Convex integration constructions in hydrodynamics
HTML articles powered by AMS MathViewer
- by Tristan Buckmaster and Vlad Vicol;
- Bull. Amer. Math. Soc. 58 (2021), 1-44
- DOI: https://doi.org/10.1090/bull/1713
- Published electronically: November 2, 2020
- HTML | PDF | Request permission
Abstract:
We review recent developments in the field of mathematical fluid dynamics which utilize techniques that go under the umbrella name convex integration. In the hydrodynamical context, these methods produce paradoxical solutions to the fluid equations which defy physical laws. These counterintuitive solutions have a number of properties that resemble predictions made by phenomenological theories of fluid turbulence. The goal of this review is to highlight some of these similarities while maintaining an emphasis on rigorous mathematical statements. We focus our attention on the construction of weak solutions for the incompressible Euler, Navier–Stokes, and magneto-hydrodynamic equations which violate these systems’ physical energy laws.References
- H. Aluie, Hydrodynamic and magnetohydrodynamic turbulence: Invariants, cascades, and locality, Ph.D. thesis, Johns Hopkins University, 2009.
- H. Aluie and G. L. Eyink, Scale locality of magnetohydrodynamic turbulence, Physical Review Letters 104 (2010), no. 8, 081101.
- F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech. 140 (1984), 63–89.
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. MR 1612569
- C. Bardos, M. C. Lopes Filho, Dongjuan Niu, H. J. Nussenzveig Lopes, and E. S. Titi, Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking, SIAM J. Math. Anal. 45 (2013), no. 3, 1871–1885. MR 3068562, DOI 10.1137/120862569
- K. Bardos, L. Sekelikhidi Jr., and È. Videmann, On the absence of uniqueness for the Euler equations: the effect of the boundary, Uspekhi Mat. Nauk 69 (2014), no. 2(416), 3–22 (Russian, with Russian summary); English transl., Russian Math. Surveys 69 (2014), no. 2, 189–207. MR 3236935, DOI 10.1070/rm2014v069n02abeh004886
- K. Bardos, L. Sekelikhidi Jr., and È. Videmann, On the absence of uniqueness for the Euler equations: the effect of the boundary, Uspekhi Mat. Nauk 69 (2014), no. 2(416), 3–22 (Russian, with Russian summary); English transl., Russian Math. Surveys 69 (2014), no. 2, 189–207. MR 3236935, DOI 10.1070/rm2014v069n02abeh004886
- Claude Bardos, Edriss S. Titi, and Emil Wiedemann, The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 757–760 (English, with English and French summaries). MR 2981348, DOI 10.1016/j.crma.2012.09.005
- G. K. Batchelor, The theory of homogeneous turbulence, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge, at the University Press, 1953. MR 52268
- Rajendra Beekie, Tristan Buckmaster, and Vlad Vicol, Weak solutions of ideal MHD which do not conserve magnetic helicity, Ann. PDE 6 (2020), no. 1, Paper No. 1, 40. MR 4105741, DOI 10.1007/s40818-020-0076-1
- M. A. Berger, Introduction to magnetic helicity, Plasma Physics and Controlled Fusion 41 (1999), no. 12B, B167.
- Dieter Biskamp, Nonlinear magnetohydrodynamics, Cambridge Monographs on Plasma Physics, vol. 1, Cambridge University Press, Cambridge, 1993. MR 1250152, DOI 10.1017/CBO9780511599965
- Anne C. Bronzi, Milton C. Lopes Filho, and Helena J. Nussenzveig Lopes, Wild solutions for 2D incompressible ideal flow with passive tracer, Commun. Math. Sci. 13 (2015), no. 5, 1333–1343. MR 3344429, DOI 10.4310/CMS.2015.v13.n5.a12
- E. Brué, M. Colombo, and C. De Lellis, Positive solutions of transport equations and classical nonuniqueness of characteristic curves, arXiv preprint arXiv:2003.00539 (2020).
- Tristan Buckmaster, Onsager’s conjecture almost everywhere in time, Comm. Math. Phys. 333 (2015), no. 3, 1175–1198. MR 3302631, DOI 10.1007/s00220-014-2262-z
- T. Buckmaster, M. Colombo, and V. Vicol, Wild solutions of the Navier–Stokes equations whose singular sets in time have hausdorff dimension strictly less than $1$, Journal of the EMS. In press. (2020).
- Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi Jr., Anomalous dissipation for $1/5$-Hölder Euler flows, Ann. of Math. (2) 182 (2015), no. 1, 127–172. MR 3374958, DOI 10.4007/annals.2015.182.1.3
- Tristan Buckmaster, Camillo De Lellis, and László Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math. 69 (2016), no. 9, 1613–1670. MR 3530360, DOI 10.1002/cpa.21586
- T. Buckmaster, C. De Lellis, and L. Székelyhidi Jr., Transporting microstructure and dissipative Euler flows, arXiv preprint arXiv:1302.2815 (2013).
- Tristan Buckmaster, Camillo de Lellis, László Székelyhidi Jr., and Vlad Vicol, Onsager’s conjecture for admissible weak solutions, Comm. Pure Appl. Math. 72 (2019), no. 2, 229–274. MR 3896021, DOI 10.1002/cpa.21781
- Tristan Buckmaster, Steve Shkoller, and Vlad Vicol, Nonuniqueness of weak solutions to the SQG equation, Comm. Pure Appl. Math. 72 (2019), no. 9, 1809–1874. MR 3987721, DOI 10.1002/cpa.21851
- Tristan Buckmaster and Vlad Vicol, Convex integration and phenomenologies in turbulence, EMS Surv. Math. Sci. 6 (2019), no. 1-2, 173–263. MR 4073888, DOI 10.4171/emss/34
- T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier–Stokes equation, Ann. of Math. 189 (2019), no. 1, 101–144.
- J. Burczak, S. Modena, and L. Székelyhidi Jr., Non uniqueness of power-law flows, arXiv preprint arXiv:2007.08011 (2020).
- L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI 10.1002/cpa.3160350604
- Russel E. Caflisch, Isaac Klapper, and Gregory Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys. 184 (1997), no. 2, 443–455. MR 1462753, DOI 10.1007/s002200050067
- A. Castro, C. Córdoba, and D. Faraco, Mixing solutions for the Muskat problem, arXiv:1605.04822 (2016).
- Jean-Yves Chemin, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. MR 1688875
- A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity 21 (2008), no. 6, 1233–1252. MR 2422377, DOI 10.1088/0951-7715/21/6/005
- A. Cheskidov, M. C. Lopes Filho, H. J. Nussenzveig Lopes, and R. Shvydkoy, Energy conservation in two-dimensional incompressible ideal fluids, Comm. Math. Phys. 348 (2016), no. 1, 129–143. MR 3551263, DOI 10.1007/s00220-016-2730-8
- Alexey Cheskidov, Susan Friedlander, and Nataša Pavlović, Inviscid dyadic model of turbulence: the fixed point and Onsager’s conjecture, J. Math. Phys. 48 (2007), no. 6, 065503, 16. MR 2337019, DOI 10.1063/1.2395917
- Alexey Cheskidov, Susan Friedlander, and Roman Shvydkoy, On the energy equality for weak solutions of the 3D Navier-Stokes equations, Advances in mathematical fluid mechanics, Springer, Berlin, 2010, pp. 171–175. MR 2665030, DOI 10.1007/978-3-642-04068-9_{1}0
- Alexey Cheskidov and Xiaoyutao Luo, Energy equality for the Navier-Stokes equations in weak-in-time Onsager spaces, Nonlinearity 33 (2020), no. 4, 1388–1403. MR 4072378, DOI 10.1088/1361-6544/ab60d3
- A. Cheskidov and X. Luo, Nonuniqueness of weak solutions for the transport equation at critical space regularity, arXiv:2004.09538 (2020).
- A. Cheskidov and R. Shvydkoy, Euler equations and turbulence: analytical approach to intermittency, SIAM J. Math. Anal. 46 (2014), no. 1, 353–374. MR 3152734, DOI 10.1137/120876447
- Elisabetta Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ. 11 (2014), no. 3, 493–519. MR 3261301, DOI 10.1142/S0219891614500143
- Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1157–1190. MR 3352460, DOI 10.1002/cpa.21537
- Elisabetta Chiodaroli, Eduard Feireisl, and Ondřej Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), no. 1, 225–243. MR 3303948, DOI 10.1016/j.anihpc.2013.11.005
- Antoine Choffrut, $h$-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal. 210 (2013), no. 1, 133–163. MR 3073150, DOI 10.1007/s00205-013-0639-3
- Maria Colombo, Camillo De Lellis, and Luigi De Rosa, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Comm. Math. Phys. 362 (2018), no. 2, 659–688. MR 3843425, DOI 10.1007/s00220-018-3177-x
- Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259
- Peter Constantin, Mihaela Ignatova, and Huy Q. Nguyen, Inviscid limit for SQG in bounded domains, SIAM J. Math. Anal. 50 (2018), no. 6, 6196–6207. MR 3882956, DOI 10.1137/18M1192743
- P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\Bbb R^2$, Comm. Math. Phys. 275 (2007), no. 2, 529–551. MR 2335784, DOI 10.1007/s00220-007-0310-7
- Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949
- Diego Cordoba, Daniel Faraco, and Francisco Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 725–746. MR 2796131, DOI 10.1007/s00205-010-0365-z
- Gianluca Crippa, Nikolay Gusev, Stefano Spirito, and Emil Wiedemann, Non-uniqueness and prescribed energy for the continuity equation, Commun. Math. Sci. 13 (2015), no. 7, 1937–1947. MR 3393180, DOI 10.4310/CMS.2015.v13.n7.a12
- M. Dai, Non-uniqueness of Leray–Hopf weak solutions of the 3d Hall-MHD system, arXiv:1812.11311 (2018).
- M. Dai and H. Liu, Anomalous dissipation of energy and magnetic helicity for the electron-mhd system, arXiv:1911.03953 (2019).
- V. Dallas and A. Alexakis, The signature of initial conditions on magnetohydrodynamic turbulence, The Astrophysical Journal Letters 788 (2014), no. 2, L36.
- Sara Daneri and László Székelyhidi Jr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 224 (2017), no. 2, 471–514. MR 3614753, DOI 10.1007/s00205-017-1081-8
- P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. MR 1825486, DOI 10.1017/CBO9780511626333
- Peter A. Davidson, Yukio Kaneda, Keith Moffatt, and Katepalli R. Sreenivasan (eds.), A voyage through turbulence, Cambridge University Press, Cambridge, 2011. MR 2894536, DOI 10.1017/CBO9781139018241
- C. De Lellis and H. Kwon, On non-uniqueness of Hölder continuous globally dissipative Euler flows, arXiv preprint arXiv:2006.06482 (2020).
- Camillo De Lellis and László Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), no. 3, 1417–1436. MR 2600877, DOI 10.4007/annals.2009.170.1417
- Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225–260. MR 2564474, DOI 10.1007/s00205-008-0201-x
- Camillo De Lellis and László Székelyhidi Jr., The $h$-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 3, 347–375. MR 2917063, DOI 10.1090/S0273-0979-2012-01376-9
- Camillo De Lellis and László Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407. MR 3090182, DOI 10.1007/s00222-012-0429-9
- Camillo De Lellis and László Székelyhidi Jr., Dissipative Euler flows and Onsager’s conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1467–1505. MR 3254331, DOI 10.4171/JEMS/466
- Camillo De Lellis and László Székelyhidi Jr., High dimensionality and h-principle in PDE, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 2, 247–282. MR 3619726, DOI 10.1090/bull/1549
- Camillo De Lellis and László Székelyhidi Jr., On turbulence and geometry: from Nash to Onsager, Notices Amer. Math. Soc. 66 (2019), no. 5, 677–685. MR 3929468
- Luigi De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Comm. Partial Differential Equations 44 (2019), no. 4, 335–365. MR 3941228, DOI 10.1080/03605302.2018.1547745
- Luigi De Rosa, On the helicity conservation for the incompressible Euler equations, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2969–2979. MR 4099784, DOI 10.1090/proc/14952
- Ronald J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc. 292 (1985), no. 2, 383–420. MR 808729, DOI 10.1090/S0002-9947-1985-0808729-4
- R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. MR 1022305, DOI 10.1007/BF01393835
- Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689. MR 877643
- Charles R. Doering and J. D. Gibbon, Applied analysis of the Navier-Stokes equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995. MR 1325465, DOI 10.1017/CBO9780511608803
- Jean Duchon and Raoul Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity 13 (2000), no. 1, 249–255. MR 1734632, DOI 10.1088/0951-7715/13/1/312
- G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal. 46 (1972), 241–279 (French). MR 346289, DOI 10.1007/BF00250512
- Y. Eliashberg and N. Mishachev, Introduction to the $h$-principle, Graduate Studies in Mathematics, vol. 48, American Mathematical Society, Providence, RI, 2002. MR 1909245, DOI 10.1090/gsm/048
- Alberto Enciso, Daniel Peralta-Salas, and Francisco Torres de Lizaur, Helicity is the only integral invariant of volume-preserving transformations, Proc. Natl. Acad. Sci. USA 113 (2016), no. 8, 2035–2040. MR 3474089, DOI 10.1073/pnas.1516213113
- L. Iskauriaza, G. A. Serëgin, and V. Shverak, $L_{3,\infty }$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2(350), 3–44 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 2, 211–250. MR 1992563, DOI 10.1070/RM2003v058n02ABEH000609
- Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222–240. MR 1302409, DOI 10.1016/0167-2789(94)90117-1
- Gregory L. Eyink and Katepalli R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Modern Phys. 78 (2006), no. 1, 87–135. MR 2214822, DOI 10.1103/RevModPhys.78.87
- E. B. Fabes, B. F. Jones, and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in $L^{p}$, Arch. Rational Mech. Anal. 45 (1972), 222–240. MR 316915, DOI 10.1007/BF00281533
- D. Faraco and S. Lindberg, Magnetic helicity and subsolutions in ideal mhd, arXiv:1801.04896 (2018).
- Daniel Faraco and Sauli Lindberg, Proof of Taylor’s conjecture on magnetic helicity conservation, Comm. Math. Phys. 373 (2020), no. 2, 707–738. MR 4056647, DOI 10.1007/s00220-019-03422-7
- D. Faraco, S. Lindberg, and L. Székelyhidi, Jr., Bounded solutions of ideal MHD with compact support in space-time, arXiv preprint arXiv:1909.08678 (2019).
- C. Foiaş, Statistical study of Navier-Stokes equations. I, II, Rend. Sem. Mat. Univ. Padova 48 (1972), 219–348 (1973); ibid. 49 (1973), 9–123. MR 352733
- C. Foiaş, Statistical study of Navier-Stokes equations. I, II, Rend. Sem. Mat. Univ. Padova 48 (1972), 219–348 (1973); ibid. 49 (1973), 9–123. MR 352733
- C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications, vol. 83, Cambridge University Press, Cambridge, 2001. MR 1855030, DOI 10.1017/CBO9780511546754
- Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. MR 1428905
- Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315. MR 166499, DOI 10.1007/BF00276188
- Giulia Furioli, Pierre G. Lemarié-Rieusset, and Elide Terraneo, Unicité dans $L^3(\Bbb R^3)$ et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana 16 (2000), no. 3, 605–667 (French, with English and French summaries). MR 1813331, DOI 10.4171/RMI/286
- Pierre Germain, Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations, J. Differential Equations 226 (2006), no. 2, 373–428. MR 2237686, DOI 10.1016/j.jde.2005.10.007
- M. L. Gromov, Convex integration of differential relations. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 329–343 (Russian). MR 413206
- J. Guillod and V. Šverák, Numerical investigations of non-uniqueness for the Navier–Stokes initial value problem in borderline spaces, arXiv:1704.00560 (2017).
- M. Hofmanova, R. Zhu, and X. Zhu, Non-uniqueness in law of stochastic 3d Navier–Stokes equations, arXiv:1912.11841 (2019).
- Eberhard Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213–231 (German). MR 50423, DOI 10.1002/mana.3210040121
- Philip Isett, Hölder continuous Euler flows with compact support in time, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Princeton University. MR 3153420
- P. Isett, Nonuniqueness and existence of continuous, globally dissipative Euler flows, arXiv:1710.11186 (2017).
- P. Isett, On the endpoint regularity in Onsager’s conjecture, arXiv:1706.01549 (2017).
- Philip Isett, A proof of Onsager’s conjecture, Ann. of Math. (2) 188 (2018), no. 3, 871–963. MR 3866888, DOI 10.4007/annals.2018.188.3.4
- P. Isett and A. Ma, A direct approach to nonuniqueness and failure of compactness for the SQG equation, arXiv:2007.03078 (2020).
- Philip Isett and Sung-Jin Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal. 221 (2016), no. 2, 725–804. MR 3488536, DOI 10.1007/s00205-016-0973-3
- Philip Isett and Vlad Vicol, Hölder continuous solutions of active scalar equations, Ann. PDE 1 (2015), no. 1, Art. 2, 77. MR 3479065, DOI 10.1007/s40818-015-0002-0
- Hao Jia and Vladimír Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math. 196 (2014), no. 1, 233–265. MR 3179576, DOI 10.1007/s00222-013-0468-x
- Hao Jia and Vladimir Sverak, Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?, J. Funct. Anal. 268 (2015), no. 12, 3734–3766. MR 3341963, DOI 10.1016/j.jfa.2015.04.006
- Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Physics of Fluids 15 (2003), no. 2, L21–L24.
- Ensil Kang and Jihoon Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity 20 (2007), no. 11, 2681–2689. MR 2361251, DOI 10.1088/0951-7715/20/11/011
- B. Khesin, D. Peralta-Salas, and C. Yang, A basis of casimirs in 3d magnetohydrodynamics, arXiv:1901.04404 (2019).
- Bernd Kirchheim, Stefan Müller, and Vladimír Šverák, Studying nonlinear pde by geometry in matrix space, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 347–395. MR 2008346
- A. A. Kiselev and O. A. Ladyženskaya, On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat. 21 (1957), 655–680 (Russian). MR 100448
- Sergiu Klainerman, On Nash’s unique contribution to analysis in just three of his papers, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 2, 283–305. MR 3619727, DOI 10.1090/bull/1560
- A. N. Kolmogoroff, Dissipation of energy in the locally isotropic turbulence, C. R. (Doklady) Acad. Sci. URSS (N.S.) 32 (1941), 16–18. MR 5851
- A. Kolmogoroff, The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 301–305. MR 4146
- A. N. Kolmogoroff, On degeneration of isotropic turbulence in an incompressible viscous liquid, C. R. (Doklady) Acad. Sci. URSS (N.S.) 31 (1941), 538–540. MR 4568
- Nicolaas H. Kuiper, On $C^1$-isometric imbeddings. I, II, Indag. Math. 17 (1955), 545–556, 683–689. Nederl. Akad. Wetensch. Proc. Ser. A 58. MR 75640
- Igor Kukavica, Pressure integrability conditions for uniqueness of mild solutions of the Navier-Stokes system, J. Differential Equations 223 (2006), no. 2, 427–441. MR 2214942, DOI 10.1016/j.jde.2005.07.005
- Igor Kukavica, Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation, J. Dynam. Differential Equations 18 (2006), no. 2, 461–482. MR 2229985, DOI 10.1007/s10884-006-9010-9
- Igor Kukavica, The fractal dimension of the singular set for solutions of the Navier-Stokes system, Nonlinearity 22 (2009), no. 12, 2889–2900. MR 2557452, DOI 10.1088/0951-7715/22/12/005
- O. A. Ladyženskaja, Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5 (1967), 169–185 (Russian). MR 236541
- P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1938147, DOI 10.1201/9781420035674
- Pierre Gilles Lemarié-Rieusset, The Navier-Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016. MR 3469428, DOI 10.1201/b19556
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI 10.1007/BF02547354
- Trevor M. Leslie and Roman Shvydkoy, Conditions implying energy equality for weak solutions of the Navier-Stokes equations, SIAM J. Math. Anal. 50 (2018), no. 1, 870–890. MR 3759872, DOI 10.1137/16M1104147
- Jacques-Louis Lions, Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires, Bull. Soc. Math. France 87 (1959), 245–273 (French). MR 115019
- J. L. Lions, Sur la régularité et l’unicité des solutions turbulentes des équations de Navier Stokes, Rend. Sem. Mat. Univ. Padova 30 (1960), 16–23 (French). MR 115018
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998. Compressible models; Oxford Science Publications. MR 1637634
- P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$, Comm. Partial Differential Equations 26 (2001), no. 11-12, 2211–2226. MR 1876415, DOI 10.1081/PDE-100107819
- Tianwen Luo and Peng Qu, Non-uniqueness of weak solutions to 2D hypoviscous Navier-Stokes equations, J. Differential Equations 269 (2020), no. 4, 2896–2919. MR 4097236, DOI 10.1016/j.jde.2020.02.014
- Tianwen Luo and Edriss S. Titi, Non-uniqueness of weak solutions to hyperviscous Navier-Stokes equations: on sharpness of J.-L. Lions exponent, Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 92, 15. MR 4092687, DOI 10.1007/s00526-020-01742-4
- Xiaoyutao Luo, Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, Arch. Ration. Mech. Anal. 233 (2019), no. 2, 701–747. MR 3951691, DOI 10.1007/s00205-019-01366-9
- Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- C. Meneveau and K. R. Sreenivasan, The multifractal nature of turbulent energy dissipation, J. Fluid Mech. 224 (1991), 429–484.
- P. D. Mininni and A. Pouquet, Finite dissipation and intermittency in magnetohydrodynamics, Physical Review E 80 (2009), no. 2, 025401.
- Stefano Modena and Gabriel Sattig, Convex integration solutions to the transport equation with full dimensional concentration, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 5, 1075–1108. MR 4138227, DOI 10.1016/j.anihpc.2020.03.002
- Stefano Modena and László Székelyhidi Jr., Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE 4 (2018), no. 2, Paper No. 18, 38. MR 3884855, DOI 10.1007/s40818-018-0056-x
- S. Modena and L. Székelyhidi Jr., Non-renormalized solutions to the continuity equation, Calculus of Variations and Partial Differential Equations 58 (2019), no. 6, 208.
- H. K. Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 35 (1969), no. 1, 117–129.
- H. K. Moffatt, Magnetic relaxation and the Taylor conjecture, Journal of Plasma Physics 81 (2015), no. 6.
- A. S. Monin and A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence. Vol. II, Dover Publications, Inc., Mineola, NY, 2007. Translated from the 1965 Russian original; Edited and with a preface by John L. Lumley; English edition updated, augmented and revised by the authors; Reprinted from the 1975 edition. MR 2406668
- S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math. (2) 157 (2003), no. 3, 715–742. MR 1983780, DOI 10.4007/annals.2003.157.715
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
- F. Nguyen, J.-P. Laval, P. Kestener, A. Cheskidov, R. Shvydkoy, and B. Dubrulle, Local estimates of Hölder exponents in turbulent vector fields, Physical Review E 99 (2019), no. 5, 053114.
- Matthew Novack, Nonuniqueness of weak solutions to the 3 dimensional quasi-geostrophic equations, SIAM J. Math. Anal. 52 (2020), no. 4, 3301–3349. MR 4126319, DOI 10.1137/19M1281009
- L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116
- S. Ortolani and D. Schnack, Magnetohydrodynamics of plasma relaxation, World Scientific, 1993.
- Wojciech S. Ożański, The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness, Lecture Notes in Mathematical Fluid Mechanics, Birkhäuser/Springer, Cham, 2019. MR 3969978, DOI 10.1007/978-3-030-26661-5
- B. R. Pearson, P.-Å. Krogstad, and W. Van De Water, Measurements of the turbulent energy dissipation rate, Physics of Fluids 14 (2002), no. 3, 1288–1290.
- Giovanni Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173–182 (Italian). MR 126088, DOI 10.1007/BF02410664
- James C. Robinson, José L. Rodrigo, and Witold Sadowski, The three-dimensional Navier-Stokes equations, Cambridge Studies in Advanced Mathematics, vol. 157, Cambridge University Press, Cambridge, 2016. Classical theory. MR 3616490, DOI 10.1017/CBO9781139095143
- James C. Robinson and Witold Sadowski, Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations, Nonlinearity 20 (2007), no. 5, 1185–1191. MR 2312388, DOI 10.1088/0951-7715/20/5/007
- Vladimir Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math. 66 (1976), no. 2, 535–552. MR 454426
- Vladimir Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), no. 2, 97–112. MR 510154
- Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343–401. MR 1231007, DOI 10.1007/BF02921318
- Michel Sermange and Roger Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635–664. MR 716200, DOI 10.1002/cpa.3160360506
- James Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187–195. MR 136885, DOI 10.1007/BF00253344
- James Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, WI, 1963, pp. 69–98. MR 150444
- Marvin Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal. 5 (1974), 948–954. MR 435629, DOI 10.1137/0505092
- A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys. 210 (2000), no. 3, 541–603. MR 1777341, DOI 10.1007/s002200050791
- A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1261–1286. MR 1476315, DOI 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.3.CO;2-4
- Roman Shvydkoy, Lectures on the Onsager conjecture, Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 3, 473–496. MR 2660721, DOI 10.3934/dcdss.2010.3.473
- R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc. 24 (2011), no. 4, 1159–1174. MR 2813340, DOI 10.1090/S0894-0347-2011-00705-4
- Roman Shvydkoy, Homogeneous solutions to the 3D Euler system, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2517–2535. MR 3748575, DOI 10.1090/tran/7022
- K. R. Sreenivasan, On the fine-scale intermittency of turbulence, Journal of Fluid Mechanics 151 (1985), 81–103.
- Katepalli R. Sreenivasan, An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids 10 (1998), no. 2, 528–529. MR 1604680, DOI 10.1063/1.869575
- K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, and N. Cao, Asymmetry of Velocity Increments in Fully Developed Turbulence and the Scaling of Low-Order Moments, Phys. Rev. Lett. 77 (1996), no. 8, 1488–1491.
- P.-L. Sulem and U. Frisch, Bounds on energy flux for finite energy turbulence, J. Fluid Mech. 72 (1975), no. 3, 417–423.
- László Székelyhidi, Weak solutions to the incompressible Euler equations with vortex sheet initial data, C. R. Math. Acad. Sci. Paris 349 (2011), no. 19-20, 1063–1066 (English, with English and French summaries). MR 2842999, DOI 10.1016/j.crma.2011.09.009
- László Székelyhidi Jr., From isometric embeddings to turbulence, HCDTE lecture notes. Part II. Nonlinear hyperbolic PDEs, dispersive and transport equations, AIMS Ser. Appl. Math., vol. 7, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013, pp. 63. MR 3340997
- László Székelyhidi Jr., Relaxation of the incompressible porous media equation, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 491–509 (English, with English and French summaries). MR 3014484, DOI 10.24033/asens.2171
- T. Tao, 255b, Notes 2: Onsager’s conjecture.
- L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
- Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
- Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
- J. B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields, Physical Review Letters 33 (1974), no. 19, 1139.
- J. B. Taylor, Relaxation and magnetic reconnection in plasmas, Reviews of Modern Physics 58 (1986), no. 3, 741.
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, 2nd ed., CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. MR 1318914, DOI 10.1137/1.9781611970050
- Tai-Peng Tsai, Lectures on Navier-Stokes equations, Graduate Studies in Mathematics, vol. 192, American Mathematical Society, Providence, RI, 2018. MR 3822765, DOI 10.1090/gsm/192
- J. Christos Vassilicos, Dissipation in turbulent flows, Annual review of fluid mechanics. Vol. 47, Annu. Rev. Fluid Mech., vol. 47, Annual Reviews, Palo Alto, CA, 2015, pp. 95–114. MR 3727163
- S. M. Vishik and F. V. Dolzhanskii, Analogs of the euler–lagrange equations and magnetohydrodynamics equations related to lie groups, Sov. Math. Doklady, vol. 19, 1978, pp. 149–153.
- Emil Wiedemann, Existence of weak solutions for the incompressible Euler equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 5, 727–730. MR 2838398, DOI 10.1016/j.anihpc.2011.05.002
- Emil Wiedemann, Inviscid symmetry breaking with non-increasing energy, C. R. Math. Acad. Sci. Paris 351 (2013), no. 23-24, 907–910 (English, with English and French summaries). MR 3133602, DOI 10.1016/j.crma.2013.10.021
- Emil Wiedemann, Weak-strong uniqueness in fluid dynamics, Partial differential equations in fluid mechanics, London Math. Soc. Lecture Note Ser., vol. 452, Cambridge Univ. Press, Cambridge, 2018, pp. 289–326. MR 3838055
- L. Woltjer, On hydromagnetic equilibrium, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 833–841. MR 96485, DOI 10.1073/pnas.44.9.833
- L. Woltjer, A theorem on force-free magnetic fields, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), no. 6, 489.
- K. Yamazaki, Remarks on the non-uniqueness in law of the Navier-Stokes equations up to the J.-L. Lions’ exponent, arXiv:2006.11861 (2020).
Bibliographic Information
- Tristan Buckmaster
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey
- MR Author ID: 1093770
- ORCID: 0000-0001-6356-5699
- Email: buckmaster@math.princeton.edu
- Vlad Vicol
- Affiliation: Courant Institute for Mathematical Sciences, New York University, New York, New York
- MR Author ID: 846012
- ORCID: setImmediate$0.00243841196800898$2
- Email: vicol@cims.nyu.edu
- Received by editor(s): August 25, 2020
- Published electronically: November 2, 2020
- Additional Notes: The first author was supported by the NSF grant DMS-1900149 and a Simons Foundation Mathematical and Physical Sciences Collaborative Grant.
The second author was supported by the NSF grant CAREER DMS–1911413. - © Copyright 2020 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 58 (2021), 1-44
- MSC (2020): Primary 35Q35
- DOI: https://doi.org/10.1090/bull/1713
- MathSciNet review: 4188806