Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


About the cover: The Fine–Petrović Polygons and the Newton–Puiseux Method for Algebraic Ordinary Differential Equations
HTML articles powered by AMS MathViewer

by Vladimir Dragović and Irina Goryuchkina PDF
Bull. Amer. Math. Soc. 57 (2020), 293-299
  • A. D. Bryuno, Asymptotic behavior and expansions of solutions of an ordinary differential equation, Uspekhi Mat. Nauk 59 (2004), no. 3(357), 31–80 (Russian, with Russian summary); English transl., Russian Math. Surveys 59 (2004), no. 3, 429–480. MR 2116535, DOI 10.1070/RM2004v059n03ABEH000736
  • A. D. Bryuno and I. V. Goryuchkina, Asymptotic expansions of solutions of the sixth Painlevé equation, Tr. Mosk. Mat. Obs. 71 (2010), 6–118 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2010), 1–104. MR 2760041, DOI 10.1090/S0077-1554-2010-00186-0
  • José Cano, An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 1, 125–142 (English, with English and French summaries). MR 1209698
  • José Cano, On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Analysis 13 (1993), no. 1-2, 103–119. MR 1245746, DOI 10.1524/anly.1993.13.12.103
  • J. J. O’Connor and E. F. Robertson “Henry Burchard Fine”, MacTutor History of Mathematics archive, University of St Andrews, 2005.
  • V. Dragović, “Mihailo Petrović, algebraic geometry and differential equations”, in Stevan Pilipović, Gradimir V. Milovanović, Žarko Mijajlović (editors), Mihailo Petrović Alas: life work, times, Serbian Academy of Sciences and Arts, Belgrade, 2019.
  • V. Dragović and I. Goryuchkina, Polygons of Petrović and Fine, algebraic ODEs, and contemporary mathematics, Arch. Hist. Exact Sci. (to appear). arXiv:1908.03644 (2019).
  • Henry B. Fine, On the Functions Defined by Differential Equations, with an Extension of the Puiseux Polygon Construction to these Equations, Amer. J. Math. 11 (1889), no. 4, 317–328. MR 1505516, DOI 10.2307/2369347
  • Henry B. Fine, Singular Solutions of Ordinary Differential Equations, Amer. J. Math. 12 (1890), no. 3, 295–322. MR 1505535, DOI 10.2307/2369621
  • L. Fuchs, Über Differentialgleichungen, deren Integrale feste Verzweigungspunkte besitzen, Ges Werke (1885), Vol. II, p. 355.
  • A. Leitch, A Princeton Companion, Princeton University Press, 1978.
  • M. Petrowitch, Thèses: Sur les zéro et les infinis des intégrales des équations différentielles algébraiques. Propositions données par la Faculté, Paris, 1894.
  • Michel Petrovitch, Sur une propriété des équations différentielles intégrables à l’aide des fonctions méromorphes doublement p gdriodiques, Acta Math. 22 (1899), no. 1, 379–386 (French). MR 1554911, DOI 10.1007/BF02417881
  • M. Petrovitch, On a property of differential equations integrable using meromorphic double-periodic functions, Theoretical and Applied Mechanics, 45 (2018), no. 1, 121–127. English translation of Petrovitch’s Acta Mathematicae paper, \cite{Petrovich2}.
  • Mihailo Petrović, Collected Works, 15 volumes (Serbian), The State Textbook Company, Belgarde, 1999.
  • Stevan Pilipović, Gradimir V. Milovanović, Žarko Mijajlović editors, Mihailo Petrović Alas: life work, times, Serbian Academy of Sciences and Arts, Belgrade, 2019.
  • Oswald Veblen, Henry Burchard Fine—In memoriam, Bull. Amer. Math. Soc. 35 (1929), no. 5, 726–730. MR 1561798, DOI 10.1090/S0002-9904-1929-04815-8
Additional Information
  • Vladimir Dragović
  • Affiliation: Department of Mathematical Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson Texas 75080; and Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
  • Email:
  • Irina Goryuchkina
  • Affiliation: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
  • MR Author ID: 752127
  • Email:
  • Published electronically: February 10, 2020
  • Additional Notes: The research of the first author has been partially supported by the grant 174020 “Geometry and topology of manifolds, classical mechanics, and integrable dynamical systems” of the Ministry of Education and Sciences of Serbia and by the University of Texas at Dallas.
    The second author gratefully acknowledges the grant PRAS-18-01 (PRAN 01 “Fundamental mathematics and its applications”).
  • © Copyright 2020 by the authors
  • Journal: Bull. Amer. Math. Soc. 57 (2020), 293-299
  • DOI:
  • MathSciNet review: 4076024