A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces
Author:
Alex Wright
Journal:
Bull. Amer. Math. Soc. 57 (2020), 359-408
MSC (2010):
Primary 32G15
DOI:
https://doi.org/10.1090/bull/1687
Published electronically:
February 3, 2020
MathSciNet review:
4108090
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: We survey Mirzakhani’s work relating to Riemann surfaces, which spans about 20 papers. We target the discussion at a broad audience of nonexperts.
- Jayadev Athreya, Alexander Bufetov, Alex Eskin, and Maryam Mirzakhani, Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J. 161 (2012), no. 6, 1055–1111. MR 2913101, DOI https://doi.org/10.1215/00127094-1548443
- Artur Avila, Sébastien Gouëzel, and Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143–211. MR 2264836, DOI https://doi.org/10.1007/s10240-006-0001-5
- Francisco Arana-Herrera, Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani’s asymptotics for simple closed hyperbolic geodesics, arXiv:1902.05626 (2019).
- David Aulicino and Duc-Manh Nguyen, Rank two affine manifolds in genus 3, arXiv:1612.06970 (2016).
- Paul Apisa, ${\rm GL}_2\Bbb R$ orbit closures in hyperelliptic components of strata, Duke Math. J. 167 (2018), no. 4, 679–742. MR 3769676, DOI https://doi.org/10.1215/00127094-2017-0043
- M. Bachir Bekka and Matthias Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, vol. 269, Cambridge University Press, Cambridge, 2000. MR 1781937
- Robert Brooks and Eran Makover, Random construction of Riemann surfaces, J. Differential Geom. 68 (2004), no. 1, 121–157. MR 2152911
- Yves Benoist and Jean-François Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2) 174 (2011), no. 2, 1111–1162 (French, with English and French summaries). MR 2831114, DOI https://doi.org/10.4007/annals.2011.174.2.8
- Y. Benoist, J.-F. Quint, et al., Translation of the paper “Mesures stationnaires et fermés invariants des espaces homogènes”, by Y. Benoist and J.-F. Quint, arXiv:1610.05912 (2016).
- Aaron Brown and Federico Rodriguez Hertz, Measure rigidity for random dynamics on surfaces and related skew products, J. Amer. Math. Soc. 30 (2017), no. 4, 1055–1132. MR 3671937, DOI https://doi.org/10.1090/jams/877
- Joan S. Birman and Caroline Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985), no. 2, 217–225. MR 793185, DOI https://doi.org/10.1016/0040-9383%2885%2990056-4
- Yaşar Sözen and Francis Bonahon, The Weil-Petersson and Thurston symplectic forms, Duke Math. J. 108 (2001), no. 3, 581–597. MR 1838662, DOI https://doi.org/10.1215/S0012-7094-01-10836-3
- Martin Bridgeman and Ser Peow Tan, Identities on hyperbolic manifolds, Handbook of Teichmüller theory. Vol. V, IRMA Lect. Math. Theor. Phys., vol. 26, Eur. Math. Soc., Zürich, 2016, pp. 19–53. MR 3497292
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 1853077
- Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal. 17 (2007), no. 3, 707–769. MR 2346273, DOI https://doi.org/10.1007/s00039-007-0608-9
- Jon Chaika, John Smillie, and Barak Weiss, Tremors and horocycle dynamics on the moduli space of translation surfaces, in preparation.
- Dawei Chen and Alex Wright, The WYSIWYG compactification, in preparation.
- Spencer Dowdall, Moon Duchin, and Howard Masur, Statistical hyperbolicity in Teichmüller space, Geom. Funct. Anal. 24 (2014), no. 3, 748–795. MR 3213829, DOI https://doi.org/10.1007/s00039-014-0265-8
- Vincent Delecroix, Elise Goujard, Peter Zograf, and Anton Zorich, Square-tiled surfaces of fixed combinatorial type: equidistribution, counting, volumes of the ambient strata, in preparation.
- Norman Do and Paul Norbury, Weil-Petersson volumes and cone surfaces, Geom. Dedicata 141 (2009), 93–107. MR 2520065, DOI https://doi.org/10.1007/s10711-008-9345-y
- Norman Nam Van Do, Intersection theory on moduli spaces of curves via hyperbolic geometry, Ph.D. thesis, 2008.
- Norman Do, The asymptotic Weil-Petersson form and intersection theory on $\mathcal {M}_{g,n}$, arXiv:1010.4126 (2010).
- Norman Do, Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 217–258. MR 3184165
- David Dumas, Skinning maps are finite-to-one, Acta Math. 215 (2015), no. 1, 55–126. MR 3413977, DOI https://doi.org/10.1007/s11511-015-0129-6
- Alex Eskin, Simion Filip, and Alex Wright, The algebraic hull of the Kontsevich-Zorich cocycle, Ann. of Math. (2) 188 (2018), no. 1, 281–313. MR 3815463, DOI https://doi.org/10.4007/annals.2018.188.1.5
- Manfred Einsiedler, Ratner’s theorem on ${\rm SL}(2,\Bbb R)$-invariant measures, Jahresber. Deutsch. Math.-Verein. 108 (2006), no. 3, 143–164. MR 2265534
- Manfred Einsiedler, Anatole Katok, and Elon Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006), no. 2, 513–560. MR 2247967, DOI https://doi.org/10.4007/annals.2006.164.513
- Alex Eskin and Elon Lindenstrauss, Random walks on llocally homogeneous spaces, https://www.math.uchicago.edu/~eskin/RandomWalks/paper.pdf.
- Alex Eskin and Elon Lindenstrauss, Zariski dense random walks on homogeneous spaces, https://www.math.uchicago.edu/~eskin/RandomWalks/short_{p}aper.pdf.
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI https://doi.org/10.1007/s002220100164
- Alex Eskin and Curt McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), no. 1, 181–209. MR 1230290, DOI https://doi.org/10.1215/S0012-7094-93-07108-6
- Alex Eskin and Maryam Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dyn. 5 (2011), no. 1, 71–105. MR 2787598, DOI https://doi.org/10.3934/jmd.2011.5.71
- Alex Eskin and Maryam Mirzakhani, Invariant and stationary measures for the ${\rm SL}(2,\Bbb R)$ action on moduli space, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 95–324. MR 3814652, DOI https://doi.org/10.1007/s10240-018-0099-2
- Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi, Effective counting of simple closed geodesics on hyperbolic surfaces, arXiv:1905.04435 (2010).
- Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi, Isolation, equidistribution, and orbit closures for the ${\rm SL}(2,\Bbb R)$ action on moduli space, Ann. of Math. (2) 182 (2015), no. 2, 673–721. MR 3418528, DOI https://doi.org/10.4007/annals.2015.182.2.7
- Alex Eskin, Curtis McMullen, Ronen Mukamel, and Alex Wright, Billiards, quadrilaterals and moduli spaces, http://www-personal.umich.edu/~alexmw/dm.pdf.
- Alex Eskin, Maryam Mirzakhani, and Kasra Rafi, forthcoming.
- Alex Eskin, Maryam Mirzakhani, and Kasra Rafi, Counting closed geodesics in strata, Invent. Math. 215 (2019), no. 2, 535–607. MR 3910070, DOI https://doi.org/10.1007/s00222-018-0832-y
- Viveka Erlandsson and Juan Souto, Counting curves in hyperbolic surfaces, Geom. Funct. Anal. 26 (2016), no. 3, 729–777. MR 3540452, DOI https://doi.org/10.1007/s00039-016-0374-7
- Viveka Erlandsson and Juan Souto, Mirzakhani’s Curve Counting, arXiv:1904.05091 (2019).
- Alex Eskin, Lectures on the $\mathrm {SL}(2,\mathbb {R})$ action on moduli space, https://www.math.uchicago.edu/~eskin/luminy2012/lectures.pdf.
- Alex Eskin, Unipotent flows and applications, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 71–129. MR 2648693
- Viveka Erlandsson and Caglar Uyanik, Length functions on currents and applications to dynamics and counting, arXiv:1803.10801 (2018).
- Bertrand Eynard, A short overview of the “Topological recursion”, arXiv:1412.3286 (2014).
- Simion Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. (2) 183 (2016), no. 2, 681–713. MR 3450485, DOI https://doi.org/10.4007/annals.2016.183.2.5
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Giovanni Forni and Carlos Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn. 8 (2014), no. 3-4, 271–436. MR 3345837, DOI https://doi.org/10.3934/jmd.2014.8.271
- Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–103. MR 1888794, DOI https://doi.org/10.2307/3062150
- Krzysztof Frączek, Ronggang Shi, and Corinna Ulcigrai, Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions, J. Mod. Dyn. 12 (2018), 55–122. MR 3808209, DOI https://doi.org/10.3934/jmd.2018004
- Ser-Wei Fu, Cusp excursions for the earthquake flow on the once-punctured torus, Conform. Geom. Dyn. 23 (2019), 251–261. MR 4033067, DOI https://doi.org/10.1090/ecgd/344
- Harry Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63. MR 0284569
- Matthieu Gendulphe, What’s wrong with the growth of simple closed geodesics on nonorientable hyperbolic surfaces, arXiv:1706.08798 (2017).
- Selim Ghazouani, Teichmüller dynamics, dilation tori and piecewise affine circle homeomorphisms, arXiv:1803.10129 (2018).
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI https://doi.org/10.1016/0001-8708%2884%2990040-9
- Ursula Hamenstädt, Invariant Radon measures on measured lamination space, Invent. Math. 176 (2009), no. 2, 223–273. MR 2495764, DOI https://doi.org/10.1007/s00222-008-0163-5
- Ursula Hamenstädt, Counting periodic orbits in the thin part of strata, preprint (2016).
- Yi Huang, Mirzakhani’s recursion formula on Weil-Petersson volume and applications, Handbook of Teichmüller theory. Vol. VI, IRMA Lect. Math. Theor. Phys., vol. 27, Eur. Math. Soc., Zürich, 2016, pp. 95–127. MR 3618187
- Lisa C. Jeffrey, Flat connections on oriented 2-manifolds, Bull. London Math. Soc. 37 (2005), no. 1, 1–14. MR 2105813, DOI https://doi.org/10.1112/S002460930400373X
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI https://doi.org/10.2307/2007076
- Vadim A. Kaimanovich and Howard Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), no. 2, 221–264. MR 1395719, DOI https://doi.org/10.1007/s002220050074
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758
- Elon Lindenstrauss and Maryam Mirzakhani, Ergodic theory of the space of measured laminations, Int. Math. Res. Not. IMRN 4 (2008), Art. ID rnm126, 49. MR 2424174, DOI https://doi.org/10.1093/imrn/rnm126
- Samuel Lelièvre, Thierry Monteil, and Barak Weiss, Everything is illuminated, Geom. Topol. 20 (2016), no. 3, 1737–1762. MR 3523067, DOI https://doi.org/10.2140/gt.2016.20.1737
- Feng Luo and Ser Peow Tan, A dilogarithm identity on moduli spaces of curves, J. Differential Geom. 97 (2014), no. 2, 255–274. MR 3263507
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721
- Michael Magee, Counting one sided simple closed geodesics on Fuchsian thrice punctured projective planes, arXiv:1705.09377 (2017).
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655
- William J. Martin, On an early paper of Maryan Mirzakhani, Bull. Inst. Combin. Appl. 81 (2017), 42–51. MR 3729194
- Howard Masur, On a class of geodesics in Teichmüller space, Ann. of Math. (2) 102 (1975), no. 2, 205–221. MR 385173, DOI https://doi.org/10.2307/1971031
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI https://doi.org/10.2307/1971341
- Howard Masur, Ergodic actions of the mapping class group, Proc. Amer. Math. Soc. 94 (1985), no. 3, 455–459. MR 787893, DOI https://doi.org/10.1090/S0002-9939-1985-0787893-5
- Curtis T. McMullen, Dynamics of ${\rm SL}_2(\Bbb R)$ over moduli space in genus two, Ann. of Math. (2) 165 (2007), no. 2, 397–456. MR 2299738, DOI https://doi.org/10.4007/annals.2007.165.397
- Curtis T. McMullen, The work of Maryam Mirzakhani, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 73–79. MR 3728463
- Greg McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998), no. 3, 607–632. MR 1625712, DOI https://doi.org/10.1007/s002220050235
- Maryam Mirzakhani, A small non-$4$-choosable planar graph, Bull. Inst. Combin. Appl. 17 (1996), 15–18. MR 1386951
- M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998), no. 3, 260–262. MR 1615548, DOI https://doi.org/10.2307/2589084
- Maryam Mirzakhani, Simple geodesics on hyperbolic surfaces and the volume of the moduli space of curves, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–Harvard University. MR 2705986
- Maryam Mirzakhani, Random hyperbolic surfaces and measured laminations, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 179–198. MR 2342816, DOI https://doi.org/10.1090/conm/432/08308
- Maryam Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007), no. 1, 179–222. MR 2264808, DOI https://doi.org/10.1007/s00222-006-0013-2
- Maryam Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), no. 1, 1–23. MR 2257394, DOI https://doi.org/10.1090/S0894-0347-06-00526-1
- Maryam Mirzakhani, Ergodic theory of the earthquake flow, Int. Math. Res. Not. IMRN 3 (2008), Art. ID rnm116, 39. MR 2416997, DOI https://doi.org/10.1093/imrn/rnm116
- Maryam Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. (2) 168 (2008), no. 1, 97–125. MR 2415399, DOI https://doi.org/10.4007/annals.2008.168.97
- Maryam Mirzakhani, On Weil-Petersson volumes and geometry of random hyperbolic surfaces, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 1126–1145. MR 2827834
- Maryam Mirzakhani, Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom. 94 (2013), no. 2, 267–300. MR 3080483
- Maryam Mirzakhani, Counting mapping class group orbits on hyperbolic surfaces, arXiv:1601.03342 (2016).
- E. S. Mahmoodian and Maryam Mirzakhani, Decomposition of complete tripartite graphs into $5$-cycles, Combinatorics advances (Tehran, 1994) Math. Appl., vol. 329, Kluwer Acad. Publ., Dordrecht, 1995, pp. 235–241. MR 1366852
- Curtis T. McMullen, Ronen E. Mukamel, and Alex Wright, Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. (2) 185 (2017), no. 3, 957–990. MR 3664815, DOI https://doi.org/10.4007/annals.2017.185.3.6
- Dave Witte Morris, Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005. MR 2158954
- Maryam Mirzakhani and Bram Petri, Lengths of closed geodesics on random surfaces of large genus, arXiv:1710.09727 (2017).
- G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347–392. MR 1253197, DOI https://doi.org/10.1007/BF01231565
- Maryam Mirzakhani and Jan Vondrák, Sperner’s colorings, hypergraph labeling problems and fair division, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2015, pp. 873–886. MR 3451084, DOI https://doi.org/10.1137/1.9781611973730.60
- Maryam Mirzakhani and Jan Vondrák, Sperner’s colorings and optimal partitioning of the simplex, A journey through discrete mathematics, Springer, Cham, 2017, pp. 615–631. MR 3726616
- Yair Minsky and Barak Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math. 552 (2002), 131–177. MR 1940435, DOI https://doi.org/10.1515/crll.2002.088
- Maryam Mirzakhani and Alex Wright, The boundary of an affine invariant submanifold, Invent. Math. 209 (2017), no. 3, 927–984. MR 3681397, DOI https://doi.org/10.1007/s00222-017-0722-8
- Maryam Mirzakhani and Alex Wright, Full-rank affine invariant submanifolds, Duke Math. J. 167 (2018), no. 1, 1–40. MR 3743698, DOI https://doi.org/10.1215/00127094-2017-0036
- Yuri I. Manin and Peter Zograf, Invertible cohomological field theories and Weil-Petersson volumes, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 519–535 (English, with English and French summaries). MR 1775360
- Maryam Mirzakhani and Peter Zograf, Towards large genus asymptotics of intersection numbers on moduli spaces of curves, Geom. Funct. Anal. 25 (2015), no. 4, 1258–1289. MR 3385633, DOI https://doi.org/10.1007/s00039-015-0336-5
- Maryam Mirzakhani: 1977–2017, Notices Amer. Math. Soc. 65 (2018), no. 10, 1221–1247. Hélène Barcelo and Stephen Kennedy, coordinating editors; With remembrances. MR 3837071
- Athanase Papadopoulos and Guillaume Théret, Shift coordinates, stretch lines and polyhedral structures for Teichmüller space, Monatsh. Math. 153 (2008), no. 4, 309–346. MR 2394553, DOI https://doi.org/10.1007/s00605-007-0518-9
- Jean-François Quint, Rigidité des ${\rm SL}_2(\Bbb R)$-orbites dans les espaces de modules de surfaces plates [d’après Eskin, Mirzakhani et Mohammadi], Astérisque 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No. 1092, 83–138 (French). MR 3522172
- Kasra Rafi and Juan Souto, Statistics of simple curves on surfaces, revisited, in preparation.
- Kasra Rafi and Juan Souto, Geodesics Currents and Counting Problems, arXiv.1709.06834 (2017).
- William P Thurston, Minimal stretch maps between hyperbolic surfaces, arXiv preprint math/9801039 (1998).
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441–530. MR 866707, DOI https://doi.org/10.2307/2007091
- Akshay Venkatesh, The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 1, 117–134. MR 2358379, DOI https://doi.org/10.1090/S0273-0979-07-01194-9
- Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529
- Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303–368. MR 1185834, DOI https://doi.org/10.1016/0393-0440%2892%2990034-X
- Scott Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983), no. 3, 491–523. MR 727702, DOI https://doi.org/10.2307/2006980
- Scott A. Wolpert, Cusps and the family hyperbolic metric, Duke Math. J. 138 (2007), no. 3, 423–443. MR 2322683, DOI https://doi.org/10.1215/S0012-7094-07-13833-X
- Scott A. Wolpert, Families of Riemann surfaces and Weil-Petersson geometry, CBMS Regional Conference Series in Mathematics, vol. 113, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010. MR 2641916
- Scott A. Wolpert, Mirzakhani’s volume recursion and approach for the Witten-Kontsevich theorem on moduli tautological intersection numbers, Moduli spaces of Riemann surfaces, IAS/Park City Math. Ser., vol. 20, Amer. Math. Soc., Providence, RI, 2013, pp. 221–266. MR 3114687, DOI https://doi.org/10.1090/pcms/020/08
- Alex Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015), no. 1, 413–438. MR 3318755, DOI https://doi.org/10.2140/gt.2015.19.413
- Alex Wright, Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci. 2 (2015), no. 1, 63–108. MR 3354955, DOI https://doi.org/10.4171/EMSS/9
- Alex Wright, From rational billiards to dynamics on moduli spaces, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no. 1, 41–56. MR 3403080, DOI https://doi.org/10.1090/S0273-0979-2015-01513-2
- Alex Wright, Mirzakhani’s work on earthquake flow, arXiv:1810.07571 (2018).
- Yunhui Wu and Yuhao Xue, Small eigenvalues of closed Riemann surfaces for large genus, arXiv:1809.07449 (2018).
- Peter Zograf, On the large genus asymptotics of Weil-Petersson volumes, arXiv:0812.0544 (2008).
- Anton Zorich, Le théorème de la baguette magique de A. Eskin et M. Mirzakhani, Gaz. Math. 142 (2014), 39–54 (French). MR 3278429
- Anton Zorich, The magic wand theorem of A. Eskin and M. Mirzakhani, arXiv:1502.05654 (2015).
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 32G15
Retrieve articles in all journals with MSC (2010): 32G15
Additional Information
Alex Wright
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan
MR Author ID:
839125
Email:
alexmw@umich.edu
Received by editor(s):
May 12, 2019
Published electronically:
February 3, 2020
Article copyright:
© Copyright 2020
American Mathematical Society