krull
dimension of OX,x is p.

Theorem 5.4: There is a spectral sequence E1
p,q(X) =

∐
x∈Xp

K−p−q(k(x)) →
K−n

′(X) that is convergent if X has finite Krull dimension. The spectral sequence
is contravariant for flat morphisms. Following this the author states the conjectures
of the reviewer [Algebraic K-theory, I: Higher K-theories (Proc. Conf. Seattle Res.
Center, Battelle Memorial Inst., 1972), pp. 211–243, Lecture Notes in Math., Vol.
341, Springer, Berlin, 1973] If X is the spectrum of a regular local ring, then the
sequence (given by differentials in the E1-term of the spectral sequence) (5.9) 0 →
Kn

′(X) →
∐

x∈X0
Kn(k(x)) →

∐
x∈X1

Kn−1(k(x)) → · · · →
∐

x∈Xn
K0(k(x)) → 0

is exact. The author proves Theorem 5.11: Let R be an algebra of finite type over
a field and let S be a finite set of primes of R such that Rp is regular for each
p ∈ S; let A be the regular semi-local ring obtained by localizing R with respect to
S; then (5.9) is exact for X = SpecA.

Next he identifies a differential in the spectral sequence Proposition 5.14:
Let X be a regular scheme of finite type over a field; then the image of d1 :∐

x∈Xp−1
K1(k(x)) →

∐
x∈Xp

K0(k(x)) =
∐

x∈Xp
Z is the subgroup of codimen-

sion p cycles which are linearly equivalent to zero. Consequently E2
p,−p(X) is

canonically isomorphic to the group Ap(X) of cycles in codimension p modulo
linear equivalence. The proof involves a formula of C. Chevalley [Séminaire C.
Chevalley, 2e année: 1958: Anneaux de Chow et applications, Exp 2, Secrétariat
mathématique, Paris, 1958; MR0110704] for the multiplicity of a given divisor in
the divisor of a rational function. From the work that precedes, the author deduces
Theorem 5.19: For a regular scheme X of finite type over a field, there is a canonical
isomorphism Hp(X,Kp) = Ap(X). Here Kp is the shear on the Zariski topology of
X associated to the presheaf U → Kp(U).

In § 8 the author generalizes the projective bundle theorem for K0 [Théorie des
intersections et théorème de Riemann-Roch (Séminaire de Géométrie Algébrique
du Bois-Marie, 1966/1967, SGA6), Exp. VI, p. 365, Théorème 1.1, Lecture Notes
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in Math., Vol. 225, Springer, Berlin, 1971]. The main result is § 8 Theorem 2.1:
Let E be a vector bundle of rank r over a scheme S and let X = Proj(SE), the
associated projective scheme; if S is quasi-compact, then one has isomorphisms

Kq(S)
r

∼=→ Kq(x), (ai)0≤i<r �→
∑r−1

i=0 zi · f∗(ai), where z ∈ K0(X) is the class of
the canonical bundle OX(−1) and f : X → S is the structure map. There follows
a computation of the K-theory of the projective line generalizing a result of H.
Bass for K0 [Algebraic K-theory, Chapter XII, § 9, Benjamin, New York, 1968;
MR0249491].

Finally, in § 9, there is an application to Severi-Brauer schemes and Azumaya
algebras.

{For more complete bibliographic information about the collection in which
this article appears, including the table of contents, see MR0325307; MR0325308;
MR0325309.}

Stephen M. Gersten

From MathSciNet, October 2019

MR0675529 (84i:12007) 12A62; 12G05, 14C35, 14F12, 14F15, 14G25, 18F25

Merkur′ev, A. S.; Suslin, A. A.

K-cohomology of Severi-Brauer varieties and the norm residue
homomorphism.

Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 46 (1982), no. 5,
1011–1046, 1135–1136.

In this outstanding paper the authors prove that the residue norm homomor-
phism RF,n : K2(F )/nK2(F ) → H2(F, μ⊗2

n ) is an isomorphism, where F is any
field of characteristic coprime to n. In the case when F contains ζ, a primitive nth
root of unity, RF,n is defined by the association {a, b} → Aζ(a, b), where {a, b} is
a symbol and Aζ(a, b) is a cyclic algebra (a central simple F -algebra which is split
by a cyclic extension of F of degree n) generated by x, y with the relations xn = a,
yn = b, xy = ζyx. (Note that H2(F, μ⊗2

n ) 	 H2(F, μn) 	n Br(F ).) The proof of
the above-mentioned result is based on very clever calculations of K-cohomology of
Brauer-Severi varieties. Gersten’s spectral sequence, K-cohomology Chern classes,
and “K-theoretic” Riemann-Roch due to Shekhtman and Gillet are among the
variety of tools used by the authors.

It follows from the main result of the paper under review that any central simple
F -algebra of exponent n is similar to a product of cyclic algebras of exponent n in
the case when μn ⊂ F . In particular, every such algebra has an abelian splitting
field. The authors also prove the K2-analogue of Hilbert’s Theorem 90. Namely, let
E/F be a cyclic extension of degree n coprime to charF and let σ be a generator

of GalE/F . Then ker(K2(E)
NE/F→ K2(F )) = K2(E)1−σ. (Note that according to

Hilbert’s Theorem 90 the equality above holds with K2 replaced by K1.) It follows
that in the case when μn ⊂ F , nK2(F ) = {μn, F

∗}. The last chapter of the paper
presents refinements of Bloch’s results on codimension-two cycles.

{English translation: Math. USSR-Izv. 21 (1983), no. 2, 307–340.}
Maksymilian Boratyński
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MR1376246 (97e:14030) 14F99; 14C25, 14F20, 19E15

Suslin, Andrei; Voevodsky, Vladimir

Singular homology of abstract algebraic varieties.

Inventiones Mathematicae 123 (1996), no. 1, 61–94.

In one of his most influential papers, A. Weil [Bull. Amer. Math. Soc. 55 (1949),
497–508; MR0029393] proved the “Riemann hypothesis for curves over functions
fields”, an analogue in positive characteristic algebraic geometry of the classical
Riemann hypothesis. In contemplating the generalization of this theorem to higher-
dimensional varieties (subsequently proved by P. Deligne [Inst. Hautes Études Sci.
Publ. Math. No. 43 (1974), 273–307; MR0340258] following foundational work of
A. Grothendieck), Weil recognized the importance of constructing a cohomology
theory with good properties. One of these properties is functoriality with respect
to morphisms of varieties. J.-P. Serre showed with simple examples that no such
functorial theory exists for abstract algebraic varieties which reflects the usual (sin-
gular) integral cohomology of spaces. Nevertheless, Grothendieck together with M.
Artin [Théorie des topos et cohomologie étale des schémas. Tome 1, Lecture Notes
in Math., 269, Springer, Berlin, 1972; MR0354652; Tome 2, Lecture Notes in Math.,
270, 1972; MR0354653; Tome 3, Lecture Notes in Math., 305, 1973; MR0354654]
developed étale cohomology which succeeds in providing a suitable Weil cohomol-
ogy theory provided one considers cohomology with finite coefficients (relatively

prime to residue characteristics). This theory, presented in J. Milne’s book [Étale
cohomology, Princeton Univ. Press, Princeton, N.J., 1980; MR0559531], relies on a
new formulation of topology and sophisticated developments in sheaf theory.

In the present paper, the authors offer a very different solution to the problem of
providing an algebraic formulation of singular cohomology with finite coefficients.
Indeed, their construction is the algebraic analogue of the topological construction
of singular cohomology [see, e.g., E. H. Spanier, Algebraic topology, McGraw-Hill,
New York, 1966; MR0210112], thereby being much more conceptual. Their alge-
braic singular cohomology with (constant) finite coefficients equals étale cohomol-
ogy for varieties over an algebraically closed field. The proof of this remarkable fact
involves new topologies, new techniques, and new computations reminiscent of the
earlier work of Artin and Grothendieck.

To understand the authors’ construction, we recall the classical theorem of A.
Dold and R. Thom [Ann. of Math. (2) 67 (1958), 239–281; MR0097062]. This as-
serts that the singular homology of a CW complex X is naturally isomorphic to the
homotopy groups of the simplicial abelian group (Sing·(

∐
d≥0 S

dX))+, the group

completion of the singular complex of the topological abelian monoid
∐

d≥0 S
dX.

Now, if X is an algebraic variety, so are its symmetric products. Moreover,
homotopy groups of the simplicial abelian group (Sing·(

∐
d≥0 S

dX))+ can be
computed as the homology of the associated chain complex, which we denote by
(Sing·(

∐
d≥0 S

dX))∼. The construction of Suslin-Voevodsky, first proposed by
Suslin in a talk in Luminy in 1987, is to replace the singular complex by its al-
gebraic analogue. Algebraic singular simplices were exploited years ago by M.
Karoubi and O. Villamayor [C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–
A419; MR0251717] and more recently used by S. Bloch in his formulation of higher
Chow groups [Adv. in Math. 61 (1986), no. 3, 267–304; MR0852815].

The fundamental theorem of Suslin-Voevodsky is that ifX is an algebraic scheme
of finite type over an algebraically closed field k of characteristic p ≥ 0 and if n

https://www.ams.org/mathscinet-getitem?mr=1376246
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is an integer prime to p, then the étale cohomology of X with Z/n coefficients

can be computed as Ext∗((Singalg· (
∐

d≥0 S
dX))+,Z/n). (The published statement

assumes that the ground field k is of characteristic 0; as the authors soon real-
ized, recent work of J. de Jong giving a weak version of resolution of singularities
for varieties over fields of positive characteristic enables this extension to arbitrary
characteristic.) Although the formulation of this theorem is relatively elementary,
its proof involves sophisticated techniques of abstract algebraic geometry as well
as insights from algebraic K-theory. Indeed, the authors encountered this theorem
as a part of a sweeping approach to motivic cohomology and algebraic K-theory
[see, e.g., V. Voevodsky, A. Suslin and E. Friedlander, Cycles, transfers, and mo-
tivic homology theories, Ann. of Math. Stud., to appear]. Underlying the authors’
approach to (motivic) cohomology is the utilization of algebraic cycles. Maps from
a normal variety S (e.g., a standard algebraic simplex Δk) to a symmetric product
of X correspond to cycles on S ×X finite and surjective over X.

The geometric heart of the proof is the authors’ determination of the relative al-
gebraic singular homology of a relative curve in terms of the relative Picard group,
just as a key first ingredient for étale cohomology is the understanding of the étale
cohomology of curves. This computation leads to a general form of the rigidity
theorem of O. Gabber [in Algebraic K-theory, commutative algebra, and algebraic
geometry (Santa Margherita Ligure, 1989), 59–70, Contemp. Math., 126, Amer.
Math. Soc., Providence, RI, 1992; MR1156502] and H. A. Gillet and R. W. Thoma-
son [J. Pure Appl. Algebra 34 (1984), no. 2-3, 241–254; MR0772059] which played
a key role in Suslin’s proof of the Quillen-Lichtenbaum conjecture for an arbi-
trary algebraically closed field [A. A. Suslin, J. Pure Appl. Algebra 34 (1984),
no. 2-3, 301–318; MR0772065]. Namely, the authors consider homotopy invariant
presheaves with transfers, a basic structure which now plays a central role in their
approach to motivic cohomology. The example of most interest for the present work
is the “free sheaf generated by X”, whose values on standard algebraic simplices
determine the chain complex (Singalg· (

∐
d≥0 S

dX))∼. This example fits their gen-
eral context of presheaf with transfers thanks to the theorem that any “qfh-sheaf”
admits the structure of a presheaf with transfers.

An essential ingredient in the authors’ approach to cohomology is a further
generalization of the étale topology in which proper maps arising in resolutions
of singularities occur as coverings. Voevodsky’s “h-topology” and its quasi-finite
version leading to qfh-sheaves [cf. Selecta Math. (N.S.) 2 (1996), no. 1, 111–153] play
an important role. The authors’ rigidity theorem asserts the equality of various Ext-
groups from sheaves associated to a homotopy invariant presheaf F with transfers
to Z/n, where these Ext-groups are computed in the étale topology and various
topologies associated to the h-topology. Much of the formal effort in establishing
their comparison theorems consists in analyses and manipulations of resolutions of
sheaves for these topologies.

Eric M. Friedlander

From MathSciNet, October 2019
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MR1427618 (98h:14055a) 14L15; 20C20, 20G10

Friedlander, Eric M.; Suslin, Andrei

Cohomology of finite group schemes over a field.

Inventiones Mathematicae 127 (1997), no. 2, 209–270.

MR1443546 (98h:14055b) 14L15; 20C20, 20G10

Suslin, Andrei; Friedlander, Eric M.; Bendel, Christopher P.

Infinitesimal 1-parameter subgroups and cohomology.

Journal of the American Mathematical Society 10 (1997), no. 3, 693–728.

MR1443547 (98h:14055c) 14L15; 20C20, 20G10

Suslin, Andrei; Friedlander, Eric M.; Bendel, Christopher P.

Support varieties for infinitesimal group schemes.

Journal of the American Mathematical Society 10 (1997), no. 3, 729–759.

Many major advances in the last two decades in modular representation the-
ory have been made through the investigation and use of the cohomological spec-
trum. For finite groups, L. Evens [Trans. Amer. Math. Soc. 101 (1961), 224–239;
MR0137742] proved that the cohomology ring is Noetherian. Subsequent results
by D. Quillen followed [Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971),
573–602; MR0298694] on the structure of the spectrum of this cohomology ring.
In 1977, J. Alperin defined the important notion of the complexity of a module
by looking at the rate of growth of the minimal projective resolution of the given
module. Major progress in this area during this same time period can be attributed
to J. F. Carlson [J. Algebra 85 (1983), no. 1, 104–143; MR0723070], who defined
a cohomological variety for a given module whose dimension equals the complexity
of the module. These varieties are often referred to as support varieties. A stratifi-
cation theorem providing some understanding about the structure of these support
varieties (generalizing the prior work of Quillen) was proved by G. S. Avrunin and
L. L. Scott [Invent. Math. 66 (1982), no. 2, 277–286; MR0656624].

In a series of papers [see, e.g., Invent. Math. 86 (1986), no. 3, 553–562;
MR0860682], Friedlander and B. J. Parshall extended the theory of support va-
rieties for restricted Lie algebras. In this setting they proved that the cohomology
ring is finitely generated, and this result together with work of J. C. Jantzen [Abh.
Math. Sem. Univ. Hamburg 56 (1986), 191–219; MR0882415] provided a realization
of these varieties as a subvariety of the given Lie algebra. For finite-dimensional
graded connected cocommutative Hopf algebras, finite generation of the cohomol-
ogy ring was proved by C. Wilkerson [Trans. Amer. Math. Soc. 264 (1981), no. 1,
137–150; MR0597872], and in later work by A. M. Bajer and H. Sadofsky [J. Pure
Appl. Algebra 94 (1994), no. 2, 115–126; MR1282834]. These graded Hopf alge-
bras arise naturally when one looks at finite-dimensional Hopf subalgebras of the
Steenrod algebra. A theory of support varieties was developed within this context,
similar to the one for finite groups, by Nakano and J. H. Palmieri [“Support va-
rieties for the Steenrod algebra”, Math. Z., to appear]. Aside from these specific
examples, it was not known in general whether the cohomology ring of an arbitrary
finite-dimensional cocommutative Hopf algebra is finitely generated and whether a
theory of supports could be developed. For many years the general question of finite
generation remained as an open, difficult and elusive problem. The three papers
under review provide both important and exciting breakthroughs in this direction.
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In the first paper, the authors prove the finite generation of cohomology for a
finite group scheme (or equivalently a finite-dimensional cocommutative Hopf alge-
bra). The proof given by the authors involves first embedding a finite group scheme
G into some general linear group GLn and then constructing universal extension
classes in certain degrees. These extensions in essence provide the generators for
the cohomology ring. An interesting twist on this theme is the use of the poly-
nomial functors developed by V. Franjou, J. Lannes and L. Schwartz in order to
construct such extensions. The theory of such functors is related to the study of
modules for the classical Schur algebras. Other interesting results in this paper
involve computation of the cohomology of the infinite general linear group over a
finite field.

With finite generation of cohomology firmly established, Friedlander, Suslin and
Bendel are now armed to investigate the spectrum of the cohomology ring for in-
finitesimal group schemes in the second paper. The authors work in the context of
schemes rather than varieties. The first step is to construct a scheme Vr(G) con-
sisting of homomorphisms from one-dimensional additive subgroups to the given
group scheme G. This scheme in the case when the height equals one is the well-
known scheme of p-nilpotent elements in Lie(G). More generally, Vr(G) can be
identified with r-tuples of p-nilpotent, pairwise commuting matrices of GLn given
a closed embedding of G into GLn. This object was first defined and studied by
D. Gross. The authors proceed to show that there exists a natural homomor-
phism of rings Φ: H2∗(G, k) → k[Vr(G)], where k[Vr(G)] is the coordinate alge-
bra of Vr(G). Much of the paper is devoted to determining characteristic classes
associated to one-parameter subgroups of GLn. This information is valuable be-
cause it enables the authors to give a concrete interpretation of the composition

of Vr(G) → Spec(H2∗(G, k)) → gl(r)×r
n , where the second composition is the map

induced by a natural map obtained by looking at the universal classes defined in
the first paper.

The third paper involves using the information obtained in the second paper to
give a concrete realization of support varieties for infinitesimal group schemes. A
key ingredient to the results is the use of embeddings of one-parameter subgroups
into G to show that cohomology classes are detected modulo nilpotence on these
subgroups. One of the main results which uses this detection principle is that
the map Φ is indeed an inseparable isogeny. This allows the authors to give an
explicit non-cohomological realization of the support variety of a rational G-module
as a certain subscheme of Vr(G). At the end of this paper several applications,
including some generalizations of known results in the group algebra case, are given
for infinitesimal group schemes. Explicit calculations of support varieties for simple
and induced modules for Frobenius kernels of SL2 are also included.

These three papers serve as an important contribution to the understanding of
the cohomology and representation theory of finite group schemes. The authors
manage to answer difficult questions in a very elegant manner. The advent of these
new and beautiful ideas makes one optimistic that more interesting results in this
direction will arise in the not too distant future.

Daniel K. Nakano

From MathSciNet, October 2019
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MR1744945 (2001g:14031) 14F42; 19D45, 19E15, 19E20

Suslin, Andrei; Voevodsky, Vladimir

Bloch-Kato conjecture and motivic cohomology with finite coefficients.

The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 117–189,
NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.

Let F be a field, m an integer prime to the characteristic of F , and Sm/F be
the category of smooth schemes over F . The conjecture of Beilinson and Lichten-
baum for weight n states that the natural map Z/m(n) → τ≤nRα∗μ

⊗n
m is a quasi-

isomorphism. Here Z/m(n) is the mod m motivic complex, and α : (Sm/F )ét →
(Sm/F )Zar is the natural map. The main result of the paper is that the Bloch-Kato
conjecture, i.e. the surjectivity of the norm residue homomorphism from Milnor
K-theory to Galois cohomology KM

n (E)/m → Hn(E, μ⊗n
m ), is equivalent to the

conjecture of Beilinson-Lichtenbaum. More precisely, assume that resolution of
singularities holds over F and that the norm residue homomorphism in degree n
is surjective for any extension E/F . Then the Beilinson-Lichtenbaum conjecture
holds over F in weights at most n.

The authors start by reviewing the construction of motivic cohomology and the
derived category of mixed motives [see V. Voevodsky, A. A. Suslin and E. M. Fried-
lander, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143,
Princeton Univ. Press, Princeton, NJ, 2000; MR1764197]. The category DM−(F )
is the full subcategory of the derived category of bounded above complexes of Nis-
nevich sheaves with transfers and homotopy invariant cohomology sheaves. The
motivic complex Z(n) is a specific object of this category, and motivic cohomology
of a variety X over F is defined to be Hi

M (X,Z(n)) = HomDM−(F )(M(X),Z(n)),

where M(X) is an object of DM−(F ) naturally associated to X. This is in fact
isomorphic to the hypercohomology in the cdh-topology of Z(n) on X, and if X is
smooth over F , then it suffices to take the Nisnevich topology.

Several properties of these motivic cohomology groups are given, for example a
Mayer-Vietoris exact sequence for open covers, a projective bundle formula, and a
blow-up exact sequence. The natural isomorphism of graded rings

⊕
n K

M
n (E) ∼=⊕

n H
n
M (E,Z(n)) gives an interpretation of the Bloch-Kato conjecture in terms of

motivic cohomology.
In the second half of the paper the actual proof takes place. The theorem is

easily reduced to the case of a field, and only injectivity is hard. The main idea is
to use the motivic cohomology of the boundary of the r-simplex ∂Δr (a singular
scheme) to shift degrees. More precisely, if S is the affine line A1

E with the points
0 and 1 identified to the point p, then the map Hi

M (E,Z/m(n)) → Hi(E, μ⊗n
m ) is

a direct summand of the map

Hn+1
M (∂Δn−i+1

E × S,Z/m(n)) → Hn+1(∂Δn−i+1
E × S, μ⊗n).

Every class coming from Hi
M (E,Z/m(n)) vanishes in some neighborhood U of the

vertices, hence comes from the motivic cohomology with supports

Hn+1
T (∂Δn−i+1

E × S,Z/m(n)),

for T equal to ∂Δn−i+1
E × S − U . Finally, by purity and induction, the map is

injective on the latter group.
Thomas Geisser
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MR2031198 (2005b:14038a) 14F42; 12G05, 19D45, 19E15

Voevodsky, Vladimir

Reduced power operations in motivic cohomology.

Publications Mathématiques. Institut de Hautes Études Scientifique (2003), no. 98,
1–57.

MR2031199 (2005b:14038b) 14F42; 12G05, 19D45, 19E15

Voevodsky, Vladimir

Motivic cohomology with Z/2-coefficients.

Publications Mathématiques. Institut de Hautes Études Scientifiques (2003),
no. 98, 59–104.

The papers under review present Voevodsky’s proof of the “Milnor conjecture”,
a remarkable achievement which marks the culmination of Voevodsky’s program to
extend Grothendieck’s constructions of new “topologies”, incorporate the philoso-
phy of motives, and integrate into abstract algebraic geometry important techniques
of homotopy theory. Voevodsky’s work has inspired considerable further work by
algebraic geometers and algebraic topologists, and holds great promise for dramatic
new geometric results.

The fundamental theorem of Voevodsky states that if k is a field of characteristic
different from 2 then the Galois cohomology groups Hi(k,Z/2) are generated by
classes in H1(k,Z/2). More precisely, J. Milnor [Invent. Math. 9 (1969/1970),
318–344; MR0260844] conjectured that the norm residue symbol determines an
isomorphism

(1) KM
∗ (k)⊗ Z/2

∼−→ H∗(k,Z/2),

where KM
∗ (k) is the Milnor K-theory of the field k defined as the quotient of the

tensor algebra on the multiplicative group k∗ by the ideal generated by elements
of the form a⊗ b with a, b ∈ k∗, a+ b = 1. Indeed, there is a conjectural general-
ization formulated by K. Kato [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980),
no. 3, 603–683; MR0603953] (the so-called Bloch-Kato conjecture) of this Milnor
conjecture (1) applicable to any prime number l which asserts that the norm residue
homomorphism determines an isomorphism

(2) KM
∗ (k)⊗ Z/l

∼−→ H∗(k,Z/μ⊗∗
l )

for any prime l. Voevodsky has written these two papers so that whenever possible
the results are proved for all primes. In a forthcoming paper with D. Orlov and A.
Vishik [“An exact sequence for Milnor’s K-theory with applications to quadratic
forms”, preprint, arxiv.org/abs/math/0101023], Voevodsky uses his proof of the
Milnor conjecture to prove a companion conjecture of Milnor’s [op. cit.] relating
KM

∗ (k)⊗Z/2 to the sections of the natural filtration of the Witt ring of quadratic
forms over k.

The first of these papers verifies existence and important properties of cohomol-
ogy operations in motivic cohomology. Earlier work of Voevodsky and joint work
of Voevodsky, A. A. Suslin and E. M. Friedlander [Cycles, transfers, and motivic
homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ,
2000; MR1764197] established many good properties of motivic cohomology, and
Voevodsky has shown [Int. Math. Res. Not. 2002, no. 7, 351–355; MR1883180] that
the motivic cohomology groups agree with the higher Chow groups of S. J. Bloch
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[Adv. in Math. 61 (1986), no. 3, 267–304; MR0852815]. The relationship of motivic
cohomology to algebraic K-theory for smooth varieties over a field closely paral-
lels the relationship of singular cohomology to (complex) topological K-theory of a
topological space. Indeed, Voevodsky’s results are results about motivic cohomol-
ogy, and these results translate directly into results concerning algebraic K-theory
with finite coefficients [see, for example, E. M. Friedlander and A. A. Suslin, Ann.

Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875; MR1949356].
The construction and essential properties of these cohomology operations are

challenging to verify. The proofs are much more than a mere translation of cor-
responding results in algebraic topology. In the first paper, Voevodsky establishes
results needed for the proof of the Milnor conjecture: construction of the Steenrod
p-th power operations P i, their relationship to the Bockstein operation, the Car-
tan formula, and the Adem relations. These are established in the context of the
pointed motivic homotopy category H•(k) considered by F. Morel and Voevodsky

[Inst. Hautes Études Sci. Publ. Math. No. 90 (1999), 45–143 (2001); MR1813224].
Indeed, this extension of the category of k-varieties is essential for the formulation
as well as proof of many results (e.g., Thom isomorphism and suspension isomor-
phism, as well as the representability of motivic cohomology by “Eilenberg-Mac
Lane objects”). Other properties (uniqueness of P i; the identification of the ring of
all stable cohomology operations) not needed for Voevodsky’s proof of the Milnor
conjecture as presented in the second paper are not proved here.

The second paper provides Voevodsky’s proof of the Milnor conjecture, referring
freely to earlier papers by Voevodsky, M. Rost, and Suslin and Voevodsky for im-
portant subsidiary results as well as to the preceding paper on motivic cohomology
operations. In some sense, one can view this paper as presenting the “master plan”,
with details to be found elsewhere. For example, no reference is given to the fact
that Milnor K-group Kn

M (k)⊗Z/l of a field k can be viewed as the (Zariski) mod-l
motivic cohomology Hn

Zar(k,Z/l(n)) of k, and only a brief sketch is given of the fact
that the Galois cohomology Hn(k, μ⊗n

l ) can be viewed as the (étale) mod-l motivic
cohomology Hn

ét(k,Z/l(n)) of k. The proof of the cohomological interpretation of
Kn

M (k) ⊗ Z/l was given by Bloch in [op. cit.] (in the context of his higher Chow
groups); a proof of the second is outlined by Voevodsky with a reference to [V.
Voevodsky, C. Mazza and C. Weibel, “Lectures on motivic cohomology. I”, math.
rutgers.edu/~weibel/motiviclectures.html] for a detailed proof. Voevodsky
proves, as conjectured by A. A. Beilinson [in K-theory, arithmetic and geometry
(Moscow, 1984–1986), 1–25, Lecture Notes in Math., 1289, Springer, Berlin, 1987;
MR0923131] and S. Lichtenbaum [in Number theory, Noordwijkerhout 1983 (Noord-
wijkerhout, 1983), 127–138, Lecture Notes in Math., 1068, Springer, Berlin, 1984;
see MR 85i:11001 MR0756089], that the natural map determines an isomorphism

(3) Hp
Zar(k,Z/l(q))

∼−→ Hp
ét(k,Z/l(q)), p ≤ q,

for l = 2; in particular, he affirms the Milnor conjecture (1). As shown earlier by
Suslin and Voevodsky [in The arithmetic and geometry of algebraic cycles (Banff,
AB, 1998), 117–189, Kluwer Acad. Publ., Dordrecht, 2000; MR1744945] and then
extended by T. Geisser and M. N. Levine [J. Reine Angew. Math. 530 (2001), 55–
103; MR1807268], one need only prove the surjectivity assertion of the Bloch-Kato
conjecture (2) to conclude via an inductive argument the Beilinson-Lichtenbaum
isomorphism (3).

math.rutgers.edu/~weibel/motiviclectures.html
math.rutgers.edu/~weibel/motiviclectures.html


SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 127

Voevodsky’s effort is dedicated to proving a higher-order version of the “Hilbert
theorem 90”. In Voevodsky’s terminology, k satisfies H90(n, l) if the l-adic étale
cohomology group Hn+1

ét (k,Z(l)(n)) vanishes. For n = 1, one can interpret this
vanishing as a restatement of the classical Hilbert theorem 90, and for n = 2 this is
essentially the famous result of A. S. Merkur′ev and Suslin [Izv. Akad. Nauk SSSR
Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136; MR0675529], which we may view
as the confirmation of the Bloch-Kato conjecture in weight 2. One readily sees that
H90(n, l) implies the surjectivity assertion of Bloch-Kato in weight n. The main
result of Voevodsky is that H90(n, 2) is valid for any field k and any n ≥ 0. (For k
of characteristic l, H90(n, l) was established by Geisser and Levine [op. cit.].)

Voevodsky proceeds to prove H90(n, 2) by induction on n; thus, one begins
by assuming the validity of H90(n− 1, 2); in fact, he assumes H90(n− 1, l) for an
arbitrary prime l and proceeds quite far towards the proof of the general Bloch-Kato
conjecture before restricting to the case l = 2. Voevodsky makes the observation
that H90(n − 1, l) implies (2) for weights q < n (and this choice of prime l) as
well as a version of the Hilbert theorem 90 for KM

q with q < n. Using “classical”
techniques of Galois cohomology, Voevodsky then shows that these two conditions
imply the vanishing of Hn

ét(k,Z/l) provided that k satisfies two conditions: (i) k
has no extensions of degree prime to l; and (ii) KM

n (k) is l-divisible. Reasonably
straightforward arguments reduce the required cohomological vanishing ofH90(n, l)
to the vanishing of Hn

ét(k,Z/l) in this case, so that it remains to prove that we can
pass from our given field k to a field extension K/k satisfying these two conditions
as well as the injectivity

(4) Hn+1
ét (k,Z(l)(n)) ↪→ Hn+1

ét (K,Z(l)(n))

of the induced map. Condition (i) for a field extension K/k satisfying (4) can be
easily arranged using a transfer argument. The heart of the proof is showing that
Condition (ii) can also be arranged for K/k satisfying (4) when l = 2.

In order to arrange the 2-divisibility of KM
n (k), Voevodsky chooses a symbol

a = (a1, . . . , an) representing a generator of KM
n (k) and takes K to be the func-

tion field of the associated norm quadric Qa. It is well known that the class in

KM
n (k) associated to a is divisible by l. The challenge is to prove (3) for K/k. Up

to this point, the proof has been largely inspired by the proof of Merkur′ev and
Suslin for the Bloch-Kato conjecture in weight 2 [op. cit.]. Voevodsky proceeds
to investigate the motivic cohomology of the Čech simplicial scheme Xa associated
to the norm quadric Qa. He employs his motivic cohomology operations and the
vanishing of “Margolis homology” of a closely related simplicial scheme to prove
that H90(n − 1, 2) implies that Hn+1(Xa, Z(2)) = 0. Now Voevodsky invokes re-
sults of Rost [“On the spinor norm and A0(X,K1) for quadrics”, preprint, 1988,
www.mathematik.uni-bielefeld.de/~rost/spinor.html; “Some new results on
the Chow groups of quadrics”, preprint, 1990, www.mathematik.uni-bielefeld.
de/~rost/chowqudr.html; J. Ramanujan Math. Soc. 14 (1999), no. 1, 55–63;
MR1700870] concerning the motive of the norm quadric Qa to obtain the necessary
injectivity by relating the motive of Xa to that of the field k.

Eric M. Friedlander
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