The legacy of Jean Bourgain in geometric functional analysis
Author:
Keith Ball
Journal:
Bull. Amer. Math. Soc. 58 (2021), 205-223
MSC (2020):
Primary 46B07
DOI:
https://doi.org/10.1090/bull/1719
Published electronically:
December 2, 2020
MathSciNet review:
4229151
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: This article was commissioned as a tribute to Jean Bourgain and describes his early work in geometric functional analysis. It is divided into three sections discussing his work in high-dimensional geometry, metric geometry, and restricted invertibility. It also includes a brief account of how these areas have developed in the three decades since Jean worked in them, much of their development influenced by his ideas.
- Joel Anderson, Extensions, restrictions, and representations of states on $C^{\ast } $-algebras, Trans. Amer. Math. Soc. 249 (1979), no. 2, 303â329. MR 525675, DOI https://doi.org/10.1090/S0002-9947-1979-0525675-1
- Milla Anttila, Keith Ball, and Irini Perissinaki, The central limit problem for convex bodies, Trans. Amer. Math. Soc. 355 (2003), no. 12, 4723â4735. MR 1997580, DOI https://doi.org/10.1090/S0002-9947-03-03085-X
- Yonatan Aumann and Yuval Rabani, An $O(\log k)$ approximate min-cut max-flow theorem and approximation algorithm, SIAM J. Comput. 27 (1998), no. 1, 291â301. MR 1614825, DOI https://doi.org/10.1137/S0097539794285983
- K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), no. 2, 137â172. MR 1159828, DOI https://doi.org/10.1007/BF01896971
- Keith Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1â58. MR 1491097, DOI https://doi.org/10.2977/prims/1195164788
- Keith Ball, The Ribe programme, AstĂ©risque 352 (2013), Exp. No. 1047, viii, 147â159. SĂ©minaire Bourbaki. Vol. 2011/2012. ExposĂ©s 1043â1058. MR 3087345
- Keith Ball and Van Hoang Nguyen, Entropy jumps for isotropic log-concave random vectors and spectral gap, Studia Math. 213 (2012), no. 1, 81â96. MR 3024048, DOI https://doi.org/10.4064/sm213-1-6
- Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor, On metric Ramsey-type phenomena, Ann. of Math. (2) 162 (2005), no. 2, 643â709. MR 2183280, DOI https://doi.org/10.4007/annals.2005.162.643
- Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava, Twice-Ramanujan sparsifiers, SIAM J. Comput. 41 (2012), no. 6, 1704â1721. MR 3029269, DOI https://doi.org/10.1137/090772873
- W. Blaschke, Ăber affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid, Ber. Verh. SĂ€chs. Akad. Wiss. Math. Phys. Kl. 69, (1917), 412â420.
- J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986), no. 2, 222â230. MR 880292, DOI https://doi.org/10.1007/BF02766125
- J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), no. 1-2, 46â52. MR 815600, DOI https://doi.org/10.1007/BF02776078
- J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis (1989â90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 127â137. MR 1122617, DOI https://doi.org/10.1007/BFb0089219
- J. Bourgain, T. Figiel, and V. Milman, On Hilbertian subsets of finite metric spaces, Israel J. Math. 55 (1986), no. 2, 147â152. MR 868175, DOI https://doi.org/10.1007/BF02801990
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in ${\bf R}^n$, Invent. Math. 88 (1987), no. 2, 319â340. MR 880954, DOI https://doi.org/10.1007/BF01388911
- J. Bourgain, V. Milman, and H. Wolfson, On type of metric spaces, Trans. Amer. Math. Soc. 294 (1986), no. 1, 295â317. MR 819949, DOI https://doi.org/10.1090/S0002-9947-1986-0819949-8
- J. Bourgain and L. Tzafriri, Invertibility of âlargeâ submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), no. 2, 137â224. MR 890420, DOI https://doi.org/10.1007/BF02772174
- Ulrich Brehm and JĂŒrgen Voigt, Asymptotics of cross sections for convex bodies, BeitrĂ€ge Algebra Geom. 41 (2000), no. 2, 437â454. MR 1801435
- Peter G. Casazza and Janet C. Tremain, Revisiting the Bourgain-Tzafriri restricted invertibility theorem, Oper. Matrices 3 (2009), no. 1, 97â110. MR 2500595, DOI https://doi.org/10.7153/oam-03-04
- Aryeh Dvoretzky, A theorem on convex bodies and applications to Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 223â226; erratum, 1554. MR 105652, DOI https://doi.org/10.1073/pnas.45.10.1554
- Ronen Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme, Geom. Funct. Anal. 23 (2013), no. 2, 532â569. MR 3053755, DOI https://doi.org/10.1007/s00039-013-0214-y
- Per Enflo, On the nonexistence of uniform homeomorphisms between $L_{p}$-spaces, Ark. Mat. 8 (1969), 103â105. MR 271719, DOI https://doi.org/10.1007/BF02589549
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281â288 (1973). MR 336297, DOI https://doi.org/10.1007/BF02762802
- Uriel Feige, Approximating the bandwidth via volume respecting embeddings, J. Comput. System Sci. 60 (2000), no. 3, 510â539. 30th Annual ACM Symposium on Theory of Computing (Dallas, TX, 1998). MR 1770195, DOI https://doi.org/10.1006/jcss.1999.1682
- B. Fleury, O. GuĂ©don, and G. Paouris, A stability result for mean width of $L_p$-centroid bodies, Adv. Math. 214 (2007), no. 2, 865â877. MR 2349721, DOI https://doi.org/10.1016/j.aim.2007.03.008
- Apostolos Giannopoulos, Grigoris Paouris, and Beatrice-Helen Vritsiou, The isotropic position and the reverse SantalĂł inequality, Israel J. Math. 203 (2014), no. 1, 1â22. MR 3273430, DOI https://doi.org/10.1007/s11856-012-0173-2
- M. X. Goemans and D. P. Williamson, .878-approximation algorithms for MAX CUT and MAX 2SAT, Proc. of the 26th Annual ACM Symposium on Theory of Computing, ACM, New York, (1994), 422â431.
- A. Grothendieck, RĂ©sumĂ© de la thĂ©orie mĂ©trique des produits tensoriels topologiques, Bol. Soc. Mat. SĂŁo Paulo 8 (1953), 1â79 (French). MR 94682
- Douglas Hensley, Slicing convex bodiesâbounds for slice area in terms of the bodyâs covariance, Proc. Amer. Math. Soc. 79 (1980), no. 4, 619â625. MR 572315, DOI https://doi.org/10.1090/S0002-9939-1980-0572315-5
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896â904. MR 320713, DOI https://doi.org/10.4153/CJM-1972-089-7
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187â204. MR 0030135
- William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189â206. MR 737400, DOI https://doi.org/10.1090/conm/026/737400
- Richard V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383â400. MR 123922, DOI https://doi.org/10.2307/2372748
- R. Kannan, L. LovĂĄsz, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541â559. MR 1318794, DOI https://doi.org/10.1007/BF02574061
- B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), no. 6, 1274â1290. MR 2276540, DOI https://doi.org/10.1007/s00039-006-0588-1
- B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), no. 1, 91â131. MR 2285748, DOI https://doi.org/10.1007/s00222-006-0028-8
- S. KwapieĆ, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583â595. MR 341039, DOI https://doi.org/10.4064/sm-44-6-583-595
- Greg Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870â892. MR 2438998, DOI https://doi.org/10.1007/s00039-008-0669-4
- Nathan Linial, Eran London, and Yuri Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), no. 2, 215â245. MR 1337355, DOI https://doi.org/10.1007/BF01200757
- J. Lindenstrauss and A. PeĆczyĆski, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275â326. MR 231188, DOI https://doi.org/10.4064/sm-29-3-275-326
- Yin Tat Lee and Santosh S. Vempala, The Kannan-LovĂĄsz-Simonovits conjecture, Current developments in mathematics 2017, Int. Press, Somerville, MA, 2019, pp. 1â36. MR 3971324
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Ramanujan graphs and the solution of the Kadison-Singer problem, Proceedings of the International Congress of MathematiciansâSeoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 363â386. MR 3729033
- Bernard Maurey, ThéorÚmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Société Mathématique de France, Paris, 1974 (French). With an English summary; Astérisque, No. 11. MR 0344931
- Bernard Maurey, Type, cotype and $K$-convexity, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1299â1332. MR 1999197, DOI https://doi.org/10.1016/S1874-5849%2803%2980037-2
- Manor Mendel and Assaf Naor, Metric cotype, Ann. of Math. (2) 168 (2008), no. 1, 247â298. MR 2415403, DOI https://doi.org/10.4007/annals.2008.168.247
- Manor Mendel and Assaf Naor, Ultrametric skeletons, Proc. Natl. Acad. Sci. USA 110 (2013), no. 48, 19256â19262. MR 3153955, DOI https://doi.org/10.1073/pnas.1202500109
- V. D. Milman, A new proof of A. Dvoretzkyâs theorem on cross-sections of convex bodies, Funkcional. Anal. i PriloĆŸen. 5 (1971), no. 4, 28â37 (Russian). MR 0293374
- V. D. Milman, Random subspaces of proportional dimension of finite-dimensional normed spaces: approach through the isoperimetric inequality, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 106â115. MR 827766, DOI https://doi.org/10.1007/BFb0074700
- Assaf Naor, An introduction to the Ribe program, Jpn. J. Math. 7 (2012), no. 2, 167â233. MR 2995229, DOI https://doi.org/10.1007/s11537-012-1222-7
- Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165â197. MR 2239346, DOI https://doi.org/10.1215/S0012-7094-06-13415-4
- Fedor Nazarov, The Hörmander proof of the Bourgain-Milman theorem, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 335â343. MR 2985302, DOI https://doi.org/10.1007/978-3-642-29849-3_20
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021â1049. MR 2276533, DOI https://doi.org/10.1007/s00039-006-0584-5
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275
- Gilles Pisier, Sur les espaces de Banach qui ne contiennent pas uniformĂ©ment de $l^{1}_{n}$, C. R. Acad. Sci. Paris SĂ©r. A-B 277 (1973), A991âA994 (French). MR 333673
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326â350. MR 394135, DOI https://doi.org/10.1007/BF02760337
- Gilles Pisier, Grothendieckâs theorem, past and present, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237â323. MR 2888168, DOI https://doi.org/10.1090/S0273-0979-2011-01348-9
- M. Ribe, On uniformly homeomorphic normed spaces, Ark. Mat. 14 (1976), no. 2, 237â244. MR 440340, DOI https://doi.org/10.1007/BF02385837
- L. A. SantalĂł, An affine invariant for convex bodies of $n$-dimensional space, Portugal. Math. 8 (1949), 155â161 (Spanish). MR 39293
- N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145â147. MR 307902, DOI https://doi.org/10.1016/0097-3165%2872%2990019-2
- Saharon Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247â261. MR 307903
- Daniel A. Spielman and Nikhil Srivastava, An elementary proof of the restricted invertibility theorem, Israel J. Math. 190 (2012), 83â91. MR 2956233, DOI https://doi.org/10.1007/s11856-011-0194-2
- T. Tao, Exploring the toolkit of Jean Bourgain, Bull. Amer. Math. Soc. 58 (2021), no. 1 (to appear).
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2020): 46B07
Retrieve articles in all journals with MSC (2020): 46B07
Additional Information
Keith Ball
Affiliation:
Department of Mathematics, University of Warwick, United Kingdom
MR Author ID:
232203
Received by editor(s):
September 2, 2020
Published electronically:
December 2, 2020
Article copyright:
© Copyright 2020
American Mathematical Society