Moving boundary problems
Author:
Sunčica Čanić
Journal:
Bull. Amer. Math. Soc. 58 (2021), 79-106
MSC (2010):
Primary 76D05, 76D03; Secondary 74F10, 76D27
DOI:
https://doi.org/10.1090/bull/1703
Published electronically:
July 23, 2020
MathSciNet review:
4188809
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: Moving boundary problems are ubiquitous in nature, technology, and engineering. Examples include the human heart and heart valves interacting with blood flow, biodegradable microbeads swimming in water to clean up water pollution, a micro camera in the human intestine used for early colon cancer detection, and the design of next-generation vascular stents to prop open clogged arteries and to prevent heart attacks. These are time-dependent, dynamic processes, which involve the interaction between fluids and various structures. Analysis and numerical simulation of fluid-structure interaction (FSI) problems can provide insight into the “invisible” properties of flows and structures, and can be used to advance design of novel technologies and improve the understanding of many physical and biological phenomena. Mathematical analysis of FSI models is at the core of this understanding. In this paper we give a brief survey of recent progress in the area of mathematical well-posedness for moving boundary problems describing fluid-structure interaction between incompressible, viscous fluids and elastic, viscoelastic, and rigid solids.
- Hind Al Baba, Nikolai V. Chemetov, Šárka Nečasová, and Boris Muha, Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case, Topol. Methods Nonlinear Anal. 52 (2018), no. 1, 337–350. MR 3867991, DOI https://doi.org/10.12775/tmna.2018.028
- Amal Alphonse and Charles M. Elliott, A Stefan problem on an evolving surface, Philos. Trans. Roy. Soc. A 373 (2015), no. 2050, 20140279, 16. MR 3393311, DOI https://doi.org/10.1098/rsta.2014.0279
- Amal Alphonse and Charles M. Elliott, Well-posedness of a fractional porous medium equation on an evolving surface, Nonlinear Anal. 137 (2016), 3–42. MR 3485116, DOI https://doi.org/10.1016/j.na.2016.01.010
- Amal Alphonse, Charles M. Elliott, and Björn Stinner, An abstract framework for parabolic PDEs on evolving spaces, Port. Math. 72 (2015), no. 1, 1–46. MR 3323509, DOI https://doi.org/10.4171/PM/1955
- Amal Alphonse, Charles M. Elliott, and Björn Stinner, On some linear parabolic PDEs on moving hypersurfaces, Interfaces Free Bound. 17 (2015), no. 2, 157–187. MR 3391968, DOI https://doi.org/10.4171/IFB/338
- Amal Alphonse, Charles M. Elliott, and Joana Terra, A coupled ligand-receptor bulk-surface system on a moving domain: well posedness, regularity, and convergence to equilibrium, SIAM J. Math. Anal. 50 (2018), no. 2, 1544–1592. MR 3775132, DOI https://doi.org/10.1137/16M110808X
- Jean-Pierre Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042–5044 (French). MR 152860
- Matteo Astorino, Jean-Frédéric Gerbeau, Olivier Pantz, and Karim-Frédéric Traoré, Fluid-structure interaction and multi-body contact: application to aortic valves, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 45-46, 3603–3612. MR 2571824, DOI https://doi.org/10.1016/j.cma.2008.09.012
- Frank P. T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, Internat. J. Numer. Methods Fluids 35 (2001), no. 7, 743–761. MR 1826849, DOI https://doi.org/10.1002/fld.153
- Viorel Barbu, Zoran Grujić, Irena Lasiecka, and Amjad Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Fluids and waves, Contemp. Math., vol. 440, Amer. Math. Soc., Providence, RI, 2007, pp. 55–82. MR 2359449, DOI https://doi.org/10.1090/conm/440/08476
- Viorel Barbu, Zoran Grujić, Irena Lasiecka, and Amjad Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J. 57 (2008), no. 3, 1173–1207. MR 2429089, DOI https://doi.org/10.1512/iumj.2008.57.3284
- John W. Barrett and Endre Süli, Reflections on Dubinskiĭ’s nonlinear compact embedding theorem, Publ. Inst. Math. (Beograd) (N.S.) 91(105) (2012), 95–110. MR 2963813, DOI https://doi.org/10.2298/PIM1205095B
- Steffen Basting, Annalisa Quaini, Sunčica Čanić, and Roland Glowinski, Extended ALE method for fluid-structure interaction problems with large structural displacements, J. Comput. Phys. 331 (2017), 312–336. MR 3588694, DOI https://doi.org/10.1016/j.jcp.2016.11.043
- H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech. 6 (2004), no. 1, 21–52. MR 2027753, DOI https://doi.org/10.1007/s00021-003-0082-5
- Muriel Boulakia, Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, C. R. Math. Acad. Sci. Paris 336 (2003), no. 12, 985–990 (English, with English and French summaries). MR 1993967, DOI https://doi.org/10.1016/S1631-073X%2803%2900235-8
- Muriel Boulakia, Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl. (9) 84 (2005), no. 11, 1515–1554 (English, with English and French summaries). MR 2181459, DOI https://doi.org/10.1016/j.matpur.2005.08.004
- Marco Bravin, Energy equality and uniqueness of weak solutions of a “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 2D bounded domain, J. Math. Fluid Mech. 21 (2019), no. 2, Paper No. 23, 31. MR 3928692, DOI https://doi.org/10.1007/s00021-019-0425-6
- Dominic Breit and Sebastian Schwarzacher, Compressible fluids interacting with a linear-elastic shell, Arch. Ration. Mech. Anal. 228 (2018), no. 2, 495–562. MR 3766983, DOI https://doi.org/10.1007/s00205-017-1199-8
- Martina Bukač and Sunčica Čanić, Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation, Math. Biosci. Eng. 10 (2013), no. 2, 295–318. MR 3019434, DOI https://doi.org/10.3934/mbe.2013.10.295
- M. Bukač, S. Čanić, R. Glowinski, B. Muha, and A. Quaini, A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures, Internat. J. Numer. Methods Fluids 74 (2014), no. 8, 577–604. MR 3168786, DOI https://doi.org/10.1002/fld.3863
- Martina Bukač, Sunčica Čanić, Roland Glowinski, Josip Tambača, and Annalisa Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys. 235 (2013), 515–541. MR 3017610, DOI https://doi.org/10.1016/j.jcp.2012.08.033
- M. Bukač, S. Čanić, and B. Muha, A partitioned scheme for fluid-composite structure interaction problems, J. Comput. Phys. 281 (2015), 493–517. MR 3281984, DOI https://doi.org/10.1016/j.jcp.2014.10.045
- S. Čanić, M. Galić, and B. Muha. Analysis of a nonlinear moving-boundary, 3D fluid-mesh-shell interaction problem, arXiv:2940144 (submitted 2019).
- P. Causin, J. F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 42-44, 4506–4527. MR 2157973, DOI https://doi.org/10.1016/j.cma.2004.12.005
- Antonin Chambolle, Benoît Desjardins, Maria J. Esteban, and Céline Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech. 7 (2005), no. 3, 368–404. MR 2166981, DOI https://doi.org/10.1007/s00021-004-0121-y
- Nikolai V. Chemetov and Šárka Nečasová, The motion of the rigid body in the viscous fluid including collisions. Global solvability result, Nonlinear Anal. Real World Appl. 34 (2017), 416–445. MR 3567970, DOI https://doi.org/10.1016/j.nonrwa.2016.09.011
- Nikolai V. Chemetov, Šárka Nečasová, and Boris Muha, Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition, J. Math. Phys. 60 (2019), no. 1, 011505, 13. MR 3896559, DOI https://doi.org/10.1063/1.5007824
- Xiuqing Chen, Ansgar Jüngel, and Jian-Guo Liu, A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math. 133 (2014), 33–43. MR 3255076, DOI https://doi.org/10.1007/s10440-013-9858-8
- C. H. Arthur Cheng, Daniel Coutand, and Steve Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal. 39 (2007), no. 3, 742–800. MR 2349865, DOI https://doi.org/10.1137/060656085
- C. H. Arthur Cheng and Steve Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell, SIAM J. Math. Anal. 42 (2010), no. 3, 1094–1155. MR 2644917, DOI https://doi.org/10.1137/080741628
- Carlos Conca, Jorge San Martín H., and Marius Tucsnak, Motion of a rigid body in a viscous fluid, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 6, 473–478 (English, with English and French summaries). MR 1680008, DOI https://doi.org/10.1016/S0764-4442%2899%2980193-1
- Carlos Conca, Jorge San Martín H., and Marius Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1019–1042. MR 1759801, DOI https://doi.org/10.1080/03605300008821540
- Carlos Conca and Jorge San Martín H., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), no. 5-6, 99–110.
- Daniel Coutand and Steve Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal. 176 (2005), no. 1, 25–102. MR 2185858, DOI https://doi.org/10.1007/s00205-004-0340-7
- Daniel Coutand and Steve Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal. 179 (2006), no. 3, 303–352. MR 2208319, DOI https://doi.org/10.1007/s00205-005-0385-2
- Patricio Cumsille and Takéo Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J. 58(133) (2008), no. 4, 961–992. MR 2471160, DOI https://doi.org/10.1007/s10587-008-0063-2
- B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), no. 1, 59–71. MR 1682663, DOI https://doi.org/10.1007/s002050050136
- B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1399–1413. MR 1765138, DOI https://doi.org/10.1080/03605300008821553
- B. Desjardins, M. J. Esteban, C. Grandmont, and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut. 14 (2001), no. 2, 523–538. MR 1871311, DOI https://doi.org/10.5209/rev_REMA.2001.v14.n2.17030
- Karoline Disser, Giovanni P. Galdi, Giusy Mazzone, and Paolo Zunino, Inertial motions of a rigid body with a cavity filled with a viscous liquid, Arch. Ration. Mech. Anal. 221 (2016), no. 1, 487–526. MR 3483900, DOI https://doi.org/10.1007/s00205-016-0966-2
- J. Donea, Arbitrary Lagrangian-Eulerian finite element methods, in: Computational methods for transient analysis, North-Holland, Amsterdam,1983.
- J. Donea, A. Huerta, J. P. Ponthot, and A. Rodriguez-Ferran, Arbitrary Lagrangian-Eulerian Method, Encyclopedia of Computational Mathematics, Wiley, 2004.
- J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, The gradient discretisation method, 2016.
- Michael Dreher and Ansgar Jüngel, Compact families of piecewise constant functions in $L^p(0,T;B)$, Nonlinear Anal. 75 (2012), no. 6, 3072–3077. MR 2890969, DOI https://doi.org/10.1016/j.na.2011.12.004
- Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst. 9 (2003), no. 3, 633–650. MR 1974530, DOI https://doi.org/10.3934/dcds.2003.9.633
- Lisa J. Fauci and Robert Dillon, Biofluidmechanics of reproduction, Annual review of fluid mechanics. Vol. 38, Annu. Rev. Fluid Mech., vol. 38, Annual Reviews, Palo Alto, CA, 2006, pp. 371–394. MR 2206979, DOI https://doi.org/10.1146/annurev.fluid.37.061903.175725
- Eduard Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal. 167 (2003), no. 4, 281–308. MR 1981859, DOI https://doi.org/10.1007/s00205-002-0242-5
- Eduard Feireisl, On the motion of rigid bodies in a viscous fluid, Appl. Math. 47 (2002), no. 6, 463–484. Mathematical theory in fluid mechanics (Paseky, 2001). MR 1948192, DOI https://doi.org/10.1023/A%3A1023245704966
- Eduard Feireisl, Matthieu Hillairet, and Šárka Nečasová, On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity 21 (2008), no. 6, 1349–1366. MR 2422384, DOI https://doi.org/10.1088/0951-7715/21/6/012
- Miguel A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numer. Math. 123 (2013), no. 1, 21–65. MR 3004589, DOI https://doi.org/10.1007/s00211-012-0481-9
- M. A. Fernández, J.-F. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Internat. J. Numer. Methods Engrg. 69 (2007), no. 4, 794–821. MR 2284413, DOI https://doi.org/10.1002/nme.1792
- C. Alberto Figueroa, Irene E. Vignon-Clementel, Kenneth E. Jansen, Thomas J. R. Hughes, and Charles A. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5685–5706. MR 2243323, DOI https://doi.org/10.1016/j.cma.2005.11.011
- Hiroshi Fujita and Niko Sauer, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 403–420. MR 298258
- G. P. Galdi, V. Mácha, and Š. Nečasová, On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior, arXiv:1903.01453 (2019).
- Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. MR 1284205
- Giovanni P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2000, pp. 1–70. MR 1798753
- Giovanni P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, Hemodynamical flows, Oberwolfach Semin., vol. 37, Birkhäuser, Basel, 2008, pp. 121–273. MR 2410706, DOI https://doi.org/10.1007/978-3-7643-7806-6_3
- Giovanni P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal. 148 (1999), no. 1, 53–88. MR 1715453, DOI https://doi.org/10.1007/s002050050156
- Giovanni P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 653–791. MR 1942470
- Giovanni P. Galdi and Ana L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121–144. MR 1970608, DOI https://doi.org/10.1007/978-1-4615-0777-2_8
- Giovanni P. Galdi and Ana L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Ration. Mech. Anal. 184 (2007), no. 3, 371–400. MR 2299756, DOI https://doi.org/10.1007/s00205-006-0026-4
- David Gérard-Varet and Matthieu Hillairet, Computation of the drag force on a sphere close to a wall: the roughness issue, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 5, 1201–1224. MR 2916378, DOI https://doi.org/10.1051/m2an/2012001
- David Gérard-Varet, Matthieu Hillairet, and Chao Wang, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pures Appl. (9) 103 (2015), no. 1, 1–38 (English, with English and French summaries). MR 3281946, DOI https://doi.org/10.1016/j.matpur.2014.03.005
- David Gérard-Varet and Matthieu Hillairet, Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Comm. Pure Appl. Math. 67 (2014), no. 12, 2022–2075. MR 3272367, DOI https://doi.org/10.1002/cpa.21523
- Olivier Glass and Franck Sueur, Uniqueness results for weak solutions of two-dimensional fluid-solid systems, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 907–944. MR 3375542, DOI https://doi.org/10.1007/s00205-015-0876-8
- Roland Glowinski, Finite element methods for incompressible viscous flow, Handbook of numerical analysis, Vol. IX, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 2003, pp. 3–1176. MR 2009826
- Matthias Geissert, Karoline Götze, and Matthias Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1393–1439. MR 3003269, DOI https://doi.org/10.1090/S0002-9947-2012-05652-2
- Céline Grandmont, Mária Lukáčová-Medvid’ová, and Šárka Nečasová, Mathematical and numerical analysis of some FSI problems, Fluid-structure interaction and biomedical applications, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2014, pp. 1–77. MR 3329017
- Céline Grandmont, Existence for a three-dimensional steady state fluid-structure interaction problem, J. Math. Fluid Mech. 4 (2002), no. 1, 76–94. MR 1891075, DOI https://doi.org/10.1007/s00021-002-8536-9
- Céline Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal. 40 (2008), no. 2, 716–737. MR 2438783, DOI https://doi.org/10.1137/070699196
- Céline Grandmont and Matthieu Hillairet, Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal. 220 (2016), no. 3, 1283–1333. MR 3466847, DOI https://doi.org/10.1007/s00205-015-0954-y
- Céline Grandmont and Yvon Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal. 34 (2000), no. 3, 609–636. MR 1763528, DOI https://doi.org/10.1051/m2an%3A2000159
- Boyce E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys. 12 (2012), no. 2, 401–432. MR 2897145, DOI https://doi.org/10.4208/cicp.120111.300911s
- Boyce E. Griffith, Richard D. Hornung, David M. McQueen, and Charles S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys. 223 (2007), no. 1, 10–49. MR 2314380, DOI https://doi.org/10.1016/j.jcp.2006.08.019
- Boyce E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng. 28 (2012), no. 3, 317–345. MR 2910281, DOI https://doi.org/10.1002/cnm.1445
- B. E. Griffith, X.-Y. Luo, D. M. McQueen, and C. S. Peskin, Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Internat. J. Appl. Mech. 1 (2009), no. 1, 137–177.
- M. Lanzendörfer and J. Hron, On multiple solutions to the steady flow of incompressible fluids subject to do-nothing or constant traction boundary conditions on artificial boundaries, J. Math. Fluid Mech. 22 (2020), no. 1, Paper No. 11, 18. MR 4046052, DOI https://doi.org/10.1007/s00021-019-0472-z
- Giovanna Guidoboni, Roland Glowinski, Nicola Cavallini, and Suncica Canic, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys. 228 (2009), no. 18, 6916–6937. MR 2567876, DOI https://doi.org/10.1016/j.jcp.2009.06.007
- Giovanna Guidoboni, Marcello Guidorzi, and Mariarosaria Padula, Continuous dependence on initial data in fluid-structure motions, J. Math. Fluid Mech. 14 (2012), no. 1, 1–32. MR 2891187, DOI https://doi.org/10.1007/s00021-010-0031-0
- Max D. Gunzburger, Hyung-Chun Lee, and Gregory A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219–266. MR 1781915, DOI https://doi.org/10.1007/PL00000954
- M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1345–1371. MR 2354496, DOI https://doi.org/10.1080/03605300601088740
- Matthieu Hillairet and Takéo Takahashi, Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal. 40 (2009), no. 6, 2451–2477. MR 2481302, DOI https://doi.org/10.1137/080716074
- K.-H. Hoffmann and V. N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (1999), no. 2, 633–648. MR 1725677
- Anna Hundertmark-Zaušková, Mária Lukáčová-Medviďová, and Gabriela Rusnáková, Fluid-structure interaction for shear-dependent non-Newtonian fluids, Topics in mathematical modeling and analysis, Jindřich Nečas Cent. Math. Model. Lect. Notes, vol. 7, Matfyzpress, Prague, 2012, pp. 109–158. MR 2962823
- Anna Hundertmark-Zaušková, Mária Lukáčová-Medviďová, and Šárka Nečasová, On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid, J. Math. Soc. Japan 68 (2016), no. 1, 193–243. MR 3454559, DOI https://doi.org/10.2969/jmsj/06810193
- T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 39-41, 4135–4195. MR 2152382, DOI https://doi.org/10.1016/j.cma.2004.10.008
- Thomas J. R. Hughes, Wing Kam Liu, and Thomas K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg. 29 (1981), no. 3, 329–349. MR 659925, DOI https://doi.org/10.1016/0045-7825%2881%2990049-9
- Mihaela Ignatova, Igor Kukavica, Irena Lasiecka, and Amjad Tuffaha, On well-posedness for a free boundary fluid-structure model, J. Math. Phys. 53 (2012), no. 11, 115624, 13. MR 3026569, DOI https://doi.org/10.1063/1.4766724
- Mihaela Ignatova, Igor Kukavica, Irena Lasiecka, and Amjad Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), no. 3, 467–499. MR 3168261, DOI https://doi.org/10.1088/0951-7715/27/3/467
- M. Krafczyk, J. Tolke, E. Rank, and M. Schulz. Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods. Computers & Structures, 79 (2001), 2031–2037.
- Igor Kukavica and Amjad Tuffaha, Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst. 32 (2012), no. 4, 1355–1389. MR 2851902, DOI https://doi.org/10.3934/dcds.2012.32.1355
- Igor Kukavica and Amjad Tuffaha, Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface, Nonlinearity 25 (2012), no. 11, 3111–3137. MR 2991431, DOI https://doi.org/10.1088/0951-7715/25/11/3111
- Igor Kukavica, Amjad Tuffaha, and Mohammed Ziane, Strong solutions for a fluid structure interaction system, Adv. Differential Equations 15 (2010), no. 3-4, 231–254. MR 2588449
- O. A. Ladyzhenskaya. Initial-boundary problem for Navier-Stokes equations in domains with time-varying boundaries, in Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, pp. 35–46, Springer, 1970.
- Daniel Lengeler and Michael Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal. 211 (2014), no. 1, 205–255. MR 3147436, DOI https://doi.org/10.1007/s00205-013-0686-9
- Julien Lequeurre, Existence of strong solutions to a fluid-structure system, SIAM J. Math. Anal. 43 (2011), no. 1, 389–410. MR 2765696, DOI https://doi.org/10.1137/10078983X
- Debayan Maity and Marius Tucsnak, $L^p$-$L^q$ maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems, Mathematical analysis in fluid mechanics—selected recent results, Contemp. Math., vol. 710, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 175–201. MR 3818674, DOI https://doi.org/10.1090/conm/710/14370
- J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation, vol. 13, Chapman & Hall, London, 1996. MR 1409366
- Andro Mikelić, Rough boundaries and wall laws, Qualitative properties of solutions to partial differential equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, vol. 5, Matfyzpress, Prague, 2009, pp. 103–134. MR 2962831
- Andro Mikelić, Šárka Nečasová, and Maria Neuss-Radu, Effective slip law for general viscous flows over an oscillating surface, Math. Methods Appl. Sci. 36 (2013), no. 15, 2086–2100. MR 3108828, DOI https://doi.org/10.1002/mma.2923
- A. Moussa, Some variants of the classical Aubin-Lions lemma, J. Evol. Equ. 16 (2016), no. 1, 65–93. MR 3466213, DOI https://doi.org/10.1007/s00028-015-0293-3
- Boris Muha and Suncica Canić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal. 207 (2013), no. 3, 919–968. MR 3017292, DOI https://doi.org/10.1007/s00205-012-0585-5
- Boris Muha and Sunčica Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst. 13 (2013), no. 3, 357–397. MR 3226949, DOI https://doi.org/10.4310/CIS.2013.v13.n3.a4
- Boris Muha and Sunčica Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Differential Equations 256 (2014), no. 2, 658–706. MR 3121710, DOI https://doi.org/10.1016/j.jde.2013.09.016
- Boris Muha and Sunčica Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound. 17 (2015), no. 4, 465–495. MR 3450736, DOI https://doi.org/10.4171/IFB/350
- Boris Muha and Sunčica Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations 260 (2016), no. 12, 8550–8589. MR 3482692, DOI https://doi.org/10.1016/j.jde.2016.02.029
- Boris Muha and Sunčica Čanić, A generalization of the Aubin-Lions-Simon compactness lemma for problems on moving domains, J. Differential Equations 266 (2019), no. 12, 8370–8418. MR 3944259, DOI https://doi.org/10.1016/j.jde.2018.12.030
- B. Muha, Š. Nečasová, and A. Radošević, A uniqueness result for 3D incompressible fluid-rigid body interaction problem, arXiv:1904.05102v1 (submitted 2019).
- C. Navier. Sur les lois de léquilibre et du mouvement des corps elastiques, Mémoires de l’Académie des Sciences de l’Institut de France, vol. 369, 1827.
- P. Nägele, M. Růžička, and D. Lengeler, Functional setting for unsteady problems in moving domains and applications, Complex Var. Elliptic Equ. 62 (2017), no. 1, 66–97. MR 3575853, DOI https://doi.org/10.1080/17476933.2016.1203911
- P Nägele. Monotone operator theory for unsteady problems on non-cylindrical domains [dissertation]. Freiburg: Albert-Ludwigs-Universiät Freiburg, 2015.
- Jiří Neustupa and Patrick Penel, A weak solvability of the Navier-Stokes equation with Navier’s boundary condition around a ball striking the wall, Advances in mathematical fluid mechanics, Springer, Berlin, 2010, pp. 385–407. MR 2665044, DOI https://doi.org/10.1007/978-3-642-04068-9_24
- Charles S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977), no. 3, 220–252. MR 490027, DOI https://doi.org/10.1016/0021-9991%2877%2990100-0
- Charles S. Peskin and David M. McQueen, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys. 81 (1989), no. 2, 372–405. MR 994353, DOI https://doi.org/10.1016/0021-9991%2889%2990213-1
- Serge Piperno, Charbel Farhat, and Bernard Larrouturou, Partitioned procedures for the transient solution of coupled aeroelastic problems. I. Model problem, theory and two-dimensional application, Comput. Methods Appl. Mech. Engrg. 124 (1995), no. 1-2, 79–112. MR 1342174, DOI https://doi.org/10.1016/0045-7825%2895%2992707-9
- Jean-Pierre Raymond and Muthusamy Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl. (9) 102 (2014), no. 3, 546–596 (English, with English and French summaries). MR 3249722, DOI https://doi.org/10.1016/j.matpur.2013.12.004
- A. Quarteroni, M. Tuveri, and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Survey article, Comput. Visual. Sci. 2 (2000), 163–197.
- Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1857663
- Michael Růžička, Multipolar materials, Workshop on the Mathematical Theory of Nonlinear and Inelastic Material Behaviour (Darmstadt, 1992) Bonner Math. Schriften, vol. 239, Univ. Bonn, Bonn, 1993, pp. 53–64. MR 1290373
- Jerome Odell Sather, THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE NAVIER-STOKES EQUATIONS IN REGIONS WITH MOVING BOUNDARIES, ProQuest LLC, Ann Arbor, MI, 1963. Thesis (Ph.D.)–University of Minnesota. MR 2613780
- Niko Sauer, The steady state Navier-Stokes equations for incompressible flows with rotating boundaries, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), no. 1-2, 93–99. MR 963844, DOI https://doi.org/10.1017/S0308210500024896
- Jorge Alonso San Martín, Victor Starovoitov, and Marius Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 (2002), no. 2, 113–147. MR 1870954, DOI https://doi.org/10.1007/s002050100172
- James Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. of Wisconsin Press, Madison, Wis., 1963, pp. 69–98. MR 0150444
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI https://doi.org/10.1007/BF01762360
- V. N. Starovoĭtov, On the nonuniqueness of the solution of the problem of the motion of a rigid body in a viscous incompressible fluid, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 306 (2003), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 34, 199–209, 231–232 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 130 (2005), no. 4, 4893–4898. MR 2065504, DOI https://doi.org/10.1007/s10958-005-0384-8
- Takéo Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (2003), no. 12, 1499–1532. MR 2029294
- Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
- Chao Wang, Strong solutions for the fluid-solid systems in a 2-D domain, Asymptot. Anal. 89 (2014), no. 3-4, 263–306. MR 3266142, DOI https://doi.org/10.3233/asy-141230
- Yifan Wang, Annalisa Quaini, and Sunčica Čanić, A higher-order discontinuous Galerkin/arbitrary Lagrangian Eulerian partitioned approach to solving fluid-structure interaction problems with incompressible, viscous fluids and elastic structures, J. Sci. Comput. 76 (2018), no. 1, 481–520. MR 3812977, DOI https://doi.org/10.1007/s10915-017-0629-y
- H. F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R. I., 1973, pp. 421–439. MR 0416234
- T. Wick, Variational-Monolithic ALE Fluid-Structure Interaction: Comparison of Computational Cost and Mesh Regularity Using Different Mesh Motion Techniques, in Modeling, Simulation and Optimization of Complex Processes (Bock H., Phu H., Rannacher R., Schlöder J., eds.), HPSC 2015. Springer, Cham.
- Guanyu Zhou and Norikazu Saito, The Navier-Stokes equations under a unilateral boundary condition of Signorini’s type, J. Math. Fluid Mech. 18 (2016), no. 3, 481–510. MR 3537904, DOI https://doi.org/10.1007/s00021-016-0248-7
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 76D05, 76D03, 74F10, 76D27
Retrieve articles in all journals with MSC (2010): 76D05, 76D03, 74F10, 76D27
Additional Information
Sunčica Čanić
Affiliation:
Department of Mathematics, University of California, Berkeley, California
Email:
canics@berkeley.edu
Keywords:
Moving boundary problems,
fluid-structure interaction
Received by editor(s):
June 1, 2020
Published electronically:
July 23, 2020
Additional Notes:
The author was supported in part by NSF Grants DMS-1853340 and DMS-1613757.
Article copyright:
© Copyright 2020
American Mathematical Society