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Broadly speaking, the fundamental role of any computational device is to store
and transmit information. For the “classical” computers we use in our everyday
lives, the mathematical framework that describes the transmission, processing, ex-
traction, and utilization of information is information theory. The field of informa-
tion theory was pioneered by Claude E. Shannon in his seminal 1948 paper [9]. It is
difficult to overestimate the influence that information theory has had on modern
computation. For example, it describes the fundamental limits and capabilities of
data compression (e.g., JPEG image encoding), wireless communications, intenet
security protocols, and so on.

One of the early achievements of information theory was Shannon’s noisy channel
coding theorem [9], which provides a computable expression for the capacity of a
noisy communications channel. More precisely, imagine we have two parties, Alice
and Bob, and suppose that Alice (the sender) wishes to send messages over some
noisy medium (e.g., over a cellular network) to Bob (the receiver). Alice will posses
a finite alphabet A of possible input messages, and Bob will receive at his end a
message from an alphabet of possible outputs B. A (discrete, memoryless) noisy
channel Φ : A → B is then modeled by a conditional probability distribution
(p(b|a))a∈A,b∈B, so that p(b|a) indicates the probability that Bob receives message
b ∈ B given that Alice sent a ∈ A. The capacity C(Φ) of a noisy channel Φ is the
optimal rate at which information can be reliably transmitted through the channel
(measured in bits-per-channel use per second). To compute the capacity C(Φ),
consider a random variable X ∈ A with probability distribution pX ∈ �1(A). Then
the distribution of the output random variable Y ∈ B has distribution pY ∈ �1(B)
given by pY (b) =

∑
a∈A p(b|a)pX(a). Given X,Y as above, we can compute the

mutual information I(X;Y ) which is given by the formula I(X;Y ) = H(X) +
H(Y )−H(X,Y ). Here H(Z) = −

∑
z pZ(z) log pZ(z) is the Shannon entropy of a

finite random variable Z with distribution pZ . Finally, the capacity C(Φ) can then
be computed by the convex optimization problem,

C(Φ) = max
pX

I(X;Y ).(1)
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Over the past few decades one of the major goals of computer science has been
that of building a practical quantum computer, i.e., a computational device that
can store and manipulate quantum information and states in quantum mechani-
cal systems. The reason for the high level of interest in quantum computers is
not that that they are expected to solve more computational problems (in fact
by the Church–Turing thesis any computation performed by a quantum computer
can also be performed on a classical computer). Instead it is that quantum com-
puters have the potential to provide exponential speedup when it comes to time
complexity of certain algorthims. A famous example here is Shor’s polynomial time
quantum algorithm for factoring integers [10]. If such an algorithm could be reli-
ably implemented on a quantum computer, this would provide a means to decrypt
RSA-encrypted communications—a serious threat to modern-day cryptosystems.

As one might expect, in the world of quantum computing there is a quantum ana-
logue of Shannon’s information theory called quantum information theory (QIT ).
The goal of this rapidly developing field is to provide the mathematical foundation
to describe the fundamental limits of processing both classical and quantum infor-
mation. In the monograph under review [3], the central focus is the subject of quan-
tum information theory and its intriguing interactions with the subject of asymp-
totic geometric analysis (AGA), that is, the geometric study of finite-dimensional
Banach spaces and convex bodies in their large dimension limit. This includes deep
applications of random matrix theory, free probability, operator systems, harmonic
analysis, concentration of measure phenomena, representation theory, and so on.

To get a taste of how ideas from AGA all fit together to provide deep insight
into QIT problems, let us first review some basic notions in quantum mechanics
and QIT. A (finite) quantum system is described by a finite-dimensional complex
Hilbert space H. A (pure) state of a quantum system H is described by a rank-1
projection ρ = |ξ〉 〈ξ| ∈ End(H). The convex hull of all pure states of H is denoted
by D(H). Elements of D(H) are the mixed quantum states of H and are precisely
the positive semidefinite trace-1 elements of End(H). The analogy to keep in mind
is that for a classical system with finite alphabet A, the canonically associated
quantum system is the Hilbert space �2(A) with distinguished orthonormal basis
(|δa〉)a∈A given by the Dirac functions on A. Classical states of A (i.e., elements
a ∈ A) are then given by the pure quantum states (|δa〉 〈δa|)a∈A, and the mixed
states correspond to the diagonal elements of D(�2(A)) with respect to our fixed
basis, i.e., probability density functions on A. In this way, the classical world
naturally embeds into the quantum world. In QIT, a noisy communications channel
can be thought of as certain “physically realizable” operation that takes mixed
quantum states of one quantum system HA to mixed quantum states of another
quantum system HB . Mathematically, this is described by a quantum channel: a
linear completely positive trace-preserving map Φ : End(HA) → End(HB). Again,
classical channels embed into this framework as those quantum channels with the
additional property that they send diagonal states to diagonal states with respect
to some fixed orthonormal bases. Perhaps the most important phenomenon in
quantum information theory (and, more generally, quantum physics) that is not
present in the classical world is entaglement in multipartite quantum systems. Let
us consider the bipartite setup here for simplicity: A bipartite quantum system is
simply a quantum system of the form HAB = HA⊗HB . We call the HA (resp., HB)
subspace the A (resp., B) subsystem. A bipartite quantum state ρ ∈ D(HA ⊗HB)
is separable if ρ is a convex combination of product states ρA ⊗ ρB. If ρ is not
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seprable, we call ρ an entangled state. The prototypical example of an entangled
pure state is the Bell state ρ = |ξ〉 〈ξ| ∈ D(C2 ⊗ C2) with ξ = 1√

2
(|0〉 + |1〉).

Bell states and other entangled states form an essential resource in just about any
quantum algorithm, including quantum teleportation and superdense coding [7],
Shor’s prime factorization algorithm [10], and also in the theory of nonlocal games
[3, Chapter 11], [8].

Returning to the connection between AGA and QIT, it is clear from the previous
paragraph that the mathematical structures (e.g., complete positivity, convexity,
finite-dimensional operator algebra) that describe QIT trivially belong within the
framework of (asymptotic) geometric analysis. However (and this is one of the
main goals of the monograph [3]), this connection runs so much deeper. It turns
out that many physically relevant and practical questions arising in QIT can be
tackled systematically and efficiently with powerful methods from AGA.

One particularly beautiful example of this connection (discussed in great detail
in Chapter 8 of the book under review) is the additivity problem for the minimum
output entropy for quantum channels. Given a quantum channel Φ : End(HA) →
End(HB), the minimum output entropy (MOE ) of Φ is the quantity

Smin(Φ) = min
ρ∈D(HA)

S(Φ(ρ)),

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy of a quantum state ρ. It is
not hard to see that one always has, for any pair of channels Φ,Ψ, the inequality
Smin(Φ⊗Ψ) ≤ Smin(Φ)+Smin(Ψ). A key problem in QIT dating back to the early
2000s was to determine if strict inequality can ever occur: Are there channels for
which the MOE is not additive with respect to tensor products? The reason for the
interest in the MOE additivity problem stems from another important QIT prob-
lem: How does one compute the classical information capacity C(Φ) of a quantum
channel? Unlike in the classical world of Shannon, the capacity of a general quan-
tum channel Φ is not known to have a nice computable expression such as what
we saw in (1). Instead, it is given by a (computationally impactical) regularized
expression of the form

C(Φ) = lim
n→∞

n−1χ(Φ⊗n),

where χ(·) is a certain expression known as the Holevo capacity (or one-shot ca-
pacity) of a channel [5]. Thus an essential question was whether or not the regu-
larization in the above formula was really needed. The necessity for regularization
was shown by Shor [11] to be equivalent to the existence of channels that are not
MOE additive. The existence of quantum channels which fail to be MOE addi-
tive was first established by Hastings [4] using random Haar-distributed unitary
quantum channels and a certain concentration of measure results on large unitary
groups. In the monograph [3], the authors carefully explain how the existence of
such channels can be seen as a consequence of the Dvoretzky–Milman theorem for
Lipshitz functions [3, Theorem 7.15]. The ideas presented here are based upon
earlier works of the authors together with E. Werner [1, 2]. The key idea is to use
the Dvoretzky–Milman theorem to assert the existence of Haar-distributed random
subspaces W ⊂ Ck ⊗ Cd in which every pure state associated to the subspace W
is almost maximally entangled. More precisely, one seeks subspaces W ⊂ C

k ⊗ C
d

for which the entanglement entropy E(|ξ〉) := S(id⊗Tr)(|ξ〉 〈ξ|)) is essentially uni-

formly bounded below by log
(

kd
dimW

)
for all unit vectors |ξ〉 ∈ W . Applying
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the appropriate version of the Dvoretzky–Milman theorem to the Lipschitz funtion
E(·) yields the existence of such W (for suitably chosen d, k, dimW → ∞). Such
a random subspace can then be used to easily produce a pair of random quantum
channels witnessing a MOE additivity violation. The above example is of course
just one instance of many remarkable achievements in QIT which use deep methods
of AGA in an essential way, but I feel that it is a good representative of the general
theme and flavor of the AGA-QIT interactions that are at the heart of this book.

This book is divided into into three main parts. The first part, Alice and Bob:
Mathematical aspects of quantum information theory, introduces basic terminology
and mathematical concepts present in both QIT and geometric functional analysis.
Topics covered include normed spaces, basic convex analysis, quantum systems,
states, multipartite systems, quantum channels, common cones in QIT, and an
overview of basic quantum mechanical principles for mathematicians. The sec-
ond part, Banach and his spaces: Asymptotic geometric analysis miscellany, dives
deeper into the main results of AGA that play a big role in QIT. Topics include con-
vexity and classical inequalities for convex bodies, metric entropy and concentration
of measure phenomena, Gaussian processes, and random matrices. These ideas all
come together in the analysis of sections of high-dimensional convex bodies, proving
the Johnson–Lindenstrauss lemma and various forms of Dvoretsky’s theorem. The
third and final part of the text, The meeting: AGA and QIT, brings all of the ideas
of AGA introduced previously to bear on problems in QIT. In particular, Chapter 8
is devoted to the study of entanglement of random pure states in high dimensions.
This is the key to the application of Dvoretsky’s theorem in the study of MOE
additivity problems for quantum channels. Chapter 9 studies the convex geometry
(e.g., volume and mean width estimates) of spaces of mixed quantum states, and
their subsets of PPT and separable states. Chapter 10 focuses on random quantum
states and applies the volume and mean width results of Chapter 9 to study the
probability of a random pure state on C

d⊗Cd to be entangled/separable. Chapter
11 focuses on another beautiful connection between functional analysis and QIT:
the Bell and Grothendieck–Tsirelson inequalities. This connection is presented from
the perspective of local vs. quantum correlation matrices and the famous CHSH
inequality. This chapter also touches on the connection between Bell-type inequal-
ities and the currently very hot topic of nonlocal games (see [6] for a very recent
and spectacular application to operator algebras). The final Chapter 12 focuses
on POVMs and gives a brief intoduction to the (currently still open) distillability
problem in QIT: Given two bipartite states ρ, σ, is it always possible to convert
(multiple copies of ρ) to a state which is arbitrarily close to σ via a so-called LOCC
quantum channel? The text ends with several appendices providing some extra
background material and references that are used throughout the text.

In summary, the monograph [3] is extremely well written and loaded with useful
results and techniques—both for persons working in QIT or functional analysis.
This book could be used for multiple purposes—for example as a general reference
for researchers, as a broad graduate course in AGA with QIT applications, or as an
introduction to the mathematics of QIT for graduate students in functional analysis
and physics. I very highly recommend this book.
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