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OVERCONVERGENT MODULAR FORMS

AND THEIR EXPLICIT ARITHMETIC

JAN VONK

Abstract. In these notes we aim to give a friendly introduction to the the-
ory of overconvergent modular forms and some examples of recent arithmetic
applications. The emphasis is on explicit examples and computations.
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Introduction

The theory of p-adic modular forms has its origins in the work of Serre and Katz
in the 1970s, and has seen a spectacular amount of development and applications in
number theory since then. In this note, we aim to provide its context and sketch the
rudiments of the theory, adopting an approach where we favour explicit examples
and computations over proofs. This is done with the hope that the uninitiated
reader may build up some intuition and working knowledge as a stepping stone to
the literature on the subject, which can be somewhat daunting to outsiders, but
for which there is no substitute if one wants to become a serious user. We have
included references to many of the original texts.

We should warn the reader that by its very design, this article is doomed to be
incomplete, and several crucial developments are not discussed in this text. One
notable example is that we have omitted a discussion of the theory of overconvergent
modular symbols, which often provides an alternative framework that is in its own
way highly suited for explicit computation. The author wishes to apologise for
this omission, and many others, with the added clarification that this is merely
a reflection of his own lack of experience with this approach. Likewise, many
recent exciting developments in the area, such as the burgeoning topic of higher
Hida theory, will unfortunately not be discussed in any detail here. Finally, it is
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important to note that a great many excellent (expository) sources on the theory of
overconvergent modular forms already exist, which include for instance the beautiful
treatments of Emerton [Eme11] and Calegari [Cal13].

1. Congruences between modular forms

We start by recalling some basic definitions and motivate the theme of these
notes by discussing some classical congruences for the Ramanujan Δ-function, a
weight-12 modular form of level 1. These illustrate different types phenomena, and
we highlight the features we wish to explore in these notes.

1.1. Modular forms. Suppose Γ ⊆ SL2(Z) is a finite index subgroup. Then
Mk(Γ) denotes the space of modular forms of weight k ∈ Z, that is the space of
holomorphic functions f on the Poincaré upper half-plane H := {z ∈ C | Im(z) > 0}
which satisfy the transformation law

(1) f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ

and are holomorphic at the cusps of Γ. The subspace of cuspforms consists of those
functions which vanish at all the cusps and is denoted by Sk(Γ). In these notes, Γ
will usually be given by the congruence subgroup

(2) Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Any modular form f ∈ Mk(Γ0(N)) is invariant under translation and admits a
Fourier expansion

(3) f(q) = a0 + a1q + a2q
2 + · · · , q = e2πiz.

This will be referred to as its q-expansion, and the ai ∈ C are called its Fourier
coefficients. We refer to a0 as the constant term of f and the ai for i ≥ 1 as its
higher Fourier coefficients. When a1 = 1, we say f is normalised.

Classical examples of modular forms are given by the Eisenstein series, which
are constructed as follows. For any even k ≥ 4, we have the weight-k normalised
Eisenstein series

(4)

Gk(z) =
∑

(m,n)∈Z2\(0,0)(mz + n)−k

= −Bk

2k +
∑

n≥1 σk−1(n)qn,

where Bk is the kth Bernoulli number (see equation (29)) and where σr =
∑

d|n d
r

is the divisor function. They define modular forms of weight k for the full modular
group SL2(Z). We note that for k = 2 the series defining Gk fails to converge
absolutely, and indeed we have M2(SL2(Z)) = 0. We will see in §2.5 that the
q-expansion above still has meaning for k = 2 as a p-adic modular form.

The dimension of Mk and Sk may typically be calculated using the Riemann–
Roch theorem, and the theory of modular symbols allows one to compute, to any
desired q-adic accuracy, a set of q-expansions of a basis for it. For more details on
these computations, see the detailed treatment of Stein [Ste07].
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1.2. The Hecke algebra. Two central aspects of the theory of modular forms are
the action of the Hecke algebra and their associated Galois representations, which
we briefly discuss now.

The spaces of modular forms Mk(Γ0(N)) and Sk(Γ0(N)) are finite dimensional,
and they are equipped with an action of the Hecke algebra, generated by operators
Tp for any prime p, where it is customary to use the notation Up whenever p | N .
In terms of q-expansions (3) they are given by the expressions

(5)
Tpf(q) =

∑
n≥0 anpq

n + pk−1
∑

n≥0 anq
�n p � N,

Upf(q) =
∑

n≥0 anpq
n p | N.

Any modular form that is an eigenvector for all these Hecke operators is called
an eigenform. The Eisenstein series Gk defined in (4) is a simple example of an
eigenform, which satisfies

(6) TpGk = (1 + pk−1)Gk.

Note that the eigenvalue (1 + pk−1) is equal to the divisor function σk−1(p), and
therefore also the pth Fourier coefficient of Gk displayed in (4). One can verify from
the expressions (5) that this is always the case; if f is a normalised eigenform, then
its eigenvalue for Tp or Up is equal to its pth Fourier coefficient. For an introduction
to the basic properties of Hecke operators, see Diamond and Shurman [DS05].

Many spectacular results in number theory revolve around the notion of Galois
representations. In what follows, this will always mean a continuous representation

(7) ρ : GQ −→ GL2(k),

where GQ = Gal(Q/Q) is the absolute Galois group of Q, and k is either the field
of complex numbers C (in which case ρ is called an Artin representation) or a p-
adic field such as Qp. Important examples of the latter arise from elliptic curves.
Suppose E is an elliptic curve defined over Q, choose a prime p, and consider the
p-adic Tate module, obtained from the inverse limit of the torsion points on E of
p-power order,

(8) Qp ⊗Zp

(
lim←−
n

E[pn]

)
, where E[pn] = Ker(E

×pn

−→ E),

which is a two-dimensional Qp-vector space. This space has a natural action of the
Galois group GQ, given by the Galois action on the coordinates of the pn-torsion
points on E, which are algebraic numbers. Many important arithmetic properties of
the elliptic curve E can be recovered from this Galois representation. For instance,
for any prime � 	= p of good reduction for E, we have that

(9) Tr ρ(Frob�) = � + 1 − |E(F�)|.
In other words, the trace of the matrix of Frobenius at � is related to the number of
points of E over the finite field F�. It is striking that this representation depends
on the choice of a prime p, but the traces of Frobenius at primes � 	= p of good
reduction for E are integers and are independent of the choice of p.

Suppose f is an eigenform of level N and weight k = 2, where N is the conductor
of E. We say that f is attached to E if the traces of Frobenius elements (9) are
equal to the Fourier coefficients a� of f . In other words, this means that for all but
finitely many � we have

(10) a� = � + 1 − |E(F�)|.
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Important developments, culminating in the work of Wiles [Wil95], Taylor and
Wiles [TW95], and Breuil, Conrad, Diamond, and Taylor [BCDT01] show that for
any elliptic curve E over Q, there exists a modular form that is attached to it in this
sense. This has led not just to a proof of Fermat’s last theorem, but subsequent
developments continue to this day to settle long-standing conjectures in number
theory.

Remark. We briefly mention that the converse was known much earlier. That is, a
construction of Eichler and Shimura attaches an elliptic curve E to any eigenform of
weight k = 2 with integer Fourier coefficients. Generally, to any normalised cuspidal
eigenform f of weight k one may attach a two-dimensional Galois representation ρ
of GQ, which is unramified at all primes � away from a finite set, and which satisfies

(11) det (1 − ρ(Frob�)T ) = 1 − a�T + �k−1T 2

where a� is the �th Fourier coefficient of f . When k ≥ 2 this representation is valued
in a nonarchimedean local field, and it was constructed by Deligne [Del71], though
it is no longer attached to an elliptic curve as in the aforementioned construction
for k = 2 due to Eichler and Shimura. When k = 1, it is an Artin representation,
constructed by Deligne and Serre [DS74] from the representations in higher weight
via congruences.

1.3. Some examples of congruences. The Ramanujan Δ-function is the unique
normalised cusp form of weight 12 for the group Γ = SL2(Z). Its q-expansion is
given by the infinite product due to Jacobi,

(12) Δ(q) = q

∞∏
n=1

(1 − qn)24 =

∞∑
n=1

τ (n)qn.

This explicit product allows us to easily establish a number of congruences between
the Fourier coefficients of Δ and those of various other modular forms, going back
to the early twentieth century. For the reader who would like to inspect these
manually, we tabulate its first few Fourier coefficients τ (p) for p prime:

(13)

p 2 3 5 7 11
τ(p) −24 252 4830 −16744 534612

p 13 17 19 23 29
τ(p) −52843168 −182213314 308120442 −17125708 −577738

p 31 37 41 43
τ(p) −6905934 10661420 18643272 128406630

Example 1.1. We begin with a congruence that appears in the work of Ramanujan
[Ram16]. Consider the weight-k Eisenstein series Gk introduced in (4). For k = 12,
its constant term is equal to 691

65520 , whereas for k = 6 the constant term is −1
504 . Since

the space M12(SL2(Z)) is two dimensional, spanned by G12 and Δ, the form G2
6

must be a linear combination of the two. Computing the first two terms of all three
q-expansions, we find that

(14)
691

65520
· 5042 ·G6(q)

2 = G12(q) −
756

65
Δ(q),

and since all three modular forms involved have 691-integral q-expansions, we obtain

(15) Δ(q) ≡ G12(q) (mod 691).
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In particular, we see that for any prime p, we get the celebrated Ramanujan con-
gruences

(16) τ (p) ≡ 1 + p11 (mod 691).

For a beautiful and very detailed expository discussion of this example in the
broader context of ideal class groups of cyclotomic fields and Galois representa-
tions, see Mazur [Maz11].

Example 1.2. This example is due to Wilton [Wil30], and it establishes a congru-
ence modulo 23 between Δ and a certain form of weight 1. We have the following
congruences1 for Δ,
(17)

q
∞∏

n=1
(1 − qn)24 ≡ q1/24

∞∏
n=1

(1 − qn) · q23/24
∞∏

n=1
(1 − q23n) (mod 23)

≡ 1
2

∑
u,v∈Z

(
qu

2+uv+6v2 − q2u
2+uv+3v2

)
(mod 23)

where the first is a consequence of the fact that for any prime p, the binomial
coefficient

(
p
i

)
is divisible by p for all 0 < i < p, and the second follows from a

calculation using the Euler identity

(18)

∞∏
n=1

(1 − qn) =
∑
n∈Z

(−1)nq
3n2+n

2 .

It is a classical result (see for instance Hecke [Hec26]) that right-hand side of (17)
is a modular form of weight 1. It is in fact a Hecke eigenform, with an associated
Artin representation that we can identify easily: the quadratic field Q(

√
−23) has

class number 3, and its Hilbert class field H is obtained by adjoining a root of the
cubic polynomial

(19) f(x) = x3 − x− 1,

which has discriminant −23. The natural quotient gives us

(20) GQ −→ Gal(H/Q) � S3 −→ GL2(C)

from the unique two-dimensional irreducible representation of S3. This is the two-
dimensional Artin representation attached to the above weight-1 form. In partic-
ular, this means that the congruence class of τ (p) modulo 23 may be worked out
from the splitting behaviour of the prime p in the extension H/Q. The reader may
enjoy verifying in general or simply checking on a few small values of � in the table
(13) that this boils down to the statement2 that for any prime p 	= 23, we have

(21)
τ (p) ≡ 0 (mod 23) if (−23/p) = −1,
τ (p) ≡ 2 (mod 23) if (−23/p) = 1 and p = u2 + 23v2,
τ (p) ≡ −1 (mod 23) if (−23/p) = 1 and p 	= u2 + 23v2.

1The reader familiar with the Dedekind η-function—which is a modular form of weight 1/2
for some character χ24 of the metaplectic double cover of SL2(Z)—will recognise the form on the
right-hand side as η(q)η(q23).

2We use the notation (a/p) for the Legendre symbol for p � a, which equals 1 if a is a square
modulo p, and −1 otherwise.
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Example 1.3. As in the previous example, an elementary divisibility of binomial
coefficients allows us to obtain from the infinite product expansion the following
congruence for Δ(q),

(22) Δ(q) = q
∞∏

n=1

(1 − qn)24 ≡ q
∞∏

n=1

(1 − qn)2(1 − q11n)2 (mod 11),

The right-hand side is a weight-2 normalised cusp form of level Γ0(11). It is asso-
ciated to the elliptic curve

(23) E : y2 + y = x3 − x2 − 10x− 20

so that we obtain in particular the following congruences for p 	= 11:

(24) τ (p) ≡ p + 1 − |E(Fp)| (mod 11).

The reader may enjoy verifying this for a few small primes, using the table (13) and
equation (23). Unfortunately, the law governing the association p �→ p+1−|E(Fp)|
cannot be made explicit in the same elementary terms as in (16) and (21). The
reason for this was explained by Shimura [Shi66], since this law is governed by
the traces of the 11-adic representation attached to the elliptic curve (23), and
Shimura showed that its mod 11 reduction has image GL2(F11). Since this group
is not solvable, the law is equivalent to the splitting behaviour of primes p in
a nonsolvable extension of Q, which is in contrast with Example 1.2, where the
relevant group was S3.

1.4. The context of this article. The three examples of congruences (15), (17),
(22) are of very different flavours, and they illustrate different but related phenom-
ena that arise in the p-adic theory of modular forms:

• The first is a congruence between a cusp form and an Eisenstein series,
of the same weight. Such congruences are central in Iwasawa theory, and
related to the notion of the Eisenstein ideal ; see Mazur [Maz77]. We will
not discuss this theme, but we mention that this is a fascinating topic that
remains today an active area of research; see for instance [Mer96, CE05,
Lec18,WWE20]. A beautiful introduction to the ideas in this area can be
found in Mazur [Maz11].

• The second and third are both congruences between two cusp forms of
different weights. This resonates with the framework of p-adic families of
modular forms, as developed by [Hid86b,Hid86a,Col97b,CM98] and many
others, and it is these types of congruences that form the focus of this
document. We note that both these examples are of a very different nature.
Example 1.2 exhibits a congruence between a modular form of weight 1 and
another of a higher weight,3 and it results in an elementary description of
the congruence class of τ (p) modulo 23. Example 1.3 on the other hand
exhibits a congruence with a form associated to an elliptic curve. There is
no similarly elementary characterisation of the congruence class of the τ (p)
modulo 11.

3The existence of such congruences is an important ingredient in the aforementioned work of
Deligne and Serre [DS74] on the existence of Artin representations attached to modular forms of
weight 1.
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In these notes, we will focus primarily on the theme of congruences between
modular forms of different weights and p-adic families. Traditionally, the theory
was built around the prototypical example of the Eisenstein family, as in Coleman
[Col97b], until more recent advances due to Pilloni [Pil13] and Andreatta, Iovita,
and Stevens [AIS14] on the geometric interpolation of line bundles, which allows
us to develop the theory abstractly, without relying on the Eisenstein family. From
a practical and computational point of view, this family remains of primordial
importance, so the next section will quickly review it, motivated by the strategy of
Serre to show the existence of the Kubota–Leopoldt p-adic L-function.

2. Kummer congruences and Eisenstein series

We begin with a brief discussion of the Kummer congruences, and introduce
Serre’s important idea of inferring the p-adic variation of the constant term of a
modular form, from that of its higher Fourier coefficients. This idea appeared in
Serre [Ser73] and goes back to observations of Hecke [Hec24] and Siegel and Klingen
[Kli62,Sie68]. It will make several appearances throughout these notes.

2.1. The Kummer congruences. Recall that the Riemann zeta function ζ(s)
may be analytically continued to the entire complex plane, except for a simple pole
with residue 1 at the point s = 1. It satisfies the functional equation

(25) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s).

Of special importance are its values at negative odd integers (or equivalently, by the
functional equation, at positive even integers), which were computed first by Euler
in 1734 and read on 5 December 1735 in the St. Petersburg Academy of Sciences.
The starting point for Euler was the easily verified identity

(26) sin(πz) = πz
∏
n≥1

(
1 − z2

n2

)
.

By taking the logarithmic derivative, we obtain the identities

πz cot(πz) = 1 − 2

∞∑
n=1

∞∑
k=1

z2k

n2k
(27)

= 1 − 2

∞∑
k=1

ζ(2k)z2k.(28)

On the other hand, the Bernoulli numbers are defined via the generating series

(29)
t

et − 1
=

∞∑
k=0

Bk
tk

k!
,

and hence we can formally extract the even part of this series as

1

2

(
t

et − 1
− −t

e−t − 1

)
=

t

2
· e

t/2 + e−t/2

et/2 − e−t/2
(30)

=
t

2
· coth

(
t

2

)
.(31)
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Bearing in mind that icoth(iz) = cot(z), we obtain the identity

(32) cot(z) =
1

z
+

∞∑
n=1

(−1)k22kB2k

(2k)!
z2k−1.

It now follows formally from (28) and (32) that

(33) ζ(2k) =
(−1)k−1(2π)2k

2(2k)!
B2k

and hence by the functional equation

(34) ζ(1 − 2k) =
−B2k

2k
.

The fact that the value of the zeta function at negative odd integers is a rational
number is remarkable. We will revisit this in the more general setting of L-functions
of totally real number fields, when we discuss the explicit formula for this rational
number obtained by Klingen and Siegel [Kli62, Sie68], following an idea of Hecke
[Hec24] using diagonal restrictions of Hilbert Eisenstein series. This is discussed in
§4.5.

The Bernoulli numbers have interesting p-adic properties, notably by two re-
sults established in the mid-nineteenth century which are the starting point for our
investigations: the Clausen–von Staudt theorem [Cla40, vS40] and the Kummer
congruences [Kum51]. For convenience, we assume henceforth that p 	= 2.

Lemma 2.1. If k, k′ are two positive even integers such that k≡k′ (mod (p−1)pn),
then

(35)
if (p− 1) � k : (1 − pk−1)Bk/k ≡ (1 − pk

′−1)Bk′/k′ (mod pn+1),
if (p− 1) | k : vp (Bk/k) = −1 − vp(k).

The Kummer congruences show in particular that the quantity

(36) (1 − pk−1)
Bk

k
, k ∈ 1 + (p− 1)Z≥0,

exhibits p-adic continuity as a function of k. To the optimistic reader this may
already suggest that there may be an interesting p-adic analytic function ζp : Zp →
Cp whose special values at arguments s = 1 − k of the above form equal the
quantities (36). The problem of finding this function is therefore vaguely akin to
attempting to reconstruct the complex Riemann zeta function ζ(s) just from the
knowledge of its special values −Bk/k at negative odd arguments s = 1−k. Kubota
and Leopoldt [KL64] show the following.

Theorem 2.2 (Kubota and Leopoldt). There is a unique p-adic analytic function
ζp : Zp → Cp such that

(37) ζp(1 − k) = (1 − pk−1)
−Bk

k
for all k ∈ 1 + (p− 1)Z≥0.

What it means precisely for a p-adically continuous function Zp → Cp to be
analytic will not be important for now, and we will not define it precisely until §3.6
when we introduce the Iwasawa algebra.
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2.2. The p-adic family of Eisenstein series. Serre observed that the congru-
ences of Bernoulli numbers given in (35) can be upgraded to congruences between
q-expansions of modular forms. Notice first that we see from the Kummer congru-
ences that the Bernoulli numbers need to be modified by a factor (1−pk−1) in order
to interpolate nicely as a function of k. Likewise, we need to adjust the Eisenstein
series introduced above by setting

(38)
G

(p)
k = (1 − pk−1Up)Gk

= (1 − pk−1)−Bk

2k +
∑

n≥1

(∑
p�d|n dk−1

)
qn,

which is a modular form for Γ0(p), often referred to as the (ordinary) p-stabilisation

of Gk. We define E
(p)
k to be its unique multiple with constant coefficient 1. Observe

that elementary congruences for the higher Fourier coefficients yield an upgraded
version of the congruences (35). More precisely, when

(39) k ≡ k′ (mod (p− 1)pn),

we have that dk−1 ≡ dk
′−1 (mod pn+1) for any d not divisible by p. Indeed, for

n = 0 this is the statement of Fermat’s little theorem, and the general case follows
by induction. Therefore we obtain

(40)
if (p− 1) � k : G

(p)
k (q) ≡ G

(p)
k′ (q) (mod pn+1),

if (p− 1) | k : E
(p)
k (q) ≡ E

(p)
k′ (q) (mod pn+1).

The observation of Serre [Ser73], which was inspired by earlier ideas of Hecke
[Hec24] and Siegel [Sie68], was that in establishing these congruences of Eisenstein
series, there is a striking dichotomy between the congruences between the constant
terms (which are the Kummer congruences and hence are somewhat deep) and the
higher coefficients (which follow trivially from Fermat’s little theorem and hence
are not deep). His idea was to try and obtain the Kummer congruences and the
construction of the Kubota–Leopoldt zeta function ζp(s) by inheriting congruences
of a more elementary nature from the higher coefficients.

This idea, whereby information on the constant coefficient is transferred from
the higher coefficients, will appear several times throughout these notes, and is very
powerful and useful in a variety of contexts. We will mark the paragraphs where it
comes back by a small “Serre light bulb” in the margin as shown here.

2.3. Serre’s theory of p-adic modular forms. We now follow Serre [Ser73]
and establish some basic definitions of p-adic modular forms. We follow Serre in
restricting to the case of level 1 modular forms defined over Qp, but we reassure the
reader who is nervous about this that these assumptions will eventually be lifted
when we adopt the more geometric viewpoint due to Katz in the next lecture.

For any formal power series in the variable q given by

(41) f(q) = a0 + a1q + a2q
2 + · · · ∈ Qp�q�,

we define vp(f) = infn(vp(an)), where vp is the usual p-adic valuation on Qp. We
define the space of p-adic modular forms to be the collection of f(q) ∈ Qp�q�
such that there is a sequence fi ∈ Mki

(SL2(Z)) with rational Fourier coefficients
satisfying

(42) vp(f(q) − fi(q)) → ∞.
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A p-adic modular form f(q) therefore is obtained as a limit of q-expansions of
classical modular forms. The following important proposition of Serre [Ser73, §1.3,
Théorème 1] states that the sequence of their weights ki must tend to a limit p-
adically. Its proof lies significantly deeper than the rest of the contents of [Ser73],
which are otherwise largely established by more elementary means.

Proposition 2.3. Let f, g be two classical modular forms of weights k, � on SL2(Z),
both nonzero and normalised such that vp(f) = 0. Suppose that we have

(43) vp(f − g) ≥ m

for some positive integer m. Then it must be true that

(44)
k ≡ � mod (p− 1)pm−1 if p ≥ 3,
k ≡ � mod 2m−2 if p = 2.

As a consequence of this proposition, one easily checks that every p-adic modular
form f has a well-defined weight

(45) k := lim←−
i

ki ∈ Zp × Z/(p− 1)Z = lim←−
m

Z/(p− 1)pmZ.

For instance, it is not difficult to see that the q-expansion

E4(q)
−1 = (1 + 240q + 2160q2 + 6720q3 + · · · )−1

= 1 − 240q + 55440q2 − 12793920q3 + 2952385680q4 + · · ·
is a 2-adic, 3-adic, and 5-adic modular form of weight −4.

This is the point where Serre is able to realise the idea of “inheriting” congru-
ences for the constant terms of Eisenstein series from the much more elementary
congruences between their higher coefficients. The following result is a corollary of
2.3, and we leave the proof to the reader.

Theorem 2.4 (Serre). Suppose we have a sequence of p-adic modular forms of
weights ki,

(46) fi(q) = a
(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · · ,

which satisfy the two properties,

• the sequences a
(i)
n tend uniformly to a limit an ∈ Qp,

• the weights ki tend to a limit k 	= 0.

Then the constant terms a
(i)
0 tend to a limit a0, and the q-series

(47) f(q) = a0 + a1q + a2q
2 + · · · ∈ Qp�q�

is a p-adic modular form.

Notice that we may use the above theorem to show the existence of a continuous
function interpolating the constant terms of the Eisenstein family! Indeed, when a
sequence of integers k tends to a limit in Zp, we already noticed that the higher

Fourier coefficients of G
(p)
k tend uniformly to a limit for elementary reasons. This

implies that its constant term, which is

(48) ζp(1 − k) = (1 − pk−1)ζ(1 − k),

also tends to a limit, and it extends to a continuous function of k in Zp×Z/(p−1)Z,
which is precisely the Kubota–Leopoldt p-adic L-function. The paper of Serre
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pushes this idea further and strengthens this significantly by deducing also its an-
alytic properties. The above arguments may be strengthened to give an effective
version of the claimed convergence, whose rate may be controlled to truly recover
the Kummer congruences for Bernoulli numbers from elementary congruences be-
tween the higher coefficients.

2.4. Hecke operators and their spectrum. The space of p-adic modular forms
is equipped with actions of Hecke operators T�, Up, Vp, as was shown by Serre [Ser73,
§2]. Suppose

(49) f(q) = a0 + a1q + a2q
2 + · · ·

is a p-adic modular form of weight k. Then T�f for � 	= p and Upf are given by the
expressions (5), and

(50) Vpf(q) =
∑
n≥0

anq
np.

One may wonder what can be said about these operators from the point of view
of p-adic spectral theory [Ser62], and what, if any, is the arithmetic significance of
the eigenvalues. Despite its great successes on the Kummer congruences, this is a
point where the theory of p-adic modular forms starts lacking. Its definition—based
solely on q-expansions—lacks the rigidity to avoid capturing a tremendous amount
of power series in the space of p-adic modular forms whose arithmetic significance
is less apparent.

One way to see this is as follows. Let f be any p-adic modular form, and choose
any λ ∈ pZp. Then

fλ = (1 − λVp)
−1(1 − VpUp)f

exists as a p-adic modular form, has the same weight as f , and satisfies

(51) Upfλ = λfλ.

This shows that the operator Up has a spectrum that is far from discrete and
contains an overwhelmingly large continuous spectrum. To discern a discrete spec-
trum, this suggests that one should seek a more rigid framework that excludes these
pathological eigenforms. We will find such a framework in the subspace of overcon-
vergent modular forms defined by Katz, which we discuss in §3. As we will see, the
action of the operator Up on overconvergent forms has a very rich and interesting
discrete spectrum.

2.5. Eisenstein series of weight 2. A celebrated borderline example is given by
the Eisenstein series of weight 2, and it is of great arithmetic importance. Serre
shows that, for any prime number p, the formal power series

E2(q) = 1 + 24
∑
n≥1

(∑
d|n

d
)
qn

is a p-adic modular form. Indeed, the series E
(p)
2 (q) := (1− pUp)E2(q) is a classical

modular form of weight 2 and level Γ0(p). Serre shows that any form of level Γ0(p)
is a limit of modular forms of level 1, and therefore defines a p-adic modular form
in the above sense. It follows that

E2(q) = (1 − pUp)
−1E

(p)
2

= E
(p)
2 + pUpE

(p)
2 + p2U2

pE
(p)
2 + · · ·
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is then also a p-adic modular form. Note that this argument is valid for any prime
p.

In the next section, we introduce the subspace of overconvergent modular forms
according to Katz. It was shown by Coleman, Gouvêa, and Jochnowitz [CGJ95]
that the form E2 is never overconvergent. This example is nonetheless of tremen-
dous arithmetic importance, and we content ourselves by mentioning its role in the
theory of p-adic heights on ordinary elliptic curves. A beautiful discussion, along
with a precise quantification of its failure to overconverge, can be found in the
article by Mazur, Stein, and Tate [MST06].

3. Overconvergent modular forms

We encountered the Kubota–Leopoldt p-adic zeta function, and explored an
idea of Serre that uses the p-adic Eisenstein family to construct it. This involved
the notion of p-adic modular forms, which therefore served a great purpose but
otherwise seemed somewhat lacking in finer structural properties, as evidenced by
the absence of an interesting discrete spectrum of Hecke operators. We now follow
Katz in reinterpreting the viewpoint of Serre geometrically and in identifying much
smaller—though still infinite-dimensional—subspaces of the space of p-adic modular
forms. Though we recall much of what we need, we will assume some familiarity
with the algebro-geometric theory modular forms. Excellent expositions can be
found for instance in Katz [Kat73], Calegari [Cal13], and Loeffler [Loe14].

3.1. The Hasse invariant. Suppose S is a scheme over Fp. Then there is an
absolute Frobenius morphism

(52) Fabs : S −→ S

given on affine opens by the map on functions f �→ fp. If X/S is an S-scheme, we
define the scheme X(p) = X ×S S where the fibre product is taken over S, viewed
as an S-scheme via Fabs. The relative Frobenius morphism F = FX/S is defined by
the following commutative diagram, where the square is Cartesian.

(53) X(p)

S

X

S

X

Fabs

Fabs

FX/S

Notice that the relative Frobenius is an S-linear morphism, whereas the absolute
Frobenius is not! Also, the scheme X(p) is hardly a mysterious thing: Suppose X
is of finite type over Fq/Fp. Then X(p) is given by the same equations as X but
where all the coefficients are raised to the pth power. Note that if q = p, then we
have X(p) = X.

Now suppose that E/S is an elliptic curve. Then the relative Frobenius F =
FE/S is an isogeny, and hence has a dual isogeny V :

(54)
F : E −→ E(p) “Frobenius ”,
V : E(p) −→ E “Verschiebung ”.
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Suppose now that S = Spec(Fp). Then we say

(55)

{
E is ordinary if E[p](Fp) 	= 1,
E is supersingular if E[p](Fp) = 1.

In general, we say E/S is ordinary/supersingular if all its geometric fibres are.

Proposition 3.1. Suppose E/S is an elliptic curve and S is an Fp-scheme. Then
we have

• E/S is ordinary if and only if V : E(p) −→ E is étale;
• E/Fp is supersingular, only if E is defined over Fp2 .

Proof. We can factor the multiplication by p map as

[p] : E
F−→ E(p) V−→ E.

This implies that V is separable if and only if Ker(V )(Fp) 	= 1 on all geometric
fibres. Since the kernel of Frobenius only has the trivial geometric point, this is
equivalent to Ker([p])(Fp) 	= 1. This proves the first statement. For the second
statement, we have that E/S is supersingular if and only if V is inseparable, which
means it must factor through Frobenius:

V : E(p) F−→ E(p2) −→ E.

The latter map must be finite of degree 1 and hence is an isomorphism. Thus E is
defined over Fp2 . �

Finally, we define the Hasse invariant of an elliptic curve E/R where R is a ring
of characteristic p. First, choose ω ∈ H0(E,Ω1

E/R) to be an R-basis, and let η be

the R-basis of H1(E,OE) defined via Serre duality. The Hasse invariant A(E,ω) is
the element of R defined by

(56) F ∗
abs(η) = A(E,ω) · η.

Note that by the previous proposition, E/Fp is ordinary if and only if A(E,ω) 	= 0
for any choice of ω.

3.2. Algebraic modular forms. We will now see how to interpret the Hasse
invariant as an algebraic modular form over Fp of weight p − 1. Over the field of
complex numbers C, we are used to thinking of modular forms in terms of their
q-expansions, which directly describe them as a function on the upper half-plane
in the variable q. Over other base fields, one adapts a more algebraic viewpoint,
where a modular form becomes a section of a line bundle ω⊗k over a moduli space
of elliptic curves. The algebraically defined notion of q-expansion, defined by its
evaluation on the Tate curve, no longer directly describes the form as a “function”
on classes of elliptic curves. This is quite striking for the Hasse invariant, which
vanishes at supersingular points, yet has q-expansion given by 1. We now discuss
these notions, briefly recalling the notion of algebraic modular forms, referring to
Katz [Kat73, Chapter 1] for more details.

A weakly holomorphic modular form of weight k ∈ Z over a ring A is a rule
which assigns to any isomorphism class of pairs (E/R, ω), where

• E/R is an elliptic curve over an A-algebra R,
• ω is an R-basis for H0(E,Ω1

E/R),
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an element f(E/R, ω) ∈ R such that the following two properties are satisfied:

f ((E/R, ω) ⊗φ R′) = φ (f(E,ω)) for all φ : R → R′ of A-algebras,
f(E, λω) = λ−kf(E,ω) for all λ ∈ R×.

The q-expansion of a weakly holomorphic modular form f is defined as

(57) f(q) := f
(
Tate(q)Z�q�, ωcan) ⊗R

)
∈ R�q�,

where Tate(q) is the Tate elliptic curve over Z�q� defined by

(58) y2 + xy = x3 + Bqx + Cq, ωcan =
dx

2y + x
,

with coefficients defined by the explicit q-series in Z�q�,

(59)
Bq =

∑
n≥1 −5σ3(n)qn,

Cq =
∑

n≥1
−5σ3(n)−7σ5(n)

12 qn.

We say a weakly holomorphic modular form is an algebraic (or holomorphic) mod-
ular form if its q-expansion, which a priori is an element of R�q�, is in fact in
R�q�.

Remark. The Tate curve arose first in the work of Tate [Tat95] on p-adic uni-
formisation of elliptic curves. Over the complex numbers C, any elliptic curve E
is isomorphic to C/〈1, τ 〉 where 〈1, τ 〉 denotes the lattice spanned by 1, τ in C.
By exponentiation, this quotient can also be described as C×/qZ where as usual
q = exp(2πiτ ), and the isomorphism with E involves explicit complex analytic
functions which go back at least to Weierstraß. Tate showed that this admits a
p-adic analogue; more precisely that for every E whose j-invariant is not p-adically
integral, there exists an isomorphism with Tate(q) for some |q| < 1, the latter being
isomorphic to C×

p/q
Z by explicit p-adic analytic power series.

We now see from the definition of the Hasse invariant in the previous section
that it is naturally an algebraic modular form of weight p − 1 over Fp. Indeed, it
is a rule that attaches to (E/R, ω) an element of R whose functoriality is clear by
definition, and moreover for any λ ∈ R× we see that

A(E, λω) · λ−1η = F ∗
abs(λ

−1η)

= λ−pF ∗
abs(η)

= λ1−p ·A(E,ω) · λ−1η.

We conclude that the Hasse invariant A defines a weakly holomorphic modular form
of weight p − 1 and level 1. It has the following important properties (which we
will freely use in what follows):

• The q-expansion of the Hasse invariant was computed in [Kat73,KM85] and
is given by A(q) = 1. The proof is a beautiful argument using the Cartier
operator.

• We already know that for E/k over k = Fp, the Hasse invariant vanishes
if and only if E is supersingular. In fact, it has simple zeroes, in the sense
that if R is a local Artinian k-algebra and E/R is such that V : E(p) −→ E
induces the zero map on tangent spaces, then it must be true that there is
a supersingular elliptic curve E0/k such that

(60) E0 ×k R � E.
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3.3. Overconvergent modular forms. We now come to the main spaces of in-
terest, which were defined by Katz [Kat73]. They revolve around the properties
of the Hasse invariant A over Fp, but are spaces of forms over a p-adic field, and

therefore involve liftings Ã of the Hasse invariant to characteristic 0.

Remark. We now come to a point where rigid geometry is most naturally used.
The reader unfamiliar with this framework should not be alarmed, as we take a
very pedestrian approach that should be digestible if one is willing to take a few
things on faith. Moreover, the next section will show these notions in action in
an extended example, and the uninitiated reader may prefer to skip ahead. The
foundations of rigid geometry are beautifully summarised in Conrad [Con08].

Suppose4 N ≥ 5 and p � N prime. We let X/Zp be the modular curve over
Zp which classifies generalised elliptic curves with Γ1(N)-level structure, universal
curve π : E −→ X , and closed subscheme of cusps IC , and we denote its generic
and special fibres by X and Xs, respectively. We define the line bundle

(61) ω := π∗Ω
1
Esm/X (log π−1IC).

The Hasse invariant is the unique5 element of H0(Xs, ω
⊗p−1) with q-expansion 1.

Let Cp be the completion of the algebraic closure of Qp. Since the relative curve
X/Zp is proper, every Cp-point extends uniquely to an OCp

-point, and we obtain
a reduction map

(62) red : X (Cp) −→ Xs(Fp).

This map provides our first encounter with analytic geometry over the p-adic num-
bers. The inverse image red−1(x) of a closed point of the special fibre is isomorphic
to a rigid analytic open disk D = {x ∈ Cp : |x| < 1}. We saw previously that
the vanishing locus of the Hasse invariant is precisely the supersingular locus of
Xs, which consists of a finite set of closed points. The ordinary locus Xord is the
affinoid open whose set of Cp-points correspond to elliptic curves with ordinary
reduction, which is therefore the complement of a finite number of rigid analytic
open disks, indexed by the supersingular points; see Figure 1.

At this point, we are ready to give a geometric reinterpretation of the spaces
of p-adic modular forms introduced by Serre, which were discussed in §2. The
following theorem is due to Katz [Kat73].

Theorem 3.2 (Katz). The space of p-adic modular forms of weight k is isomorphic
as a Hecke module to

(63) H0(Xord, ω⊗k).

In light of this theorem, we see in particular that if Ã is a lift of the Hasse
invariant, which is any modular form of weight p − 1 over Zp whose q-expansion
is congruent to 1 modulo p, then it must be invertible as a p-adic modular form.
This may be seen explicitly also in Serre’s language, since we have

(64) vp

(
Ã(q)p

n−1 − Ã(q)−1
)

−→ ∞,

4For simplicity, we will choose some auxiliary level structure to rigidify the moduli problem
of elliptic curves and work on modular curves. If desired, this can be avoided by working on the
moduli stack.

5The q-expansion principle states that any modular form with a given q-expansion and weight
is uniquely determined.
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X

Xs

Spec Zp
Qp Fp

ssXord

✄

=

=

×

×

×

Figure 1

so that the formal q-expansion Ã(q)−1 is a p-adic modular form in the sense of
Serre.

Remark. When we do explicit calculations later on, we will see that the fact that
the q-expansion of the Hasse invariant is 1 usually allows us to choose an Eisenstein
series Ep−1 as a lift of the Hasse invariant. Indeed, when p ≥ 5, this is a modular
form of weight p− 1 whose q-expansion is congruent to 1 modulo p.

We saw previously that the space of p-adic modular forms is too large to have
nice spectral properties, prompting Katz to consider subspaces of sections that
extend6 to affinoids strictly containing Xord. More precisely, let 0 ≤ r ≤ 1, and
define Xord ⊂ Xr ⊂ Xrig by

(65) Xr(Cp) := {x ∈ X(Cp) : vp(Ãx) ≤ r},

where Ãx is a local lift of the Hasse invariant A at x. Note we do not require a
global lift of the Hasse invariant to exist, which may fail when p = 2, 3. We define
the space of r-overconvergent modular forms of integer weight k on Γ1(N) to be

(66) M†
k(r) := H0(Xr, ω

⊗k).

These spaces come with an action of Hecke operators T� for � � Np and U� for � | N ,
defined by restricting the Hecke correspondences on X . They have the usual effect
on q-expansions.

In addition, the operators Up and Vp defined on p-adic modular forms may be
defined geometrically, and they preserve the subspace of overconvergent modular
forms. More precisely, they are defined for every r < 1/(p + 1) and have the
following effect on the rate of overconvergence:

(67)
Up : M†

k(r) −→ M†
k(pr),

Vp : M†
k(pr) −→ M†

k(r).

6This definition may seem obscure to the uninitiated, but already at the time when Katz intro-
duced this, p-adic overconvergence represented a dominant theme in the school of p-adic analysis
surrounding Bernard Dwork and his disciples, and the idea continues to be hugely influential to
this day.
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In particular, the operator Up improves the rate of overconvergence. The reason
for the existence of the operators Up and Vp is the canonical subgroup section s of
the natural forgetful map of modular curves, which exists for any r < p/(p + 1):

(68)
X(Γ1(N) ∩ Γ0(p))

rig Xrig

⊂

Xr .s

This yields two equivalent ways to view spaces of overconvergent modular forms:

• as sections on affinoid opens of X, with no level at p (the tame viewpoint);
• as sections on affinoid opens of the modular curve obtained from X by

adding additional Γ0(p) level structure (the canonical subgroup viewpoint).

For theoretical questions the latter is frequently more convenient. For instance,
it forms the natural setting for questions of analytic continuation and Coleman’s
classiciality results discussed in §3.7. On the other hand, for computational pur-
poses the former often has advantages, since it allows one to compute with auxiliary
classical spaces of modular forms, as we will see in §4.1.

3.4. Interlude: Extended example. Let us explore these abstract definitions
in a particular case to get a feeling for the various objects involved. Consider the
case where p = 2 and k = 0, in level 1. In this case we can be very explicit
about the spaces of p-adic and r-overconvergent modular forms, both from the
tame viewpoint (in level 1) or via the canonical subgroup section (on X0(2)). This
example is centred around the properties of the Klein j-invariant,

(69) j(q) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + · · · ,

which is a level 1 modular form of weight 0 with a simple pole at the cusp.

3.4.1. The tame viewpoint. Consider the moduli stack X of elliptic curves. Of the
four values in F4 for the j-invariant, only j = 0 is supersingular, so that its special
fibre at p = 2 has a unique supersingular point corresponding to the vanishing locus
of j. It follows that the ordinary locus on X is described by |j−1| ≤ 1, and hence
the space of 2-adic modular forms of weight 0 is isomorphic to

(70) C2〈j−1〉 =
{
a0 + a1j

−1 + a2j
−2 + · · · | an → 0

}
.

For any r, the space M†
0 (r) defines a Banach space contained inside this Tate alge-

bra, which we can explicitly identify through growth conditions on the coefficients
an. Precisely, we use the observation that

(71) j =
E3

4

Δ

and E4 = 1 + 240q + · · · is the normalised Eisenstein series of weight 4, which is
a lift of the fourth power of the Hasse invariant A4. In particular, we find that on
the supersingular disk (where Δ is invertible, and hence v2(Δ) = 0, we have that

(72) v2(A) ≤ r ⇐⇒ v2(j) ≤ 12r.

and as a consequence, we get that the subspace of r-overconvergent forms is given
by

(73) M†
0 (r) =

{
a0 + a1j

−1 + a2j
−2 + · · · : |an|p12nr → 0

}
.
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Finally, let us compute some Hecke operators, and see whether the obtained re-
sults make sense with what is said above. First, note that we can compute very
rapidly the q-expansion of j−1 (most serious computer algebra packages like Magma,
PARI/GP, or Sage will already have a function implemented). Given any 2-adic
modular form of weight 0, we can then compute its j−1-expansion very rapidly by
the simple observation that j−1 vanishes to order 1 at the cusp infinity, and hence
we can inductively subtract powers of j−1 until we are left with zero. Carrying out
this procedure in Magma [BCP97], we obtain that

U2j
−1 = −744 j−1

= −140914688 j−2

= −16324041375744 j−3

= −1528926232501026816 j−4

+ · · · ,
T3j

−1 = 356652 j−1

−16114360320000 j−2

+1298216343568384000000/3 j−3

+ · · · ,
T5j

−1 = 49336682190 j−1

−122566701099729715200000 j−2

+177278377115100363578123747328000000 j−3

+ · · · ,
where we calculated in reality hundreds of terms, which look rather unappetising.
Things become very interesting when we look at the 2-adic valuations of the coeffi-
cients a1, a2, a3, . . . of U2j

−1 and T�j
−1 tabulated above, which give us the following

sequences:

(74)
U2j

−1 : v2(an) = 3, 12, 20, 28, 35, 46, 52, 60, 67, 76, 86, 94, . . . ,
T3j

−1 : v2(an) = 2, 16, 32, 45, 60, 79, 91, 105, 120, 136, 154, 165, . . . ,
T5j

−1 : v2(an) = 1, 18, 33, 47, 61, 80, 92, 107, 121, 138, 155, 167, . . . ,

We see very clearly that the latter two sequences grow roughly at the same rate,
whereas the first one grows significantly more slowly! In fact, if we plot these three
sequences in red, green, and blue, respectively, for the first two hundred terms, we
obtain Figure 2. They all look like linear functions! The green and blue plots are
virtually indistinguishable at this scale and look roughly like a linear function of
slope 15. On the other hand, at this scale the red plot looks roughly like a linear

Figure 2
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function of slope 8. This is precisely what we expected from the general theory, since
j−1 is r-overconvergent for any r (indeed, it converges on the entire modular curve
X except for a simple pole at the cusp 0!), and its image under the U2-operator is
therefore only guaranteed to be r-overconvergent for any r < p/(p+1) = 2/3. With
respect to the identification (73), this shows that the valuation of the coefficients
should grow at least like a linear function of slope 8 = (2/3) · 12.

3.4.2. The canonical subgroup viewpoint. Even though we can compute things to
our heart’s desire, it is hard to get any more specific information in the tame
description (i.e., on X = X0(1)). Following Buzzard and Calegari [BC05], we will
now see that we can get a lot of mileage from working on X0(2) instead; we know
we can do this by the theory of the canonical subgroup. Define the Hauptmodul

(75) h = Δ(2z)/Δ(z) = q
∏
n≥1

(1 + qn)24,

which is a meromorphic function on X0(2) with a simple zero at the cusp ∞ and a
pole at the cusp 0. It is related to the j-function by

(76)
h

(1 + 28h)3
= j−1.

Using a Newton polygon argument, we see that we can find a canonical section of
the forgetful map whenever vp(j

−1) > −8 exactly as predicted by the theory of
canonical subgroups. Note also that in this case, we see that this section does not
extend to any larger region, so the result was optimal! This means that we get an
alternative description for (73) of the form

(77) M†
0 (r) =

{
a0 + a1h + a2h

2 + · · · : |an|p12nr → 0
}
.

The advantage is the following: The Hecke operators are defined as correspondences
on X0(2), and hence we know that U2(h) and T�(h) are polynomials in h! This is
in stark contrast with the tame situation, where we got a rather mysterious set
of power series, which we could compute to any accuracy, but never exactly. In
contrast, on X0(2) we can do the computation exactly, and we obtain

U2(h) = 24h + 2048h2,
T3(h) = 300h + 98304h2 + 16777216/3h3.
T5(h) = 18126h + 40239104h2 + 14696841216h3

+ 1649267441664h4 + 281474976710656/5h5.

Together with (77), this can be seen as a complete description of the U2-module

M†
0 (r). This is what is used by Buzzard and Calegari [BC04] to determine the

valuations of all the eigenvalues of U2 on this space.

3.5. Spectral theory of Up. We now discuss an important part of the subject,
which is the spectral theory of the Hecke operator Up, acting on the Cp-Banach
space of r-overconvergent forms.

We begin by defining a norm ‖ · ‖r on M†
k(r). Pick a point x ∈ Xr, let K be a

finite extension of the residue field of x, and let Spec(K) → XQp
be a point whose

image corresponds to x. The properness of X implies that this extends uniquely to

a point ϕ : Spec(OK) → X . Now let f ∈ M†
k(r), then ϕ∗f = afs for some section

s generating the trivial line bundle ϕ∗ω⊗k and some a ∈ OK . We set

(78) |f(x)| := |af |,
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which is independent of the choice of s. The norm

(79) ‖f‖r := sup{|f(x)| : x ∈ Xr}

makes M†
k(r) into a p-adic Banach space. This induces the structure of a p-adic

Fréchet space on

(80) M†
k := lim−→

r>0

M†
k(r),

which we call the space of overconvergent modular forms. The Banach spaces M†
k(r)

are infinite dimensional, and there is a priori no meaningful way to talk about the
spectrum of an operator unless we know more.

Suppose we have a continuous bounded operator T on a separable Cp-Banach
space B, then we say that T is compact if it is the limit of operators of finite rank.
Equivalently, T is compact if and only if the image of the unit ball is relatively
compact. There is a well-developed spectral theory for compact operators (see
[Dwo62,Ser62,Col97b]), which has the following pleasant consequences for compact
operators.

• T has a discrete spectrum of nonzero eigenvalues

(81) |λ1| ≥ |λ2| ≥ · · · ,

where |λi| → 0 as i → ∞, whose inverses are the roots of a well-defined
characteristic series

P (t) = “det(1 − Tt)′′

= a0 + a1t + a2t
2 + · · · , where ai → 0 as i → ∞.

• For every v ∈ B there are constants ci and generalised eigenvectors vi with
eigenvalue λi such that for any ε > 0 we have (asymptotically in n) that

(82) ε−n

∥∥∥∥∥∥Tnv − Tn
∑

|λi|≥ε

civi

∥∥∥∥∥∥ −→ 0.

The constants ci are often called the coefficients of the asymptotic expansion
of v.

We established that the operator Up exhibits a contractive nature, and improves
overconvergence as described by (67). This implies that Up is compact, and hence
possesses a well-defined characteristic series. Here is one concrete way to think
about this series (and indeed to compute it in examples!), as explained by Serre
[Ser62] and Coleman [Col97b, Theorem A2.1]: Suppose we have an orthonormal
basis

(83) {f1, f2, f3, . . .} for M†
k(r).

Then we obtain an infinite matrix representation of Up. In the example above,
where p = 2 and k = 0, we already noted that we have an algorithm to compute
this matrix exactly, or at least any finite submatrix of it. To see what compactness
really means in practice, we compute the first 10 × 10 submatrix with respect to
the basis fi = (28h)i of the cuspidal subspace, and we look at the following 2-adic
valuations of its entries.
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(84) v2(U2(i, j))i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 8
3 7 11 16

8 12 17 19 24
7 11 15 21 23 27 32

11 19 20 25 27 35 35 · · ·
11 16 20 24 27 33 35

17 19 24 29 34 35
15 20 23 27 31 38

19 24 27 37 36
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here, we omitted the entries of U2 that were equal to zero. The compactness of
Up in orthonormalisable situations like this one is equivalent to the statement that
the column vectors converge uniformly to 0 in the infinite matrix representation.
In the above example, that certainly looks plausible, as the entries of the columns
seem to have valuation which grows roughly at the same rate. To contrast this with
what happens in general, let us compute with respect to the same basis the first
10 × 10 submatrix for T3.

(85) v2(T3(i, j))i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 12 16
7 2 11 20 27 32
8 8 2 14 17 28 34 46 48

11 8 2 12 19 29 36 43
16 9 10 2 12 16 32 34 · · ·
16 15 12 7 2 11 22 28

18 19 8 8 2 16 18
23 19 17 12 9 2 13
24 25 18 17 10 12 2

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Notice the stark contrast with the matrix of U2. Whereas the general entry of every
column seems like it tends to zero (as it should, since T3 still defines an operator on

the Banach space M†
0 (2/3) after all) it does not look like the general column tends

uniformly to zero. Most strikingly, the diagonal entries all seem to have valuation
2, suggesting this operator may not have a convergent trace.

For the operator U2 we can also compute an approximation for its characteristic
series P (t), using the above matrix. One can easily analyse to which precision the
given answer is correct, but we will ignore such issues here. We truncate the matrix
for U2 as above, and obtain a polynomial whose coefficients are 2-adically close to
those of P (t). Looking at the Newton polygon, we see that the valuations of the

eigenvalues of U2 on the full space M†
0 (r) for any r are

(86) 01, 31, 71, 131, 151, 171, . . . .

Here, we denote the valuations of the eigenvalues by bold type and the multiplicity
of that valuation by a subscript. It is striking that these are all integers, since
there is no a priori reason that they should be! In this particular example, there is
an explicit expression for the general term in this sequence, found by Buzzard and
Calegari [BC05]. We give a brief overview of their arguments.
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Let h be the Hauptmodul defined in (75). Then a basis for the cuspidal subspace

S†
0(r) ⊂ M†

0 (r) is given by the powers h, h2, h3, . . . , where a general element is an
infinite sum of these forms, where the coefficients decay in a controlled matter,
depending on r. We may try to find an explicit description of the basis for U2 with
respect to this basis. It is easily verified that for n ≥ 2, we have the recursion

U2(h
n) = (48h + 4096h2)Up(h

n−1) + hUp(h
n−2).

We know from (77) that the powers of 26h form an orthonormal basis of M†
0 (1/2),

and the above recursion implies that the (i, j)-th entry in the matrix for U2 with
respect to this basis is given by

3j(i + j − 1)!22i+2j−1

(2i− j)!(2j − i)!
.

In spite of the matrix for U2 being completely explicit, it is still no laughing
matter to compute its slopes, and more ideas are required. It was shown by Buzzard
and Calegari [BC05, Lemma 4], using a really intriguing direct computation using a
hypergeometric summation formula, that there exist matrices A,B with entries in
Z2 which are both congruent to the identity matrix modulo 2 and such that ADB
equals the matrix of U2, where D is the diagonal matrix with (i, i)-th entry given
by

24i+1(3i)!2i!2

3(2i)!4
.

From this, one may deduce that the matrix of U2 has a characteristic series whose
Newton polygon is the same as that for the matrix D, which implies the following.

Theorem 3.3 (Buzzard and Calegari). The slope sequence of U2 on S†
0(r) for any

r > 0 is given by {
1 + 2v2

(
(3n)!

n!

)}
n=1,...,∞

.

The study of slopes was very popular in the early twenty-first century; see for
instance [Buz05,BC04,BC05,BP16,BG16] and the references contained therein. A
good knowledge of the spectrum, such as the example above, leads to a streamlined
way to prove many classical congruences of modular forms, such as that of Lehmer
[Leh49] for the Fourier coefficients an of the j-function, which states that

an ≡ 0 (mod 23n+8) whenever n ≡ 0 (mod 2n).

The appearance of 3 in the exponent is a reflection of the first positive slope being
3 in the Buzzard–Calegari theorem, and it can be strengthened and refined using
the higher slopes. This domain has in recent years shifted its fashions towards the
boundary of weight space; see the works [BK05,Roe14, LWX17,AIP18] and many
others. This is a fascinating notion that falls outside the narrative we take here, but
we mention a spectacular recent application in the proof by Newton and Thorne
[NT19] of modularity of Symn(f) when f is a cuspidal eigenform satisfying certain
conditions, including all forms of level 1.

3.6. The eigencurve. The above constructions may be extended to incorporate
families of modular forms, culminating in the existence of the eigencurve. This is
a geometric object that provides a powerful picture when thinking about families
of overconvergent modular forms. The theory is due mainly to Coleman [Col96,
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Col97b] and Coleman and Mazur [CM98], and it was revisited more recently by
Pilloni [Pil13] and Andreatta, Iovita, and Stevens [AIS14]. We content ourselves
with a very brief discussion in these notes.

Our desire is to explain congruences between modular forms by interpolating
between different weights, as in the theory of Serre. The geometric theory of over-
convergent forms is restricted to integral weights k ∈ Z, and to overcome the lack
of a sheaf ωκ for a p-adic weight other than κ ∈ Z, the idea of Coleman was to turn
once more to the Eisenstein family, which is defined for any weight-character as

(87) κ ∈ W := Homcont(Z
×
p ,C

×
p ),

where we can view a pair (k, χ) consisting of k ∈ Z and χ : (Z/pnZ)× → C×
p as a

subset via the embedding defined by the continuous homomorphism

(88) (k, χ) : Z×
p −→ C×

p , a �−→ χ(a)ak−1,

where χ is now thought of as a character of Z×
p by composing with reduction modulo

pn. The subset of weight characters for which κ induces the trivial character on
(Z/pZ)× is denoted by W0.

The coefficients of Eisenstein series are naturally functions of (k, χ), and one
can easily show that they extend to functions of W . The only part that needs
clarification is how to view the Kubota–Leopoldt zeta function ζp as a function of
κ ∈ W . Denote Δ for the torsion subgroup of Z×

p , which is cyclic of order φ(q),
where q = 4 if p = 2, and q = p otherwise. There is an isomorphism

(89) Z×
p

∼−→ Δ × (1 + qZp), a �−→ (ω(a), 〈a〉).
The character ω is called the Teichmüller character. Let Λ = Zp�Z

×
p � be the

Iwasawa algebra, which is the ring of functions on W . Then we have an isomorphism

(90) Λ � Zp[Δ]�T �, 1 + q �−→ 1 + T.

This way, the Kubota–Leopoldt zeta function ζp can be viewed as a function on W ,
satisfying

(91) ζp
(
(1 + q)k−1 − 1

)
= (1 − pk−1)ζ(1 − k),

giving us the Eisenstein family

(92)
Gκ(q) =

ζp(κ)
2 +

∑
n≥1

(∑
p�d|n κ(d)/d

)
qn, κ 	∈ W0,

Eκ(q) = 1 + 2
ζp(κ)

∑
n≥1

(∑
p�d|n κ(d)/d

)
qn, κ ∈ W0.

The idea of Coleman was to define an overconvergent modular form of weight κ to
be any q-expansion with the property that its quotient by the Eisenstein series of
weight κ is an overconvergent modular function.7 The weights of overconvergent
modular forms are naturally parametrised by a geometric object: we define WN ,
the weight space of level N , as a rigid analytic variety via

(93) WN = (Spf ΛN )rig , where ΛN = Zp�(Z/NZ)× × Z×
p �.

7Since then, a more satisfactory—albeit somewhat less immediately suited for explicit
computations—definition has been given by Pilloni [Pil13] and Andreatta, Iovita, and Pilloni
[AIP18], who gave a geometric construction of line bundles ωκ on the affinoids Xr for some r that
depends on κ. Pilloni shows that the Eisenstein series of weight κ is a section of his line bundle,

therefore giving a completely geometric definition of the space of r-overconvergent forms M†
κ(r)

for any weight-character κ, as long as r is sufficiently small.
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This set of ideas culminated in the construction, due to Coleman and Mazur
[CM98], of the eigencurve CN .

Theorem 3.4 (Coleman and Mazur). There exists a rigid analytic curve CN →
WN , whose Cp-points classify normalised overconvergent eigenforms f which are
not in the kernel 8 of Up.

The map π : CN −→ WN simply associates to every overconvergent eigenform
f its weight character κ. The geometric properties of CN therefore dictate all the
possible p-adic variations of modular forms of finite slope in families. Relatively
little is known about its geometry. Figure 3 is a free impression that attempts to
depict some of its features. The weight space WN decomposes as a finite union
of open disks, whereas CN contains a particularly well-behaved subspace Cord

N that
is finite flat over every component of WN (to be discussed in §3.7) and otherwise
exhibits a striking contrast between its behaviour close to the boundary and deeper
in the interior (these will be discussed in §4.2).

Figure 3

We briefly mention here one important property that has been established re-
cently, and is often referred to as the “properness” of the eigencurve. More precisely,
it was asked by Coleman and Mazur [CM98] whether the eigencurve can have any
“holes”, in the sense of a p-adic analytic family of overconvergent eigenforms of
finite slope parameterized by a punctured disc, which converges at the puncture to
an overconvergent eigenform in the kernel of Up (such a form is typically said to
have infinite slope). This is reminiscent of the valuative criterion for properness. It
was proved by Buzzard and Calegari [BC06] that no such families exist (and hence
the eigencurve is proper) when p = 2 and N = 1, and then also by Calegari [Cal08]
at integer weights. The general case was established via an intricate, yet elegant,
argument by Diao and Liu [DL16].

3.7. Hida theory. One part of the eigencurve that is fairly well understood is
the ordinary part, whose discovery by Hida [Hid86b,Hid86a] predates that of the
eigencurve by over a decade. An overconvergent form is called ordinary if it is a
Up-eigenvector with an eigenvalue that is a p-adic unit or, said differently, is of
slope zero. Hida considered the ordinary projection operator

(94) eord = lim
n→∞

Un!
p ,

8In this case, we say f is of finite slope, where the “slope” refers to the valuation of its Up-

eigenvalue.



OVERCONVERGENT MODULAR FORMS 337

whose limit exists as an operator on M†
κ(r) for any κ in WN . Then Hida showed

the following.

Theorem 3.5 (Hida). The image of eord on M†
κ(r) is a finite-dimensional vector

space, whose dimension depends only on the connected component of WN containing
κ.

This spectacular result shows that even though the slopes of the spectrum of
Up can vary wildly, the dimension of the part of slope 0 is locally constant on
WN . Note that the connected components of WN are indexed by the characters
(Z/NqZ)× → C×

p , and the dimension of the ordinary subspace is constant over
each component. Hida in fact proved the following statement. Suppose

(95) πord : Cord
N → WN

is the projection map from the ordinary part of the eigencurve to weight space.
Then πord is finite flat. The ordinary part of Cord

N is often referred to, though
usually only locally, as the Hida family.

An extremely powerful tool is the fact that specialisations of Hida families at
classical weights k ≥ 2 are always classical modular forms. More generally, the
following theorem was proved by Coleman [Col96].

Theorem 3.6 (Coleman). Suppose that k ≥ 2 is an integer weight and f ∈ M†
k is

a Up-eigenform of slope strictly less than k − 1. Then f is classical, in the sense
that it belongs to the finite-dimensional subspace

(96) Mk(Γ0(Np)) ⊂ M†
k(Γ0(N)).

It is difficult to overstate the importance of this powerful result, which often goes
by the name of the Coleman classicality theorem. In the literature on overconvergent
modular symbols, it is also commonly referred to as Coleman’s control theorem. It
has far-reaching implications, and is used so frequently in the literature—as well as
what follows—that it is often applied without explicit mention.

3.8. Leopoldt’s formula. We end this section with an application of this geo-
metric viewpoint on p-adic modular forms, and we prove a classical result on the
value at s = 1 of p-adic L-functions attached to Dirichlet characters via an incar-
nation of Serre’s idea to investigate the constant coefficient via the higher Fourier
coefficients. In this situation, it allows us to identify the L-value as an explicit
combination of units. We follow the treatment in [BCD+], which contains several
more appearances of Serre’s idea in various guises. A different proof for Leopoldt’s
formula for Lp(1, χ) can be found in [Was97, §5.4].

Suppose that χ : (Z/NZ)× → C× is a primitive, even Dirichlet character with
conductor N > 1 coprime to p. Then we have the p-adic Eisenstein family of
overconvergent forms
(97)

E
(p)
k (χ) = Lp(1−k, χ) + 2

∑
n≥1

σ
(p)
k,χ(n) qn, where σ

(p)
k,χ(n) =

∑
p � d |n

χ(d)dk−1.

This family specialises at k = 0 to a rigid analytic function on Xord = X1(N)ord,
whose value at the cusp ∞ is the value Lp(1, χ). Now choose a primitive Nth root
of unity ζ. Then there is a collection of Siegel units ga ∈ O×

Y1(N) whose q-expansions
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are given by

(98) ga(q) = q1/12(1 − ζa)
∏
n≥1

(1 − qnζa)(1 − qnζ−a), 1 ≤ a ≤ N − 1.

Using the operator Vp on p-adic modular forms, we define the rigid analytic function

(99) F (p)
χ =

1

pg(χ−1)

N−1∑
a=1

χ−1(a) logp
(
Vp(gpa)g

−1
a

)
,

which is defined on the ordinary locus Xord. Here g denotes the standard Gauß
sum, obtained by summing χ−1(a)ζa over a. A direct computation, using expression

(98), shows that the higher coefficients of its q-expansion agree with that of E
(p)
0 (χ).

Therefore the modular form

(100) E
(p)
0 (χ) − F (p)

χ ,

which is a constant function, must be equal to zero, since it has nebentype χ.
We conclude that the constant terms of both series are equal, yielding Leopoldt’s
formula,

(101) Lp(1, χ) = − (1 − χ(p)p−1)

g(χ−1)

N−1∑
a=1

χ−1(a) logp(1 − ζa).

4. Explicit computations and arithmetic applications

We now discuss how to compute explicitly with overconvergent modular forms,
in more generality than was achieved in the extended example §3.4, by following
the approach of Lauder [Lau11]. We then look at a number of different arithmetic
applications of this theory, illustrated with explicit examples.

4.1. Computing overconvergent forms. We first explain how to compute ex-
plicit bases for the p-adic Banach spaces of r-overconvergent forms, following Katz
[Kat73] and Lauder [Lau11]. Note that in the explicit example treated in §3.4, where
(p,N) = (2, 1) and k = 0, we were particularly lucky in the sense that the modular
curve X0(2) had genus zero, and the overconvergent regions Xr were isomorphic
to a rigid analytic disk, for which we could identify an explicit parameter. This
procedure can be repeated for any prime p for which X0(p) has genus zero (i.e. for
p = 2, 3, 5, 7, 13), where one can likewise write down a power basis for the space of
overconvergent modular forms, for any weight k. See Loeffler [Loe07] for a detailed
discussion of this case, as well as many interesting results and computations.

For general values of p, we are faced with a more complicated geometric picture,
as the overconvergent regions Xr are isomorphic to the complement of a finite
number of disks in P1 (see Figure 4). Moreover, in cases where we also have a
nontrivial tame level N , the modular curve from which we remove these finitely
many disks is no longer isomorphic to P1. Therefore, finding an explicit basis for
the set of sections over the overconvergent regions Xr becomes significantly more
subtle. In his foundational paper on the subject, Katz [Kat73, Chapter 2] identifies
an explicit basis for these spaces, such that any overconvergent form may be written
as a unique linear combination of it, referred to as its Katz expansion.
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Table 1

p 2 3 ≥ 5
E E4 E6 Ep−1

n 4 3 1
kE 4 6 p− 1

Let X be the modular curve over Zp with Γ1(N)-level structure9 for p � N ≥ 5.
Let n be the smallest power of p such that the nth power of the Hasse invariant
An lifts to a level 1 Eisenstein series E of weight kE = n(p− 1). Throughout this
section, we assume nr ≤ 1. Our notation is summarised in Table 1.

We now describe an explicit basis for the spaces M†
k(r). Suppose r = vp(s) for

some s ∈ Cp, then let Ir be the sheaf of ideals in Sym(ω⊗kE ) generated by E− sn,
and define the line bundle

(102) L = SpecX
(
Sym(ω⊗kE )/Ir

) πL−→ X .

Assuming that k 	= 1, we can apply the base change theorems from [Kat73, Theorem
1.7.1] to show that

M†
k(r) = H0

(
Lrig, π∗

Lω
⊗k

)
(103)

= H0
(
X , ω⊗k ⊗ Sym(ω⊗kE )

)
/H0(X , Ir).(104)

Having this concrete description in hand, we now attempt to eliminate the relation
E = sn by investigating the map given by multiplication by E on modular forms
as in [Kat73, Lemma 2.6.1] and [Von15, Lemma 1]. More precisely, the injection
given by the multiplication by E-map

(105) −× E : H0
(
X , ω⊗k

)
−→ H0

(
X , ω⊗k+kE

)
splits as a map of Zp-modules. This implies that for every i ≥ 0, we may choose
generators {ai,j}j for a complement of the submodule

(106) Im (−× E) ⊆ H0(X , ω⊗k+ikE ).

9In practice, there is a lot of flexibility with the setup, and the computations below are usually
for Γ0(N) instead of Γ1(N). To justify this, some additional analysis is required to deal with the
lack of representability; see [BC05, Appendix].
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This choice is not canonical, but we will fix it once and for all in what follows. As
in [Kat73, Proposition 2.6.2], one obtains the following as a consequence of (104)
and the splitting of (105).

Theorem 4.1. The set {ei,j}i,j is an orthonormal basis for the p-adic Banach

space M†
k(r), where

(107) ei,j = sni
ai,j
Ei

.

Note that we have avoided the case k = 1, which we can still compute with by
appropriately twisting by Up, thereby reducing the computation to one in higher
weight for which the results above hold. This technique is often referred to as
Coleman’s trick (see [Col97b, Eqn. (3.3)]) and is also frequently useful in other
situations. It is based on the observation that multiplication by Ej defines an
isomorphism

(108) M†
k(r) −→ M†

k+jkE
(r),

as well as the fact that the Up-operator is Frobenius linear in the sense that

(109) Up(fVp(E)) = Up(f)E.

It follows from these two simple facts that Pk+jkE
(t) equals the characteristic series

of Up ◦ Gj on M†
k(r), where we denote G = E/VpE. This allows us to flexibly

change the weights of the spaces of overconvergent forms we are interested in.
In particular, we can compute overconvergent forms in weight 1 by reducing the
computation to, say, weight p. Likewise, if we would like to compute the operator

Up on M†
k(r) for some extremely large weight k, we can use Coleman’s trick to

reduce the computation to a small weight.
Now that we know, by Theorem 4.1, an explicit basis ei,j for the Banach space

M†
k(r), we are in a position to compute approximations of the matrix of Up on

q-expansions. Since we can only compute finitely many of its entries, we need a
good estimate on the valuations of its entries, so we know how many elements of the
basis we need to compute before we are guaranteed that the end result is correct
up to some chosen p-adic precision. To do this, let us first fix some notation for
these entries. We write

(110) Up ◦Gj(eu,v) =
∑
w,z

Aw,z
u,v (j) ew,z,

for some Aw,z
u,v (j) ∈ Cp. Said differently, the numbers Aw,z

u,v (j) are the entries of the

infinite matrix of Up ◦Gj with respect to our chosen orthonormal basis for M†
k(r).

The following lemma estimates their p-adic valuations and is an easy extension of
Wan [Wan98, Lemma 3.1]; see [Von15].

Lemma 4.2. We have

(111) vp
(
Aw,z

u,v (j)
)
≥ wrkE − 1 − r(n− 1).

The reader may have wondered why in the above precision estimate, we included
the parameter j, corresponding to a twist of the Up operator by Gj = (E/VpE)j ,
rather than simply putting j = 0. The reason is that this allows us to easily
move between different weights and to perform the computation of Up in several
weights at once. The examples below illustrate this by computing the Up-operator
in families.
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Remark. In what follows, we frequently drop the rate of overconvergence r from the
notation. This is justified by the fact that an overconvergent finite slope eigenform
must be r-overconvergent for any r < p/(p+1). The data below therefore does not
depend on r at all, though its computation does. It is clear from (111) that it is
helpful in practice to choose r as large as possible to accelerate convergence.

4.2. The spectral curve. We now have two crucial active ingredients for a work-
ing algorithm to compute with spaces of overconvergent modular forms, since we
have (a) an explicit basis due to Katz, provided by Theorem 4.1, and (b) a precision
estimate for the concomitant entries of the matrix of Up due to Wan, provided by
(111). Lauder [Lau11] combines these two ingredients into an efficient algorithm

for computing Up on M†
k(r). We note that the estimate (111) is independent of j,

and hence the computation may be performed at several p-adic weights at once.
In this example, we compute the resulting 2-variable series P (κ, t). The curve in
WN ×Gm cut out by this equation is often referred to as the spectral curve of Up,
which yields the eigencurve after an additional modification; see [CM98].

Let f : WN → Cp be a function in the Iwasawa algebra, and let {κ0, κ1, . . . , κn}
be a finite set of points. Then we denote f [κ0] = f(κ0) and we inductively define
the divided difference of order n to be

f [κ0, κ1, . . . , κn] :=
f [κ1, . . . , κn] − f [κ0, . . . , κn−1]

κn − κ0
.

We now define the nth Newton series to be

(112) Pn(κ, t) =

n∑
i=0

P [κ0, κ1, . . . , κi](t) × (κ− κ0)(κ− κ1) · · · (κ− κi),

where P [κ0, . . . , κn](t) is the power series in t obtained by taking the corresponding
finite differences on the coefficients of P (κ, t) of t, which are elements of the Iwasawa
algebra by Coleman [Col97a]. The theory of finite differences then shows that upon
increasing the number of interpolation points, the nth Newton series p-adically
approaches the series P (κ, t). This means that all we need to do to compute an
approximation for P (κ, t) is choose our interpolation points carefully and estimate
the error term.

We explicitly compute some examples, starting by revisiting the example of
Buzzard and Calegari [BC05] familiar from §3.4, and then venturing into more
unfamiliar territory relating to situations that were considered in the literature
by Buzzard and Kilford [BK05], Roe [Roe14] and the work on boundary slopes,
and the spectral halo by Andreatta, Iovita, and Pilloni [AIP18] and Bergdall and
Pollack [BP16]. We note that an alternative approach using overconvergent modular
symbols has been developed in [DHH+16] for Hida families. Their algorithms yield
explicit q-expansions of Hida families, where the coefficients are elements of Λ, but
it is only equipped to handle the ordinary part of the spectrum of Up.

Example 4.1. We revisit the case of p = 2 and tame level N = 1, where we
computed with the space for k = 0 in §3.4. Using an interpolation as described
above, we can compute the two variable power series P (κ, t), whose specialisation at
κ ∈ W recovers the characteristic series Pκ(t) of U2 on the space of overconvergent
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modular forms M†
κ(r). We obtain

P (κ, t) = 1 + (519736167t+413685912t2+148708352t3+1065353216t4)

+ κ(36306799t+374998993t2+380696768t3+281739264t4)

+ κ2(43984100t+481404364t2+496002384t3+387895296t4+1811939328t5)

+ κ3(874017364t+890496879t2+487943741t3+4077568t4+964689920t5)

+ κ4(392124398t+264203079t2+839291211t3+908503936t4+817102848t5)

+O(κ5, 230),

We actually computed P (κ, t) to precision O(κ25, 270), which took about five min-
utes, but we truncated the result to get output that fits in this document. Let us
now investigate various specialisations:

• The computation we did in the previous section is contained in this one,
and if we set κ = 5k−1 = 0, which corresponds to weight k = 0, we recover
the same power series as before, up to the used precision. In particular,
we can read off that first few slopes are 01,31,71, . . . , which agrees with
the result of Buzzard and Calegari [BC05] that in weight 0 the nth slope is
equal to

1 + 2v2

(
(3n)!

n!

)
.

• As for the other extreme, the main result of Buzzard and Kilford [BK05]
states that the slopes on the boundary annulus 1/8 < |κ| < 1 form an arith-
metic progression with nth term nv2(κ), all with multiplicity 1. Indeed, by
substituting κ = 2, we obtain the slope sequence 0, 1, 2, 3, 4, . . . , while for
κ = 4 we recover 0, 2, 4, 6, 8, . . . . Our computed power series P (κ, t) hence
combines the best of both worlds, by describing the spectral curve over the
inner regions of W as well as the outskirts. Notice the striking contrast
between the nature of the slope sequence at k = 0 and that close to the
boundary! A folklore conjecture predicts that the same phenomenon hap-
pens in general, and a result of this flavour was obtained by Liu, Wan, and
Xiao [LWX17].

In the above computation, we focussed on the variation of Pκ(t) with the weight
κ, but we can interchange the variables κ and t and study instead the powers series
in κ appearing as the coefficients of the above series in t. For instance, up to
precision (221, κ7) we obtain

P (κ, t) ≡ 1 + t(1739623+655215κ+2041060κ2+1602132κ3+2054126κ4+779022κ5+1634724κ6)

+ t2(546968+1705937κ+1156556κ2+1304431κ3+2059079κ4+1677821κ5+644339κ6)

+ t3(1907712+1112256κ+1074512κ2+1404477κ3+430411κ4+51909κ5+1261732κ6)

+ t4(720896κ+2019328κ2+1980416κ3+437120κ4+1161264κ5+1648837κ6)

+ t5(1310720κ4+524288κ5+1101824κ6)

+O(221, κ7).

Investigating the coefficients ai(κ) of P (κ, t) for small values, we see that their
valuation on κ ∈ Z2 only seems to depend on κ (mod 26). This can be made
into a rigorous proof of this fact by using the uniform estimates in Wan [Wan98]
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for the Newton polygon in t of P (κ, t) recalled above. After possibly redoing the
computation to a higher precision, to assure that all the slopes are indeed correct, we
recover the following theorem, which may be found in Emerton [Eme98, Theorem
1.1].

Theorem 4.3 (Emerton). The minimal nonzero slope of U2 on M†
k in tame level

1, along with its multiplicity, depends only on k (mod 16). More precisely, it is
given by

31 if k ≡ 0 (mod 4),
41 if k ≡ 2 (mod 8),
51 if k ≡ 6 (mod 16),
62 if k ≡ 14 (mod 16).

We note that the calculations of Emerton [Eme98] rely crucially on the explicit
uniformisations of 2-adic regions on the genus 0 modular curves X0(2

n) for small
values of n, which are hard to come by in higher levels and primes. Our algorithms
do not rely on any specifics of the situation (p,N) = (2, 1), and therefore similar
arguments work in more general settings.

Table 2

Coefficient Valuations λ
a0(κ) = 1 ∅ 0
a1(κ) ∅ 0
a2(κ) 31 1
a3(κ) 32,41 3
a4(κ) 34,41,71 6
a5(κ) 36,42,51,71 10
a6(κ) 39,43,52,61 15
a7(κ) 312,45,52,61,81 21

Looking further into the above coefficients, let λ(i) be the number of roots of
ai(κ) in the open unit disk. Table 2 displays the 2-adic valuations of these roots,
along with their multiplicities. By inspecting the 2-adic valuations of the coefficients
we computed, we see that this output is provably correct and complete. Note that

λ(i) =

(
i

2

)
,

which also follows from the main result of Buzzard and Kilford [BK05]. In Bergdall
and Pollack [BP16] precise conjectures are made about the location of the zeroes
of ai.

Example 4.2. Let us set (p,N) = (3, 1) and compute P (κ, t) up to precision
O(390, κ60). With the same notation as above, we find10 the slopes of the zeroes
of the coefficients ai(κ); see Table 3. Again, this output is complete and provably
correct. Notice that

λ(i) = 2

(
i

2

)
,

10The motivated reader can try to recover this computation, for instance using an explicit basis
similar to that used in §3.4, which is possible since X0(3) has genus 0. There is a particularly
nice basis, described by Loeffler [Loe07], which can be twisted by an Eisenstein series to obtain
the computation in all weights.
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Table 3

Coefficient Valuations λ
a0(κ) = 1 ∅ 0
a1(κ) ∅ 0
a2(κ) 12 2
a3(κ) 15,31 6
a4(κ) 19,22,31 12
a5(κ) 115,24,31 20
a6(κ) 122,25,32,41 30
a7(κ) 130,28,32,42 42
a8(κ) 140,211,32,43 56

which follows from the main result of Roe [Roe14], who showed that near the
boundary, the slopes form an arithmetic progression with an explicit argument
that depends on the valuation of κ. Roe tackled this more complicated situation
using the same techniques as Buzzard and Kilford [BK05].

Example 4.3. We now turn to (p,N) = (2, 3) and compute P (κ, t) up to precision
O(260, κ20). This computation took about 90 minutes on a standard laptop. In
addition to the notation above, let μ(i) to be the largest power of p that divides
ai(κ). The work of Bergdall and Pollack [BP16] uses Koike’s trace formula to prove
that μ(i) = 0 whenever N = 1. However, in our situation μ appears to be larger for
several i; see Table 4. Computing P (κ, t) up to precision O(2, κ30) takes about one
minute. Extracting the degrees of the t-coefficients, our data suggests the boundary
slope sequence

02,1/22,12,3/22,22,5/22,32,7/22, . . . ,

which is indeed in accordance with the Newton polygon of λ + μ computed above,
up to the chosen precisions. Notice the similarity with the slope sequence for
(p,N) = (2, 1).

Table 4

Coefficient Valuations λ μ
a0(κ) = 1 ∅ 0 0
a1(κ) − − −
a2(κ) ∅ 0 0
a3(κ) ∅ 0 1
a4(κ) 41 1 0
a5(κ) 32 2 1
a6(κ) 32,41 3 0
a7(κ) 32,41,81 4 1
a8(κ) 33,41,51,61 6 0
a9(κ) 34,43,61 8 1
a10(κ) 35,43,51,81 10 0
a11(κ) 36,44,52 12 1
a12(κ) 37,45,52,71 15 0
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Example 4.4. As above, set (p,N) = (11, 1) and compute P (κ, t) up to precision
O(11, κ60), which takes about two minutes. We compute the degrees of the t-
coefficients, which suggest the boundary slope sequence,

01,11,21,31,42,51,61,71,92, . . . .

4.3. The Gouvêa–Mazur conjecture. An enormous amount of arithmetic in-
formation is encoded in the slopes of overconvergent modular forms, which are the
valuations of their Up-eigenvalues. One of the consequences of the theory of Cole-
man [Col97b] is that for any α > 0, there exists a smallest integer Nα with the
following property. If k1 and k2 are integers such that

(113) k1 ≡ k2 mod pNα(p− 1),

then the collection of slopes ≤ α in weights k1 and k2 agree, with multiplicities.
Gouvêa and Mazur conjectured in [GM92] that Nα ≤ �α�. However, Wan [Wan98]
exhibits an explicit quadratic upper bound for Nα, depending on p and the level.11

The key observation for Wan is that the lower bound (111) is independent of
j. After taking determinants, we obtain a lower bound on the coefficients of the
characteristic series of Up in weight k + jkE , again independent of j. Wan then
proceeds by proving a very general reciprocity lemma on Newton polygons, which
allows him to transform the lower bound for those coefficients into an upper bound
for Nα.

Theorem 4.4. There is an explicitly computable quadratic polynomial P ∈ Q[x],
depending only on p and the level, such that Nα ≤ P (α).

Since Gouvêa and Mazur conjectured in [GM92] that Nα ≤ �α�, this is still an
order of magnitude from what we expect. However, the Gouvêa–Mazur conjecture
is known to be false, and a counterexample was given in [BC04]. It should be noted
that the counterexample of Buzzard and Calegari is only a very small violation of
the conjecture, and generically it seems that in fact something much stronger than
the Gouvêa–Mazur conjecture is true! Let us illustrate this with two examples.

The case p = 2 is prolific soil for finding counterexamples to the Gouvêa–Mazur
conjecture. As noted above, the first counterexample was given in [BC04] for p = 59
and level 1, and a further one for p = 79 in [Lau11]. For p = 2, we obtain the
following slope sequences in level Γ0(19):

k = −2 : 04,1/22,13,25,9/44,43,52,621,15/22, . . . ,

k = 0 : 04,1/22,15,311,13/44,725,25/24,1311, . . . ,

k = 2 : 04,1/22,13,3/22,25,411,17/44,825,27/24, . . . ,

k = 4 : 04,1/22,15,5/22,36,7/22,43,55,21/44, . . . ,

k = 6 : 04,1/22,13,27,5/22,43,9/22,56,11/22, . . . ,

k = 8 : 04,1/22,15,313,7/22,65,13/22,76,15/22, . . . .

Notice the aberration in the dimensions of the slope-1 subspaces, as well as the
slope 3 subspaces in weights 0 and 8. Whereas these are all near misses, in that
the smallest slopes for which discrepancies arise are exactly equal to the valuation
of the weight difference, we note a two-dimensional slope 3/2 subspace in weight 2,

11Strictly speaking, Wan assumes that p ≥ 5, but his arguments easily extend to p = 2, 3 when
using our basis described above.
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which is completely absent in weight 6, whereas 3/2 < v2(6− 2) = 2. Similarly, the
slope 9/4 subspace in weight −2 does not exist in weight 6 = −2 + 23.

On the other hand, to see how the Gouvêa–Mazur conjecture is frequently much

weaker than the truth, consider the first few slopes of U3 acting on M†
278 (Γ0(41)),

which we computed using Lauder’s algorithm to be

(114) 012,114,348,614,722,86,922,1014,1248,1414,1622,176,1822, . . . ,

where the subscripts denote multiplicities. Repeating the same computation in
weight 8, we find the exact same slope sequence for all the terms we display here,
whereas the Gouvêa–Mazur conjecture would only predict that the slopes up to 3
to agree. This behaviour seems rather typical in most examples we computed.

4.4. Chow–Heegner points. We now discuss how the computation of spaces
of overconvergent forms, using the above algorithms, can be used to construct
arithmeto-geometric invariants. We chose to discuss the Heegner-type point con-
struction on elliptic curves, following Darmon and Rotger [DR14].

Let p be a prime, and let E/Q be an elliptic curve of conductor N associated
to a p-ordinary form f ∈ Snew

2 (Γ0(N)). Let g be any other weight 2 newform
which is p-ordinary. It can be deduced from the work of Darmon and Rotger
[DR14, Theorem 1.3] that there exists a global (rational) point Pg ∈ E(Q) that
satisfies the Gross–Zagier type formula,

(115) log(Pg) = 2dg · E0(g) E1(g)
E(g, f, g)

· Lp(g, f ,g)(2, 2, 2),

where the quantities appearing in the formula are the following:

• log is the formal p-adic logarithm on the elliptic curve E,
• dg is an integer described in [DDLR15, Remark 3.1.3],
• the E-factors are quadratic numbers depending only on the pth coefficients

of f and g,
• Lp(g, f ,g) is the Rankin triple product p-adic L-function of the Hida fam-

ilies f ,g through f, g.

The last item in this list deserves some discussion. We will not define the Rankin
triple product p-adic L-function here, as that would lead us too far from the topic of
these notes, and the exposition in Darmon and Rotger [DR14] is excellent. We will
however explain how one computes the special value appearing in formula (115).
As before, we let eord = limn U

n!
p be Hida’s ordinary projector. Start by computing

(116) eord(θ−1f [p] × g),

where f [p] denotes the p-depletion (1 − VpUp)f of f . Here, we have used Serre’s
differential operator θ = qd/dq, which is an important object in the theory of
overconvergent forms and which would surely merit an entire article to do it justice.
The inverse of this operator is defined by the p-adic limit

(117) θ−1 = lim
n→∞

θp
n−1.

By Coleman’s criterion, we conclude that the overconvergent form (116) is clas-
sical, and hence it can be written as a finite linear combination of Hecke eigenforms
of weight 2 and level Γ0(p). The special value Lp(g, f ,g)(2, 2, 2) is the coefficient
of g in this linear combination.
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Example 4.5. Consider the elliptic curve

(118) E : y2 + xy = x3 − x2 − x + 1,

which has rank 1 and conductor 58. Consider its associated newform f , and let g
be the unique newform on Γ0(58) different from f . Then
(119)

f(q) = q − q2 − 3q3 + q4 − 3q5 + 3q6 − 2q7 − q8 + 6q9 + 3q10 − q11 + · · · ,
g(q) = q + q2 − q3 + q4 + q5 − q6 − 2q7 + q8 − 2q9 + q10 − 3q11 + · · · .

Both f and g are 2-ordinary. Letting P = (0, 1) be a generator for E(Q), we
compute that

(120) L2(g, f ,g)(2, 2, 2) ≡ 3 logE(P ) (mod 2200),

as predicted by the theory in [DR14].

Let us end this discussion on a more speculative note. In the above it is impor-
tant that f is ordinary. Whereas it is conceivable that this may be extended to
eigenforms of finite slope through the use of Coleman families, it is not clear that
even if the Rankin triple product p-adic L-function may be constructed in cases
where f is of infinite slope, that it should be related to global points. Nonetheless,
the computation of the special value above yields an explicit number even in those
situations, and we now compute a few examples where the Tate module of EQ is
wildly ramified at 2 or 3, and f is of infinite slope.

Example 4.5a. Consider the elliptic curve

(121) E : y2 + y = x3 + 9x− 10,

which is of conductor 4617 = 35 · 19 and rank 1. Consider the newforms

(122)
f(q) = q − 2q2 + 2q4 − 2q5 − 3q7 + 4q10 − 6q11 + · · · ,
g(q) = q − 2q3 − 2q4 + 3q5 − q7 + q9 + 3q11 + · · · ,

where f is associated to E, and g is the unique cuspidal newform of weight 2 on
Γ0(19). Despite f being of infinite 3-adic slope, we can run the computation and
find a numerical value for L2(g, “f

′′,g)(2, 2, 2). We find that

(123) L3(g, “f
′′,g)(2, 2, 2) ≡ t · logE(P ) (mod 3200) where 2t2+48t+729 = 0,

where P = (4, 9) is a generator of E(Q). The fact that both quantities are related
by a quadratic number t of small height suggests that a more general analogue
of the theory for ordinary forms in [DR14], and more specifically equation (115),
might exist.

Example 4.5b. Consider the elliptic curve

(124) E : y2 = x3 + x2 − 62893x− 6091893,

which is of rank 1 and conductor 15104 = 28 · 59. Let f be its associated newform,
and let g be the newform of level 118 associated to the elliptic curve with Cremona
label 118.a1. Then
(125)

f(q) = q − 2q3 − 3q7 + q9 + 3q11 − 3q13 + · · · ,
g(q) = q − q2 − q3 + q4 − 3q5 + q6 − q7 − q8 − 2q9 + 3q10 − 2q11 + · · · .

Note that g is 2-ordinary. We compute that

(126) L2(g, “f
′′,g)(2, 2, 2) ≡ 6 logE(P ) (mod 2100).
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4.5. p-Adic L-functions of real quadratic fields. We end this article with a
discussion of a method to compute p-adic L-functions of totally real fields F , follow-
ing [LV19]. We closely mirror the approach to p-adic L-functions in §2 developed
in Serre [Ser73] and Deligne and Ribet [DR80], which is rooted in an idea that goes
back to Hecke [Hec24] and Siegel [Sie68]. It should be noted that an alternative
approach towards p-adic L-functions of Barsky and Cassou-Noguès [Bar78,CN79]
based on the explicit formula for zeta values of Shintani [Shi76] was recently used
to develop an algorithm for their computation by Roblot [Rob15]. Instead, here we
take an approach using diagonal restrictions of Eisenstein series and p-adic inter-
polation, similar to that of Cohen [Coh76] and Cartier and Roy [CR72].

For simplicity, we restrict to the case where F = Q(
√
D) is a real quadratic field.

Let d denote its different ideal. Suppose ψ is a character of F . Then Hecke [Hec24]
proposed studying the values L(ψ, 1− k) by considering the diagonal restriction of
a Hilbert Eisenstein series of weight k over F . This was carried out by Klingen
and Siegel [Kli62, Sie68] to show the rationality of such special values and to give
explicit closed formulae for some small values of k. For instance, their methods,
which we review shortly, yield classical identities such as

(127) ζF (−1) =
−1

60

∑
b<

√
D

b≡D (mod 2)

σ1

(
D − b2

4

)
.

To explain their arguments, we recall the definition of the Eisenstein series at-
tached to a character ψ of modulus m. Suppose k ≥ 1 is such that ψ has sign (−1)k

at both infinite places. Shimura [Shi78] defines the space Mk(m, ψ) of Hilbert mod-
ular forms of (parallel) weight k, level m, and character ψ. We content ourselves
by mentioning that the data includes a holomorphic function f : H2 → C which
satisfies

(128) (c1z1 + d1)
−k(c2z2 + d2)

−kf

(
a1z1 + b1

c1z1 + d1
,
a2z2 + b2

c2z2 + d2

)
= ψ(a)f(z1, z2),

for all matrices

(129) γ =

(
a b
c d

)
∈ SL2(OF ) such that c ∈ m.

Here and in what follows, we have used the notation xi to denote the image of
x ∈ F under the ith embedding σi : F ↪→ R. The transformation law (128) implies
that every form has a q-expansion, indexed by the totally positive elements d

−1
+ of

the inverse different. The case of interest to us is given by the Eisenstein series

(130) Gk,k(ψ) ∈ Mk(m, ψ),

whose q-expansion is given by12

(131) L(ψ, 1 − k) + 4
∑

ν∈d
−1
+

∑
a|(ν)d

ψ(a) Nm(a)k−1 exp (2πi(ν1z1 + ν2z2)) .

12In the case where k = 1 and m = (1), the constant term of (131) must be modified suitably.
We refer the interested reader to the statements contained in the article by Darmon, Dasgupta,
and Pollack [DDP11, Proposition 2.11] for more details.
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The diagonal restriction of Gk,k(ψ)(z1, z2) is obtained by setting z1 = z2, and it is
a modular form of weight 2k and level one, which has the q-expansion,

(132) L(ψ, 1 − k) + 4
∑
n≥1

⎛⎜⎜⎜⎝ ∑
ν∈d

−1
+

Tr(ν)=n

∑
a|(ν)d

ψ(a) Nm(a)k−1

⎞⎟⎟⎟⎠ qn.

Setting k = 2, note that M4(SL2(Z)) = 〈E4〉, so the above form must be a multiple
of E4. One quickly determines this multiple, and we deduce the equality (127).
For general k, it is more difficult to describe the combination of modular forms
we obtain, but we can always choose a basis of classical modular forms with ratio-
nal Fourier coefficients, of which the diagonal restriction must be a rational linear
combination due to the rationality13 of its higher Fourier coefficients. It then im-
mediately follows that L(ψ, 1 − k) must also be rational. We illustrate this with a
simple example.

Example 4.6. Let us consider F = Q(
√

5). The narrow ray class group attached
to the prime (3) is

(133) Cl+(3) � Z/2Z,

and the unique quadratic character ψ of conductor (3) is totally odd. We compute
the diagonal restriction in (132) for k = 3 and find it has q-expansion given by

(134) L(ψ,−2) − 1144q − 39696q2 − 291448q3 − 1261696q4 + · · · .
This is a modular form of weight 6 and level Γ1(3), and the space M6(Γ1(3)) is
three dimensional and has a basis of the form

(135)

⎧⎨⎩
f1 = 1 − 504q3 + · · · ,
f2 = q + 45q3 + 166q4 + · · · ,
f3 = q2 + 6q3 + 27q4 + · · · .

Using the first three higher Fourier coefficients, we easily determine that the diag-
onal restriction is equal to

32

9
f1 − 1144f2 − 39696f3,

and we deduce that L(ψ,−2) = 32/9.

For general weights and characters, our inability to easily describe the first few
Fourier coefficients of a rational basis for the space of modular forms that contains
the diagonal restriction is what stood in the way of giving a clean explicit formula
of the sort in (127). Computationally, we may easily determine such a basis as in
the above example, and we obtain such a formula in any given case that merits
our consideration. This effectively reduces the computation of the constant term to
the efficient computation of the higher Fourier coefficients of (132), which are of a
much more elementary nature. For real quadratic fields, an efficient algorithm was
presented in [LV19] in terms of the theory of reduced cycles of indefinite quadratic
forms [Gau01,BV07]. The p-adic variation of the constant term is then computed by
interpolation, and therefore we find an algorithmic incarnation of the idea of Serre

13Strictly speaking, here we mean rational over the smallest number field containing the values
of ψ.
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of studying this variation by studying the corresponding variation of the higher
Fourier coefficients.

Example 4.7. Let F = Q(
√

3 · 71), and let ψ be the genus character attached to
the extension

L = Q(
√
−3,

√
−71).

The p-adic L-function is naturally an element in the Iwasawa algebra Zp�κ� where
for any positive integer k ≡ 1 (mod p− 1), we have the interpolation property

(136) Lp

(
(1 + p)k−1 − 1, ψ

)
= L(1 − k, ψ) ·

∏
p|p

(1 − ψ(p) Nm(p)k−1),

which, together with the method described above, we use to compute numerically
that

L7(κ, ψ) = −103777561 · 7κ− 96435328κ2 − 15935394κ3 + · · · (mod 710, κ4),
L11(κ, ψ) = −8645808191− 10894273842κ+ 4315116763κ2 + · · · (mod 1110, κ4).

By inspection of the Newton polygon, we see that the 7-adic L-function has precisely
two zeroes in the open unit disk. One of the zeroes is a so-called exceptional zero,
which is caused by the vanishing of the Euler factor at κ = 0 (corresponding to
k = 1) in the equality (136). Such a zero is not present in the 11-adic L-function,
since 11 splits into two ideals in F , neither of which are in the kernel of ψ. The
other zero of L7(κ, ψ) is more interesting, and we compute its approximate value

κ = 2669714 · 7 (mod 710).

The presence of this zero predicts linear growth of the 7-part of the class number
of the cyclotomic tower over L relative to F . In fact, such a divisibility is already
be observed at the bottom layer, since

ClL � Z/7Z.

A celebrated feature of these p-adic L-functions is contained in the Gross–Stark
conjecture, which occurs in situations where p is inert in F , so there is an exceptional
zero as in the example above. Indeed, in this case it is known by the work of
Darmon, Dasgupta, and Pollack [DDP11] that

Lp(0, ψ) = 0, L′
p(0, ψ) = logp(u), u ∈ OH [1/p]×,

where H is the ray class field cut out by ψ. The numerical computation of the
quantity L′

p(0, ψ) may be done without first computing the series Lp(κ, ψ), using
a more direct and efficient approach. To explain it, assume for simplicity that ψ is
unramified, and note the following (see [DPV19]).

• The p-adic family Gκ,κ(ψ)(z, z) obtained from the diagonal restrictions
of the Hilbert Eisenstein series specialising to the p-stabilisations of the
Eisenstein series (131) attached to ψ vanishes at κ = 0 (which corresponds
to weight k = 1); i.e., we have

G0,0(ψ)(z, z) = 0.

In other words, the exceptional zero of the constant term propagates to the
higher coefficients.
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• Its first order derivative with respect to κ is the q-expansion of an overcon-
vergent modular form of tame level one, whose constant coefficient is equal
to L′

p(0, ψ).

Since the higher Fourier coefficients are elementary even after taking this first order
derivative, we may proceed with the strategy as above. We compute the higher
Fourier coefficients, write the form in terms of a precomputed basis for the space

M†
2 (SL2(Z)), and obtain a p-adic approximation for the constant term L′

p(0, ψ).
This leads to very significant speedups when compared to the naive approach that
first computes the series Lp(κ, ψ). The following example appears in [LV19, §4.4].

Example 4.8. Let F = Q(
√

321), which has class number 6. Then we compute in
under five seconds that when ψ is the unique unramified quadratic character, we
have L′

7(0, ψ) = log7(u), where u is a root of

716u6 − 20976 · 78u5 − 270624 · 74u4 + 526859689u3 − 270624u2 − 20976u+ 74 = 0,

which is a 7-unit in the Hilbert class field of F .

Remark 1. A beautiful alternative method for the computation of the Gross–Stark
unit was developed for real quadratic fields by Dasgupta [Das07] and for cubic fields
by Slavov [Sla07] based on the Shintani cone refinements of [Das08]. We mention
also the unpublished algorithm of Charollois, based on cocycle relations for GLn,
as in [CD14, CDG15]. These works are more closely related to the definition of
the p-adic L-functions by Barsky and Cassou-Noguès, but they yield a suitable
refinement of it. Such a refinement may also be obtained for our method above,
where the p-adic family of Eisenstein series is replaced by a cuspidal family in the
antiparallel weight direction. This is the subect of the forthcoming paper [DPV20].

Remark 2. We note the striking parallel with the work of Gross and Zagier [GZ86]
on singular moduli. They consider the setting of two imaginary quadratic fields
K1 = Q(τ1) and K2 = Q(τ2), whose biquadratic compositum contains a unique
real quadratic subfield F . The real analytic family Gs(z1, z2) over F attached to
the associated genus character is the principal actor in the analytic part of the
arguments of Gross and Zagier. They consider its diagonal restriction Gs(z, z),
and show the following.

• When s = 0, we have Gs(z, z) = 0.
• The holomorphic projection of the first derivative(

∂

∂s
Gs(z, z)

) ∣∣∣∣hol
s=0

has Fourier coefficients related to log Nm(j(τ1) − j(τ2)).

Since the holomorphic projection is a holomorphic modular form of weight 2 and
level 1, it must vanish! This vanishing gives Gross and Zagier their explicit formula
for Nm(j(τ1) − j(τ2)).

In [DPV19] we observe a suitable p-adic analogue of these phenomena. More
precisely, we show that

(137)

(
∂

∂κ
Gκ,κ(ψ)(z, z)

) ∣∣∣∣ord
κ=0
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is a classical modular form of weight 2, whose component along the Eisenstein series

E
(p)
2 has constant term L′

p(0, ψ). For Gross and Zagier, the higher Fourier coeffi-
cients were related to the norms of differences of singular moduli. In our setting,
the higher Fourier coefficients of (137) are related to the RM (real multiplication)
values of certain rigid cocycles, which were introduced in [DV] as a framework for
singular moduli in the case of real quadratic fields, which are conjecturally algebraic.

In this case, the conjecture may be proved using the idea of Serre in the reverse
direction, whereby information on a higher Fourier coefficient is inferred from the
constant coefficient. Indeed, using the theory of p-adic deformation of Galois rep-
resentations, it was proved by Darmon, Dasgupta, and Pollack in [DDP11] that the
constant term is a rational multiple of the logarithm of a unit in OH [1/p]×. The
same then follows for the higher Fourier coefficients, giving the algebraic nature of
the RM values of rigid cocycles conjectured in [DV], at least in the special case of
the so-called Dedekind–Rademacher cocycle.
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Astérisque 339 (2011), Exp. No. 1013, vii, 31–61. Séminaire Bourbaki. Vol. 2009/2010.
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