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1. SOME HISTORY

Ergodic theory is a broad subject that studies properties of measure preserving
systems given by quadruples (X, X, u,T), where (X, X, ) is a measure space with
w(X)=1and T: X — X is a measurable and measure preserving transformation.
At the very early stages of the theory, a central problem was to understand statis-
tical properties of the orbits (T"x),en for typical points € X, where 7" denotes
the composition T o --- o T. A satisfactory qualitative answer came in the early
1930s with the results of Birkhoff and von Neumann, who showed that for ergodic
systems these orbits are equidistributed in the space X for almost every z € X. A
functional version of this result states that

R
Jm oy A 0= [ fau

for every f € L*(u), with the equality holding almost everywhere (Birkhoff) and in
L?(u) (von Neumann). The ergodic theorem had an enormous number of applica-
tions in a variety of fields, including statistical mechanics, functional and harmonic
analysis, probability theory, geometry, combinatorics, and number theory.

A related problem, the importance of which surfaced four decades later, is the
study of distributional properties of sequences of the form

(T"z, T*"z,..., T"z), neN.

It is a deep and unexpected result that this problem, and similar ones involving
other choices of iterates, are intimately linked with various nilpotent structures
that lurk in the background of abstract measure preserving systems, and that these
structures control the distributional properties of such sequences in a manner that
will be made precise shortly. The main objective of the remarkable book of Host
and Kra is to unearth these nilpotent structures and in the process introduce a
variety of concepts and tools that have transformed parts of ergodic theory and
have led to fruitful interactions with combinatorics and number theory.

These interactions started in the mid-1970s, when Furstenberg observed that
structural properties of positive density sets of integers can be reformulated as
multiple recurrence properties of measure preserving systems; this is the context
of the so-called Furstenberg correspondence principle. Consider for example the
celebrated theorem of Szemerédi [22], which asserts that any subset of the inte-
gers with positive upper density contains arbitrarily long arithmetic progressions.
Furstenberg noticed that this result is equivalent to the following multiple recur-
rence property: if (X, X, u,T) is a measure preserving system and A has positive
measure, then for every ¢ € N there exists n € N such that

(1) WANT"AN---NT"A) > 0.

For ¢ =1 this is the classical theorem of Poincaré that can be proved elementarily
in a few lines, and more refined versions follow from the von Neumann ergodic
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theorem. But already for £ = 2, the result is far less trivial and the complexity
of the proof increases dramatically when ¢ > 3. Furstenberg proved this result
in his seminal article [§] ([9,11] contain useful variants of this approach) using a
novel structural result for measure preserving systems that allowed him to infer
the asserted multiple recurrence property for general systems from two mutually
exclusive classes of systems: the weakly mixing systems, which model randomness;
and the distal systems, which model structure. A key ingredient in his approach
is the study of the limiting behavior in L?(u) of the following multiple (sometimes
also called nonconventional) ergodic averages

1 N
(2) v AT ). fo(T7),
n=1

where f1,...,fr € L°(u). Although Furstenberg was not able to prove mean
convergence for these averages, he managed to show a positivity property that
suffices to verify the multiple recurrence result.

Furstenberg’s pioneering work set out the general strategy for several other deep
combinatorial results that were proved subsequently using ergodic theory. This laid
out the foundations for a new area, referred to as ergodic Ramsey theory, that has
flourished in subsequent years and remains vibrant. Two major results that were
first proved using ergodic theory are the following:

e The multidimensional Szemerédi theorem, proved by Furstenberg and

Katznelson in [I0], states that for every d,¢ € N and vectors vy,...,vy €
74, every subset of Z? with positive upper density contains patterns of the
form m,m + nvy, ..., m + nuvy, for some m € Z? and n € N.

e The polynomial Szemerédi theorem, proved by Bergelson and Leibman in
[], states that for every £ € N and polynomials py, ..., ps € Z[t] with zero
constant terms, every subset of the integers with positive upper density
contains patterns of the form m,m+p1(n),..., m+ pe(n) for some m,n €
N.

To deal with such results it was necessary to study more general multiple ergodic
averages of the form

N
1 n n
3) 5 O AT ey (1 ),
n=1
where T, ...,Tp: X — X are commuting measure preserving transformations. As

in the case of the ergodic theoretic proof of Szemerédi’s theorem, the relevant
multiple recurrence results were proved without either identifying the limit of these
averages or establishing mean convergence.

We come back to the question of mean convergence of the averages (2). The main
approach is to find a suitable factor of the given system, that is often identified
with a closed subspace of L?(u) and referred to as the characteristic factor (a
notion coined by Furstenberg and Weiss in [12]), such that the limit behavior of
the relevant averages remains unchanged when each function is replaced by its
conditional expectation on this factor. If this factor is simple enough, one could
then hope to prove mean convergence by explicit computation. For £ = 2 such a
factor was identified by Furstenberg in [8], and for ergodic systems it is the closed
subspace spanned by all the eigenfunctions of the operator T' (often refered to as the
Kronecker factor). Moreover, using an old result of Halmos and von Neumann from
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the 1940s, it follows that the action of T" on this factor is isomorphic to a rotation
on a compact Abelian group. This can be used to establish mean convergence and
to explicitly evaluate the limit of the averages (2)) when ¢ = 2.

But the problem of mean convergence of the averages ([2)) turned out to be much
more challenging when ¢ > 3. In [§] Furstenberg proved that the (¢ — 1)-step
distal factor is a characteristic factor for these averages. One-step distal systems
are isomorphic to compact Abelian group rotations with the Haar measure, and an
example of a 2-step distal system is given by the transformation

(4) T(z,y) = (z+a,y+p(zr), =y€Gq,

where (G, +) is a compact Abelian group, o € G, p: G — G is Borel measurable,
and we consider the Haar measure on G x G. While at first glance this seems like a
simple class of measure preserving systems, it turns out to be too complicated for
explicit computations that could be used to prove mean convergence of the averages

@).

The next significant step came in the mid-1980s, when Conze and Lesigne in
[BLI6] proved mean convergence of the averages (2)) for £ = 3 for all totally ergodic
systems. The key step was to give a convenient description of the corresponding
characteristic factors. It is simple to verify that for / = 3 affine systems, such
as those arising from (@) when p(y) = y, lead to cancellation in the averages (2,
thus, such affine subsystems should be accounted for when describing potential
characteristic factors. But there are also other, somewhat more exotic, systems that
must also be taken into account. One such example is given by the transformation
T that acts on T? with the Haar measure as

G)  T@y2)=(@+ay+pfzt+@+aly+pl-—alyl-ay), zy2€T,

where a, 8 € [0,1). A crucial observation, made by Furstenberg and Weiss (and
recorded in print several years later in [I2]), is that such transformations arise
from rotations on the Heisenberg nilmanifold. To see this, define multiplication on
G =R? by
g1+ 92 = (1 + T2, Y1 + Y2, 21 + 22 + T1Y2),

where g1 = (21, y1, 21) and g2 = (22, Y2, 22), in which case (G, -) is a 2-step nilpotent
group and the discrete subgroup I' = Z? is cocompact. If we let b = (o, 3,0), where
a, B € R, then the system induced by the rotation « + bxr on X = G/T" with the
Haar measure mqs, is measure theoretically isomorphic to the system (T3, mqs, T),
where T is given by ([Bl). More generally, if (G, -) is an ¢-step nilpotent Lie group and
[ is a discrete cocompact subgroup of G, then the homogeneous space X = G/T
is called an f-step nilmanifold and for b € G the system induced by the rotation
x +— br on X with the Haar measure is called an {-step nilsystem. A key result
proved in [BL[6] is that if £ = 3, then for totally ergodic systems the averages (2]
have characteristic factors that can be approximated by 2-step nilsystems.

The previous advances triggered hopes that characteristic factors for the averages
@) admit similar explicit structural descriptions for arbitrary ¢ € N; namely they
can be well approximated by (¢ — 1)-step nilsystems. It took more than 15 years
before this hope was realized in the seminal paper of Host and Kra [I8] (with a
different proof given subsequently by Ziegler [27]), thus bringing to a close the
problem of mean convergence of the averages (). But more important than the
convergence result itself, were the conceptual advances and powerful tools developed
in [I§ that transformed the field of ergodic Ramsey theory and had far-reaching
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impact well beyond the field of ergodic theory. In the next few paragraphs we
briefly describe some of these key ideas; the reader will find a much more detailed
account in the book under review.

A posteriori, for £ = 3 it is not very surprising that 2-step nilsystems play an
important role in the description of the characteristic factors of the averages (2)).
Roughly speaking, for such systems simple algebraic manipulations show that the
values of T3z are constrained by the values x, Tz, T?"z, and such pointwise con-
straints induce nontrivial cancellation in the averages (2)) for appropriate choices of
functions. A similar phenomenon occurs when one studies the cubic configurations,

(6) (2, T2, T"x, T 2, T ", T, T, T4 )

namely, it can be shown that for 2-step nilsystems the last coordinate is constrained
by the first seven coordinates. Host and Kra went a step further by showing that
a measure theoretic variant of this observation can be phrased rigorously so that it
becomes a characterization of systems that can be well approximated by 2-step nil-
systems. Moreover, similar characterizations hold for ¢-step nilsystems and involve
cubic configurations with 2¢+! terms. This deep and surprising fact has opened a
new window in our understanding of the limiting behavior of the averages ([2)). The
link comes from certain seminorms that these cubic patterns define and control the
limiting behavior of these averages. We introduce these seminorms next.

For a given ergodic system Host and Kra inductively defined a family of semi-
norms || - [l on L>(p) as follows: for £ =1, we let ||f|l = | [ fdp|, and for £ € N

we let \|\f|||§i+11 =limy 00 7 ZiLﬂ”Tnf : 7“\%2 For instance, we have

N M
1 1 — —
4 7 _ . _ .pmg  gmE  mm4n
(7) ||f|||2—NI;H;ONHE_IN}@OOMmE_I/f T f - T f dp.

Similarly, || |5 is defined via a similar formula that involves the cubic configurations
in (@), and so on for | f |||§l The motivation behind these seminorms is that, via
successive uses of the van der Corput lemma, they can be used to bound the L?(u)
norm of several multiple ergodic averages; in particular the averages ([2). The
seminorm || - [|¢ naturally defines a cubic structure of order ¢, meaning a measure
plll on the space X 2" that enjoys a variety of symmetries, and from this measure,
structured factors Z,_; are defined such that for every f € L°°(u) one has

E(f1Ze-1) =0 <= |flle = 0.

Since the seminorms || - ||¢ control the averages (@), the factor Z,_ is characteristic
for these averages.

The bulk of the paper [1§] is devoted to an in-depth structural analysis of the
factors Zy. It is not hard to verify that for £ = 1 the factor Z; coincides with
the Kronecker factor of the system, but matters become more complicated when
£ > 2. Using the cubic structures alluded to above, a group of measure preserving
transformations of (X, X, ) is defined and it is shown that for systems of order £
(that is, those systems that satisfy X = Z;), this group is f-step nilpotent. The
hardest and most technical step is to show that for a sufficiently large class of
systems this group is a Lie group and acts transitively on the space; the argument
depends on a complicated analysis of properties of cocycles of type £ that naturally
arise when one studies systems of order /. From this fact one deduces that the
factor Z; can be well approximated by ¢-step nilsystems.
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The Host—Kra seminorms and the related structural result immediately became
essential tools in the area and were used to control and understand a variety of
other multiple ergodic averages. This initiated a stream of applications, and the
first one was obtained by Host and Kra in [I9] and Leibman in [2I], who proved
mean convergence for multiple ergodic averages with polynomial iterates. Using the
polynomial exhaustion technique of Bergelson [2], they showed that if the polyno-
mials p1,...,ps € Z[t] are nonconstant and have pairwise nonconstant differences,
then there exist £ € N and C > 0 such that for all systems (X, p, T') and functions
fi,..., fe € L (u) we have

(8) lim sup

N—oc0

< C min | fill.
i=1,...,0

L2 ()
An immediate consequence of this and the Host—Kra structure theory, is that char-
acteristic factors for these averages can be well approximated by nilsystems. With
this in mind, mean convergence of the averages in (§) can be deduced from known
equidistribution results of polynomial sequences on nilmanifolds due to Leibman
[20]. Using a similar approach, it has also been possible to identify the limit for
special classes of polynomial iterates, and this has led to a variety of more refined
multiple recurrence and combinatorial results than those covered by the theorem
of Szemerédi and its polynomial version. We mention one such application next.

It is natural to inquire about specific lower bounds in Furstenberg’s multiple
recurrence result (). Examples of weakly mixing systems show that such lower
bounds cannot be greater than (1(A4))*!, and the question is whether for all ergodic
systems (X, X, u, T'), measurable sets A, and ¢ > 0, we have for some n € N that

WANT"AN---NT"A) > (u(A) ™ — e

Bergelson, Host, and Kra in [3] showed that this holds when ¢ = 1,2,3. But
surprisingly enough, when ¢ > 4 for some systems and sets, the estimate fails for
all n € N, and in fact no fixed power of y(A) can be used as a lower bound.
The proof of the lower bounds makes essential use of the theory of characteristic
factors of Host and Kra and proceeds by carefully analyzing the limiting behavior
of certain weighted variants of the averages (2)) using equidistribution results on
nilmanifolds. Moreover, in the same article the authors introduced a new class of
sequences, called nilsequences, and used it to prove the following decomposition
result for multiple correlation sequences: for every ergodic system (X, X, u, T) and
functions fo, f1,..., fe € L>®(u), we have

(9) [ o T T = ) + e,

N
1
¥ Sy g,
n=1

where limy o0 Zﬁf:l le(n)] = 0 and the sequence v is a uniform limit of ¢-step
nilsequences, meaning, sequences of the form (¥ (b"x)),en, where ¥ is a continuous
function on a nilmanifold X = G/T" and b € G. In subsequent years, nilsequences
were used as a substitute for linear exponential sequences in the rapidly evolving
area of higher order Fourier analysis, in order to analyze the asymptotic behavior of
a variety of multilinear expressions that naturally occur in additive combinatorics
and number theory; these are problems where traditional Fourier analytic tools
have failed to give us a proper understanding.

After successfully handling mean convergence problems for the averages (B)) when
all the transformations are equal, the next goal was to deal with analogous problems
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for arbitrary commuting measure preserving transformations T4,...,T;: X — X,
starting with the averages

N
(10) ﬁZfl(T{’x)-...-fg(TZ”m).

A major block in handling these averages is that the Host—Kra seminorms with
respect to the individual transformations do not control their L?(x) norm, and
as a consequence, the Host—Kra theory of characteristic factors is not applicable.
When ¢ = 2, mean convergence of the averages (I0)) was established by Conze and
Lesigne [5], but their methods did not generalize to ¢ = 3 and progress stalled for
more than two decades. The next breakthrough came when Tao established in [23]
mean convergence for general £ € N by recasting the problem in finitary terms and
using a delicate induction that allowed him to infer convergence properties for /¢
transformations from related convergence properties for ¢ — 1 transformations. In
another breakthrough, this approach was extended by Walsh in [26] to cover gen-
eral polynomial iterates, thus finally establishing mean convergence for the averages
@). A drawback of the methods of Tao and Walsh is that they do not give explicit
information for the limit or the related characteristic factors, and an in-depth un-
derstanding of the limiting behavior of the averages [ is still lacking. In the case
of the averages (I0)), this has been partially rectified by works of Austin [I] and
Host [17], in which alternative ergodic proofs of mean convergence were given that
provide some information for the limit.

The Host—Kra theory of characteristic factors gave us access to several other
problems that were previously considered intractable. A variety of deep multiple
recurrence and convergence results were obtained for iterates arising from smooth
functions, random sequences, and the sequence of prime numbers, setting the stage
for a thriving area of research. In a different direction, the conceptual advances
made and the ergodic tools developed through the years had amazing and often
unexpected impact in some notoriously difficult problems in combinatorics and
number theory. Some examples outside the area of ergodic Ramsey theory include-
the following.

e The proof of Green and Tao [I4] that the primes contain arbitrarily long
arithmetic progressions drew crucial insight from the notion of character-
istic factors and the ergodic theoretic proof of Szemerédi’s theorem. The
subsequent article of Tao and Ziegler [25], which established arbitrarily
long polynomial progressions in the primes, used the polynomial Szemerédi
theorem as a black box whose only known proof to this day uses ergodic
theory.

e The Gowers norms in Zy were introduced in [I3] and play a central role
in additive combinatorics. An inverse theorem for these norms was es-
tablished by Green, Tao, and Ziegler [I6] in which finitary analogues of
nilsequences were used to classify the sequences that obstruct Gowers uni-
formity. This result, in addition to others, was used by Green and Tao [15]
in order to settle several cases of the Hardy—Littlewood prime-tuples con-
jecture and prove Gowers uniformity of a modification of the von Mangoldt
function. The proofs of all these results crucially used the Host—Kra cubic
structures from [I§] as well as quantitative variants of ergodic equidistri-
bution results on nilmanifolds.
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e In a further twist, very recently, ergodic theory played an important role
in the study of statistical properties of bounded multiplicative functions,
the most prominent examples being the Mobius and the Liouville func-
tions. Tao and Terévéinen [24] verified a logarithmically averaged variant
of the Chowla conjecture regarding correlations of odd order of the Liou-
ville function, and their argument crucially used a variant of the decompo-
sition result for multiple correlation sequences given in (@). Frantzikinakis
and Host [7] verified the logarithmically averaged M&bius disjointness con-
jecture of Sarnak for ergodic weights, and their argument used a variety
of limit formulas for multiple ergodic averages that were previously proved
using the Host—Kra theory of characteristic factors.

2. THE BOOK

The results presented above give only a taste of the topics covered in this won-
derful book. Anyone interested in a deeper understanding of the Host—Kra theory
of characteristic factors and its applications in ergodic theory, combinatorics, and
number theory, will find this book an invaluable asset.

The first part of the book covers background material in ergodic theory and
topological dynamics that is tailored for the needs of this book and is in some cases
hard to find in print. This is a valuable source for the nonexpert.

The second part introduces some of the key elements of the Host—Kra struc-
ture theorem. The cubic structures are explained in progressively more complex
settings, namely, algebraic, topological, and finally ergodic settings. The ergodic
cubic structures are then used to naturally introduce the ergodic seminorms | - ||
and the structured factors Z,. In the process, dual functions and their properties
are studied.

The third part covers basic facts about nilmanifolds, nilsystems and their factors,
polynomial sequences on nilmanifolds, and related equidistribution results. Several
of the concepts and tools presented here are spread out in various places in the
literature, and the book masterfully organizes these topics and presents them in a
coherent way with meticulous attention to details that are in some cases missing
from the original sources.

The first half of the fourth part contains a functional form of the main structure
theorem and states variants of the structure theorem in topological dynamics and
in the finitary setting of Zx. The second half contains the heart of the proof of
the Host—Kra structure theorem. This is the hardest and most technical part of
the book. The authors follow the proof in [I8] but with simplifications at various
parts. The argument is first presented in a case that offers significant technical
simplifications, allowing the reader to get a broad overview of the proof strategy in
a friendlier setup before going through the details of the more convoluted argument
needed for the general case.

The fifth and last part of the book contains applications of the material presented
in the previous chapters, most of them stemming from research papers that were
written in the last fifteen years.

e The method of characteristic factors is used to prove mean convergence
of multiple ergodic averages with linear iterates, and then, after carefully
explaining the polynomial exhaustion technique, the case of polynomial
iterates is handled. Furthermore, for linearly independent iterates, using
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qualitative equidistribution results on nilmanifolds, the limit function is
identified.

e Uniformity seminorms for bounded sequences are defined and their relation
with the Gowers norms in Zy and the ergodic seminorms || - ||, is studied.
As an application, a pointwise convergence result for cubic averages is
given.

e An inverse theorem for uniformity seminorms of bounded sequences and
a related decomposition result is proved. As a consequence, convergence
criteria for multiple ergodic averages are given.

e A variant of the decomposition result ([@) that covers ¢ commuting trans-
formations is proved, and applications to mean convergence results of
weighted multiple ergodic averages involving commuting transformations
are given.

e Finally, multiple recurrence and convergence results for sequences related
to the prime numbers are deduced from known results using the Gowers
uniformity of a modification of the von Mangoldt function.

Each chapter is followed by a short section that is filled with bibliographical and
historical notes. This essential input should be appreciated by anyone who wants
to learn more on the subject and study the original sources.

This book was a long time coming! Prior to its publication, basic results in
the field were scattered in many research articles and books, making it difficult for
newcomers to get up to speed with current research. The book does a wonderful
job in rectifying this situation by skillfully providing a synthesis of background
material along with foundational and more recent contributions in the field. It will
be appreciated by beginners and experts alike and will undoubtedly become a key
resource for years to come for anyone that wants to explore or be actively involved
with this beautiful area of mathematics.
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