Book Reviews
Book reviews do not contain an abstract.
You may download the entire review from the links below.
- MathSciNet review: 4274519
- Full text review in PDF
- This review is available free of charge
- Mathematical theory of scattering resonances by S. Dyatlov and M. Zworski
- Bull. Amer. Math. Soc. 58 (2021), 475-477
- Additional book information: Graduate Studies in Mathematics, Vol. 200, American Mathematical Society, Providence, RI, 2019, xi+634 pp., ISBN 978-1-4704-4366-5
References
- David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics, vol. 256, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2344504, DOI 10.1007/978-0-8176-4653-0
- Semyon Dyatlov, Resonance projectors and asymptotics for $r$-normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015), no. 2, 311–381. MR 3300697, DOI 10.1090/S0894-0347-2014-00822-5
- Semyon Dyatlov and Colin Guillarmou, Pollicott-Ruelle resonances for open systems, Ann. Henri Poincaré 17 (2016), no. 11, 3089–3146. MR 3556517, DOI 10.1007/s00023-016-0491-8
- Semyon Dyatlov and Maciej Zworski, Ruelle zeta function at zero for surfaces, Invent. Math. 210 (2017), no. 1, 211–229. MR 3698342, DOI 10.1007/s00222-017-0727-3
- Semyon Dyatlov and Maciej Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics, vol. 200, American Mathematical Society, Providence, RI, 2019. MR 3969938, DOI 10.1090/gsm/200
- Peter Hintz and András Vasy, The global non-linear stability of the Kerr–de Sitter family of black holes, Acta Math. 220 (2018), no. 1, 1–206. MR 3816427, DOI 10.4310/ACTA.2018.v220.n1.a1
- Peter Hintz and András Vasy, Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE 6 (2020), no. 1, Paper No. 2, 146. MR 4105742, DOI 10.1007/s40818-020-0077-0
- Richard Melrose, Scattering theory and the trace of the wave group, J. Functional Analysis 45 (1982), no. 1, 29–40. MR 645644, DOI 10.1016/0022-1236(82)90003-9
- András Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math. 194 (2013), no. 2, 381–513. MR 3117526, DOI 10.1007/s00222-012-0446-8
- Maciej Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), no. 2, 311–323. MR 1016891, DOI 10.1215/S0012-7094-89-05913-9
Reviewer information
- Reviewer: Dean Baskin
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: dbaskin@math.tamu.edu
Additional Information
- Journal: Bull. Amer. Math. Soc. 58 (2021), 475-477
- DOI: https://doi.org/10.1090/bull/1714
- Published electronically: February 25, 2021
- Review Copyright: © Copyright 2021 American Mathematical Society