Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 
 

 

Michael Atiyah’s work in algebraic topology


Author: Graeme Segal
Journal: Bull. Amer. Math. Soc. 58 (2021), 481-516
MSC (2020): Primary 55-XX, 58-XX
DOI: https://doi.org/10.1090/bull/1746
Published electronically: July 15, 2021
MathSciNet review: 4311553
Full-text PDF Free Access
View in AMS MathViewer New

Abstract | References | Similar Articles | Additional Information

Abstract: In 1960 algebraic topology was at the centre of the mathematical stage, but Michael Atiyah burst into the field and changed its focus and its language. I describe his work of the following decade and its influence, keeping to the themes of $K$-theory and generalized cohomology to minimise the overlap with Dan Freed’s account of Atiyah’s work on index theory, which also appears in this issue.


References [Enhancements On Off] (What's this?)

\section*Works with Michael Atiyah as an author

References
  • (with R. Bott) On the priodicity theorem for complex vector bundles, Acta Mathematica 112 (1964), 229–247.
  • (with R. Bott and A. Shapiro) Clifford modules, Topology 3 (Suppl. 1)(1964), 3–38.
  • (with J. F. Adams) K-theory andthe Hopf invariant, Quart. J. Math. Oxford 17 (1966), 31–38.
  • (with F. Hirzebruch) Analytic cycles on complex manifolds, Topology 1 (1962), 25–45.
  • (with F. Hirzebruch) The Riemann-Roch theorem for analytic embeddings, Topology 1 (1962, 151–166.
  • Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
  • (with D. Tall) Group representations, $\lambda$-rings, and the J-homomorphism, Topology 8 (1969), 253–297.
  • (with J. A. Todd) On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 56 (1960), 342–353.
  • Bordism and cobordism, Proc. Camb. Phil. Soc. 57 (1961), 200–208.
  • (with F. Hirzebruch) Cohomologie-operationen und charakteristische Klassen, Math. Z. 77 (1961), 149–187.
  • (with G. Segal) Equivariant K-theory and completion, J. Diff. Geom. 3 (1969), 1–18.
  • (with F. Hirzebruch) Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276–281.
  • Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414–452.
  • Global theory of elliptic operators, Proc. Int. Symp. on Functional Analysis, Tokyo, University of Tokyo Press (1969), 21–30.
  • Characters and cohomology of finite groups, Publ. Math. I.H.E.S. Paris (1961), 247–289.
  • Immersions and embeddings of manifolds, Topology 1 (1962), 125–132.
  • K-theory, Benjamin, New York (1967).
  • Roberto Minio, Interview with Michael Atiyah, The Mathematical Intelligencer 6 (1984), 9–19.
  • Bott periodicity and the index of elliptic operaators, Quart. J. Math. Oxford 19 (1968), 113–140.
  • Power operations in K-theory, Quart. J. Math. Oxford 17 (1966), 165–193.
  • (with I. M. Singer) Index theory for skew-adjoint Fredholm operators, Publ. Math. I.H.E.S. Paris 37 (1969), 305–326.
  • The signature of fibre bundles, in Global Analysis, papers in honour of K. Kodaira, University of Tokyo Press and Princeton University Press (1969), 73–84.
  • Thom complexes, Proc. London Math. Soc. 11 (1961), 291–310.
  • (with F. Hirzebruch) Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. 3 Amer. Math Soc., 1961.
  • (with G. Segal) Twisted K-theory, Ukrainian Bull. Math. 1 (2004), 291–332.
  • (with G. Segal) Twisted K-theory and cohomology in Inspired by S.S. Chern, P.A. Griffiths (ed.), Nankai Tracts in Math. 11, World Scientific, 2007.
References
  • J. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Math. 72 (1960), 20–104.
  • J. F. Adams, On Chern characters and the structure of the unitary group, Proc. Cambridge Phil. Soc. 57 (1961), 189–199.
  • J. F. Adams, Vector fields on spheres, Annals of Math. 75 (1962), 603–632.
  • J. F. Adams, On the groups J(X) I–IV, Topology 2 (1963), 181–195; 3 (1965), 137–171; 3 (1965), 193–222; 5 (1966) 21–71; 7 (1968), 331.
  • D. Baraglia and P. Hekmati, A Fourier-Mukai approach to the K-theory of compact Lie groups, Adv. Math. 269 (2015), 355–345.
  • M. G. Barratt, Track groups I, II, Proc. London Math. Soc. 5 (1955), 71–106 and 285–329.
  • J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology 14 (1975), 1–12.
  • L. Brown, R. Douglas, and P. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Annals of Math. 105 (1977), 265–324.
  • A. Borel, Seminar on transformation groups, Ann. of Math. Studies 46, Princeton Univ. Press 1960.
  • A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, II, III, Amer. J. Math. 80 (1958), 458–538; 81 (1959), 315–382; 82 (1960), 491–504.
  • A. Borel and J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97–136.
  • R. Bott, Homogeneous vector bundles, Annals of Math. 66 (1957), 203–248.
  • R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87–89.
  • A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994.
  • A. Connes and H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), 174–243.
  • S. Donaldson, Atiyah’s work on holomorphic vector bundles and gauge theories, Bull. Amer. Math. Soc. 58 (2021), no. 4.
  • E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pura Appl. (4)54 (1961), 231–254.
  • D. Freed, The Atiyah–Singer index theorem, Bull. Amer. Math. Soc. 58 (2021), no. 4.
  • F. Hirzebruch, On Steenrod’s reduced powers, the index of inertia, and the Todd genus, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 951–956.
  • L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1–36.
  • I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. 9 (1959), 115–140.
  • G. G. Kasparov, Operator $K$-theory and its applications, Proc. Internat. Congress of Mathematicians, Vol. 1, 2 (Warsaw 1983), 987–1000, PWN, Warsaw, 1984.
  • G. Lusztig, Novikov’s higher signatures and families of elliptic operators, J. Diff. Geom. 7 (1972), 229–256.
  • J. Milnor and J. Stasheff, Characteristic classes, Ann of Math. Studies 76, Princeton University Press, 1974.
  • J. C. Moore, Contribution to Séminaire Henri Cartan de l’École Normale Supérieure 1959–60, Paris.
  • A. Pressley and G. Segal, Loop groups, Oxford University Press, 1986.
  • D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I, Math. Z. 69 (1958), 299–344.
  • D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197–212.
  • D. Quillen, The spectrum of an equivariant cohomology ring I, Annals of Math. 94 (1971), 549–572.
  • D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. in Math. 7 (1971), 29–56.
  • R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177.
  • D. Sullivan and N. Teleman, An analytic proof of Novikov’s theorem on rational Pontrjagin classes, I.H.E.S. Publ. Math. 58 (1983), 79–81.
  • G. Wilson, K-theory invariants for unitary G-bordism, Quart. J. Math. Oxford 24 (1973), 499–526.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2020): 55-XX, 58-XX

Retrieve articles in all journals with MSC (2020): 55-XX, 58-XX


Additional Information

Graeme Segal
Affiliation: All Souls College, Oxford, United Kingdom
MR Author ID: 157985

Received by editor(s): June 10, 2021
Published electronically: July 15, 2021
Article copyright: © Copyright 2021 by the author