An appreciation of Jean Bourgain’s work
HTML articles powered by AMS MathViewer
- by Peter Sarnak;
- Bull. Amer. Math. Soc. 58 (2021), 151-153
- DOI: https://doi.org/10.1090/bull/1732
- Published electronically: February 12, 2021
- HTML | PDF | Request permission
References
- J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, DOI 10.1007/s000390300008
- J. Bourgain, Mordell’s exponential sum estimate revisited, J. Amer. Math. Soc. 18 (2005), no. 2, 477–499. MR 2137982, DOI 10.1090/S0894-0347-05-00476-5
- Jean Bourgain and Semyon Dyatlov, Spectral gaps without the pressure condition, Ann. of Math. (2) 187 (2018), no. 3, 825–867. MR 3779959, DOI 10.4007/annals.2018.187.3.5
- Jean Bourgain and Alex Gamburd, Uniform expansion bounds for Cayley graphs of $\textrm {SL}_2(\Bbb F_p)$, Ann. of Math. (2) 167 (2008), no. 2, 625–642. MR 2415383, DOI 10.4007/annals.2008.167.625
- Jean Bourgain and Alex Gamburd, On the spectral gap for finitely-generated subgroups of $\rm SU(2)$, Invent. Math. 171 (2008), no. 1, 83–121. MR 2358056, DOI 10.1007/s00222-007-0072-z
- J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), no. 1, 27–57. MR 2053599, DOI 10.1007/s00039-004-0451-1
Bibliographic Information
- Peter Sarnak
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey
- MR Author ID: 154725
- Published electronically: February 12, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 58 (2021), 151-153
- DOI: https://doi.org/10.1090/bull/1732
- MathSciNet review: 4229147