And yet it moves: Paradoxically moving linkages in kinematics
HTML articles powered by AMS MathViewer
- by Josef Schicho;
- Bull. Amer. Math. Soc. 59 (2022), 59-95
- DOI: https://doi.org/10.1090/bull/1721
- Published electronically: March 24, 2021
- HTML | PDF | Request permission
Abstract:
The possible configurations of a mechanical linkage correspond to the solutions of a system of algebraic equations. We can estimate the dimension of the solution set by counting free parameters and equational constraints. But this estimate does not always give the correct answer: sometimes the linkage moves although it should not. In this paper, we give mathematical explanations for this unexpected mobility.References
- J. Eddie Baker, The axodes of the Bennett linkage, Mech. Mach. Theory 36 (2001), no. 1, 105–116. MR 1939882, DOI 10.1016/S0094-114X(00)00026-4
- J. Eddie Baker, The single screw reciprocal to the general plane-symmetric six-screw linkage, J. Geom. Graph. 1 (1997), no. 1, 5–12. MR 1605730
- G. T. Bennett, The Skew Isogram Mechanism, Proc. London Math. Soc. (2) 13 (1914), 151–173. MR 1577497, DOI 10.1112/plms/s2-13.1.151
- E. Borel, Mémoire sur les déplacements à trajectoires sphériques, Mémoire présenteés par divers savants à l’Académie des Sciences de l’Institut National de France, 33 (1908), no. 1, 1–128, 1908.
- R. Bricard, Mémoire sur la théorie de l’octaèdre articulé, Journal de mathématiques pures et appliquées $5^{e}$ série, 3 (1897), 113–148.
- R. Bricard, Mémoire sur les déplacements à trajectoires sphériques, Journal de École Polytechnique (2), 11 (1906), 1–96.
- R. Bricard, Leçons de cinématique, Gauthier-Villars, 1927.
- K. Brunnthaler, H.-P. Schröcker, and M. Husty, A new method for the synthesis of Bennett mechanisms, In Proceedings of CK 2005, International Workshop on Computational Kinematics, Cassino, 2005.
- Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef Schicho, The number of realizations of a Laman graph, SIAM J. Appl. Algebra Geom. 2 (2018), no. 1, 94–125. MR 3771397, DOI 10.1137/17M1118312
- Prof. Clifford, Preliminary Sketch of Biquaternions, Proc. Lond. Math. Soc. 4 (1871/73), 381–395. MR 1575556, DOI 10.1112/plms/s1-4.1.381
- Alex Degtyarev and Ilia Itenberg, On real determinantal quartics, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 2011, pp. 110–128. MR 2931883
- E. Delassus, The closed and deformable linkage chains with four bars, Bull. Sci. Math., 46 (1922), 283–304.
- J. Denavit and R. S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, J. Appl. Mech. 22 (1955), 215–221. MR 68936
- P. Dietmaier, Einfach übergeschlossene Mechanismen mit Drehgelenken, Habilitation thesis, Graz University of Technology, 1995.
- A. C. Dixon, On certain deformable frameworks, Messenger, 29 (1899), no. 2, 1–21.
- E. Duporcq, Sur la correspondance quadratique et rationnelle de deux figures planes et sur un déplacement remarquable, Comptes Rendus des Séances de l’Académie des Sciences, 126 (1898), 1405–1406.
- J.-C. Faugère and D. Lazard, Combinatorial classes of parallel manipulators, Mech. Mach. Theory, 30 (1995), 765–776.
- M. Gallet, G. Nawratil, J. Schicho, and J. M. Selig, Mobile icosapods, Adv. in Appl. Math. 88 (2017), 1–25. MR 3641807, DOI 10.1016/j.aam.2016.12.002
- Matteo Gallet, Christoph Koutschan, Zijia Li, Georg Regensburger, Josef Schicho, and Nelly Villamizar, Planar linkages following a prescribed motion, Math. Comp. 86 (2017), no. 303, 473–506. MR 3557808, DOI 10.1090/mcom/3120
- Matteo Gallet, Georg Nawratil, and Josef Schicho, Bond theory for pentapods and hexapods, J. Geom. 106 (2015), no. 2, 211–228. MR 3353832, DOI 10.1007/s00022-014-0243-1
- Matteo Gallet, Georg Nawratil, and Josef Schicho, Liaison linkages. part 1, J. Symbolic Comput. 79 (2017), no. part 1, 65–98. MR 3550355, DOI 10.1016/j.jsc.2016.08.006
- B. Gordon and T. S. Motzkin, On the zeros of polynomials over division rings, Trans. Amer. Math. Soc. 116 (1965), 218–226. MR 195853, DOI 10.1090/S0002-9947-1965-0195853-2
- Georg Grasegger, Jan Legerský, and Josef Schicho, Graphs with flexible labelings, Discrete Comput. Geom. 62 (2019), no. 2, 461–480. MR 3988122, DOI 10.1007/s00454-018-0026-9
- Georg Grasegger, Jan Legerský, and Josef Schicho, Graphs with flexible labelings allowing injective realizations, Discrete Math. 343 (2020), no. 6, 111713, 14. MR 4087212, DOI 10.1016/j.disc.2019.111713
- G. Hegedüs, J. Schicho, and H.-P. Schröcker, Factorization of rational curves in the Study quadric and revolute linkages, Mech. Mach. Theory, 69 (2013), no. 1, 142–152.
- G. Hegedüs, J. Schicho, and H.-P. Schröcker. The theory of bonds: A new method for the analysis of linkages. Mechanism and Machine Theory, 70 (2013), no. 0, 407–424.
- Bill Jackson and Tibor Jordán, Rigid components in molecular graphs, Algorithmica 48 (2007), no. 4, 399–412. MR 2324740, DOI 10.1007/s00453-007-0170-8
- Cheng Jialong and Meerea Sitharam, Maxwell-independence: a new rank estimate for the 3-dimensional generic rigidity matroid, J. Combin. Theory Ser. B 105 (2014), 26–43. MR 3171781, DOI 10.1016/j.jctb.2013.12.001
- A. Karger, Classification of 5R closed kinematic chains with self mobility, Mech. Mach. Th., pp. 213–222, 1998.
- Naoki Katoh and Shin-ichi Tanigawa, A proof of the molecular conjecture, Discrete Comput. Geom. 45 (2011), no. 4, 647–700. MR 2787564, DOI 10.1007/s00454-011-9348-6
- A. B. Kempe, On a General Method of describing Plane Curves of the nth degree by Linkwork, Proc. Lond. Math. Soc. 7 (1875/76), 213–216. MR 1575631, DOI 10.1112/plms/s1-7.1.213
- G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4 (1970), 331–340. MR 269535, DOI 10.1007/BF01534980
- Z. Li and J. Schicho, A technique for deriving equational conditions on the Denavit–Hartenberg parameters of a 6R linkage that are necessary for movability, Mech. Mach. Theory, 94 (2015), 1–8.
- Zijia Li, Josef Schicho, and Hans-Peter Schröcker, Kempe’s universality theorem for rational space curves, Found. Comput. Math. 18 (2018), no. 2, 509–536. MR 3777787, DOI 10.1007/s10208-017-9348-x
- B. Mourrain, The 40 generic positions of a parallel robot, In Proc. ISSAC 1993, pp. 173–182. ACM, 1993.
- B. Mourrain, Enumeration problems in geometry, robotics and vision, Algorithms in algebraic geometry and applications (Santander, 1994) Progr. Math., vol. 143, Birkhäuser, Basel, 1996, pp. 285–306. MR 1414455
- B. Mourrain and N. Stolfi, Applications of Clifford algebras in robotics, Computational kinematics ’95 (Sophia Antipolis, 1995) Solid Mech. Appl., vol. 40, Kluwer Acad. Publ., Dordrecht, 1995, pp. 41–50. MR 1359802, DOI 10.1007/978-94-011-0333-6_{5}
- John Christian Ottem, Kristian Ranestad, Bernd Sturmfels, and Cynthia Vinzant, Quartic spectrahedra, Math. Program. 151 (2015), no. 2, Ser. B, 585–612. MR 3348164, DOI 10.1007/s10107-014-0844-3
- H. Pollaczek-Geiringer, Über die Gliederung ebener Fachwerke, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 7 (1927), 58–72.
- M. Raghavan, The Stewart platform of general geometry has 40 configurations, ASME J. Mech. Design, 115 (1993), 272–282.
- Felice Ronga and Thierry Vust, Stewart platforms without computer?, Real analytic and algebraic geometry (Trento, 1992) de Gruyter, Berlin, 1995, pp. 197–212. MR 1320320
- H.-P. Schröcker, M. Pfurner, and J. Siegele, Space kinematics and projective differential geometry over the ring of dual numbers, Technical Report 2006.14259, ArXiV, 2020.
- Bernd Schulze, Symmetry as a sufficient condition for a finite flex, SIAM J. Discrete Math. 24 (2010), no. 4, 1291–1312. MR 2735924, DOI 10.1137/090776238
- J. M. Selig, Geometric fundamentals of robotics, 2nd ed., Monographs in Computer Science, Springer, New York, 2005. MR 2250553
- Charles W. Wampler and Andrew J. Sommese, Numerical algebraic geometry and algebraic kinematics, Acta Numer. 20 (2011), 469–567. MR 2805156, DOI 10.1017/S0962492911000067
- E. Study, Geometrie der Dynamen, Teubner, Leipzig, 1903.
- D. Walter and M. L. Husty, On a nine-bar linkage, its possible configurations and conditions for paradoxical mobility, In 12th World Congress on Mechanism and Machine Science, IFToMM 2007, 2007.
- Y. Wu and M. Carricato, Line-symmetric motion geenrators, Mech. Mach. Theory, 127 (2018), 112–125.
Bibliographic Information
- Josef Schicho
- Affiliation: Johannes Kepler University, Linz, Austria
- MR Author ID: 332588
- Received by editor(s): March 23, 2020
- Published electronically: March 24, 2021
- Additional Notes: This work was supported by the Austrian Science Fund (FWF): P31061.
- © Copyright 2021 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 59 (2022), 59-95
- MSC (2020): Primary 52A27, 70B15, 52C25
- DOI: https://doi.org/10.1090/bull/1721
- MathSciNet review: 4340827