Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra
HTML articles powered by AMS MathViewer
- by Peter B. Denton, Stephen J. Parke, Terence Tao and Xining Zhang;
- Bull. Amer. Math. Soc. 59 (2022), 31-58
- DOI: https://doi.org/10.1090/bull/1722
- Published electronically: February 18, 2021
- HTML | PDF | Request permission
Abstract:
If $A$ is an $n \times n$ Hermitian matrix with eigenvalues $\lambda _1(A),\dots ,$ $\lambda _n(A)$ and $i,j = 1,\dots ,n$, then the $j$th component $v_{i,j}$ of a unit eigenvector $v_i$ associated to the eigenvalue $\lambda _i(A)$ is related to the eigenvalues $\lambda _1(M_j),\dots ,$ $\lambda _{n-1}(M_j)$ of the minor $M_j$ of $A$ formed by removing the $j$th row and column by the formula \begin{equation*} |v_{i,j}|^2\prod _{k=1;k\neq i}^{n}\left (\lambda _i(A)-\lambda _k(A)\right )=\prod _{k=1}^{n-1}\left (\lambda _i(A)-\lambda _k(M_j)\right ). \end{equation*} We refer to this identity as the eigenvector-eigenvalue identity and show how this identity can also be used to extract the relative phases between the components of any given eigenvector. Despite the simple nature of this identity and the extremely mature state of development of linear algebra, this identity was not widely known until very recently. In this survey we describe the many times that this identity, or variants thereof, have been discovered and rediscovered in the literature (with the earliest precursor we know of appearing in 1834). We also provide a number of proofs and generalizations of the identity.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), no. 2, 256–274. MR 1818248, DOI 10.1007/PL00008760
- N. Bebiano, S. Furtado, and J. da Providência, On the eigenvalues of principal submatrices of $J$-normal matrices, Linear Algebra Appl. 435 (2011), no. 12, 3101–3114. MR 2831599, DOI 10.1016/j.laa.2011.05.033
- D. Boley and G. H. Golub, Inverse eigenvalue problems for band matrices, Numerical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977) Lecture Notes in Math., Vol. 630, Springer, Berlin-New York, 1978, pp. 23–31. MR 474741
- A. Bahmani and D. Kiani, An explicit formula for the eigenvectors of acyclic matrices and weighted trees, https://arxiv.org/abs/1609.02399, 2016.
- Garrett Birkhoff and Saunders MacLane, A Survey of Modern Algebra, The Macmillan Company, New York, 1941. MR 5093
- Sara C. Billey and Bridget E. Tenner, Fingerprint databases for theorems, Notices Amer. Math. Soc. 60 (2013), no. 8, 1034–1039. MR 3113227, DOI 10.1090/noti1029
- A. L. Cauchy, Exercices d’analyse et de physique mathématique, vol. 2. Bachelier, page 154, 1841.
- Moody T. Chu and Gene H. Golub, Structured inverse eigenvalue problems, Acta Numer. 11 (2002), 1–71. MR 2008966, DOI 10.1017/S0962492902000016
- X. Chen, Note on eigenvectors from eigenvalues, https://arxiv.org/abs/1911.09081, 2019.
- Richard W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974), 189–211. MR 354727, DOI 10.1016/0024-3795(74)90066-4
- G. Cramer, Introduction à l’analyse des lignes courbes algébriques, Chez les frères Cramer et C. Philibert, Geneva, pages 657–659, 1750.
- D. Cvetković, P. Rowlinson, and S. K. Simić, Star complements and exceptional graphs, Linear Algebra Appl. 423 (2007), no. 1, 146–154. MR 2312331, DOI 10.1016/j.laa.2007.01.008
- Ioana Dumitriu and Alan Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), no. 11, 5830–5847. MR 1936554, DOI 10.1063/1.1507823
- James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942, DOI 10.1137/1.9781611971446
- P. B. Denton, Eigenvalue-eigenvector identity code, https://github.com/PeterDenton/Eigenvector-Eigenvalue-Identity, 2019.
- Emeric Deutsch and Harry Hochstadt, On Cauchy’s inequalities for Hermitian matrices, Amer. Math. Monthly 85 (1978), no. 6, 486–487. MR 491766, DOI 10.2307/2320075
- P. Deift, L. C. Li, T. Nanda, and C. Tomei, The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math. 39 (1986), no. 2, 183–232. MR 820068, DOI 10.1002/cpa.3160390203
- Peter B. Denton, Stephen J. Parke, Terence Tao, and Xining Zhang. Eigenvectors from Eigenvalues, arXiv e-prints, page arXiv:1908.03795v1, Aug 2019.
- Peter B. Denton, Stephen J. Parke, and Xining Zhang, Neutrino oscillations in matter via eigenvalues, Phys. Rev. D 101 (2020), no. 9, 093001, 12. MR 4111110, DOI 10.1103/physrevd.101.093001
- László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices, Ann. Probab. 37 (2009), no. 3, 815–852. MR 2537522, DOI 10.1214/08-AOP421
- P. J. Forrester and J. Zhang, Co-rank 1 projections and the randomised Horn problem, arXiv e-prints, page arXiv:1905.05314, May 2019.
- F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959. Translated by K. A. Hirsch. MR 107649
- Ming Gu and Stanley C. Eisenstat, A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl. 15 (1994), no. 4, 1266–1276. MR 1293916, DOI 10.1137/S089547989223924X
- C. Godsil, K. Guo, M. Kempton, and G. Lippner, State transfer in strongly regular graphs with an edge perturbation, Journal of Combinatorial Theory, Series A, https://www.sciencedirect.com/science/article/abs/pii/S0097316519301621, 2017.
- Sébastien Galais, James Kneller, and Cristina Volpe, The neutrino-neutrino interaction effects in supernovae: the point of view from the matter basis, J. Phys., G39:035201, 2012.
- Graham M. L. Gladwell, Inverse problems in vibration, 2nd ed., Solid Mechanics and its Applications, vol. 119, Kluwer Academic Publishers, Dordrecht, 2004. MR 2102477
- C. D. Godsil and B. D. McKay, Spectral conditions for the reconstructibility of a graph, J. Combin. Theory Ser. B 30 (1981), no. 3, 285–289. MR 624545, DOI 10.1016/0095-8956(81)90046-0
- C. D. Godsil, Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993. MR 1220704
- Chris Godsil, When can perfect state transfer occur?, Electron. J. Linear Algebra 23 (2012), 877–890. MR 2992400, DOI 10.13001/1081-3810.1563
- Gene H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973), 318–334. MR 329227, DOI 10.1137/1015032
- B. Gaveau and L. S. Schulman, Limited quantum decay, J. Phys. A 28 (1995), no. 24, 7359–7374. MR 1381425
- Gene H. Golub and Charles F. Van Loan, Matrix computations, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR 733103
- Elias M. Hagos, Some results on graph spectra, Linear Algebra Appl. 356 (2002), 103–111. Special issue on algebraic graph theory (Edinburgh, 2001). MR 1944680, DOI 10.1016/S0024-3795(02)00324-5
- Paul R. Halmos, Finite Dimensional Vector Spaces, Annals of Mathematics Studies, No. 7, Princeton University Press, Princeton, NJ, 1942. MR 6591
- C. G. J. Jacobi, De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas tranformandis, quae solis quadratis variabilium constant; una cum variis theorematis de tranformatione etdeterminatione integralium multiplicium, J. Reine Angew. Math. 12 (1834), 1–69 (Latin). MR 1577999, DOI 10.1515/crll.1834.12.1
- E. Kausel, Normalized modes at selected points without normalization Journal of Sound and Vibration, 420:261–268, April 2018.
- A. Knyazev, Computation of eigenvalues and eigenvectors for mesh problems: algorithms and error estimates (in Russian), PhD thesis, Department of Numerical Mathematics, USSR Academy of Sciences, Moscow, 1986.
- A. V. Knyazev and A. L. Skorokhodov, On exact estimates of the convergence rate of the steepest ascent method in the symmetric eigenvalue problem, Linear Algebra Appl. 154/156 (1991), 245–257. MR 1113145, DOI 10.1016/0024-3795(91)90379-B
- Qiao Li and Ke Qin Feng, On the largest eigenvalue of a graph, Acta Math. Appl. Sinica 2 (1979), no. 2, 167–175 (Chinese). MR 549045
- Karl Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177–216 (German). MR 1545446, DOI 10.1007/BF01170633
- A. K. Mukherjee and K. K. Datta, Two new graph-theoretical methods for generation of eigenvectors of chemical graphs, Proceedings of the Indian Academy of Sciences–Chemical Sciences, 101(6):499–517, Dec 1989.
- Peter Nylen, Tin Yau Tam, and Frank Uhlig, On the eigenvalues of principal submatrices of normal, Hermitian and symmetric matrices, Linear and Multilinear Algebra 36 (1993), no. 1, 69–78. MR 1308910, DOI 10.1080/03081089308818276
- C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, PhD thesis, London University Institute of Computer Science, 1971. *20pt
- Beresford N. Parlett, The symmetric eigenvalue problem, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980. MR 570116
- G. E. Šilov, Matematicheskiĭ analiz: Vtoroĭ spetsial′nyĭkurs, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 219869
- M. Stawiska, More on the eigenvectors-from-eigenvalues identity, https://arxiv.org/abs/1912.06967, 2019.
- R. C. Thompson, Principal submatrices of normal and Hermitian matrices, Illinois J. Math. 10 (1966), 296–308. MR 190151
- R. C. Thompson, Principal submatrices. IV. On the independence of the eigenvalues of different principal submatrices, Linear Algebra Appl. 2 (1969), 355–374. MR 245601, DOI 10.1016/0024-3795(69)90037-8
- R. C. Thompson and P. McEnteggert, Principal submatrices. II. The upper and lower quadratic inequalities, Linear Algebra Appl. 1 (1968), 211–243. MR 237532, DOI 10.1016/0024-3795(68)90005-0
- S. Toshev, On T violation in matter neutrino oscillations, Mod. Phys. Lett., A6:455–460, 1991.
- Terence Tao and Van Vu, Random matrices: universality of local eigenvalue statistics, Acta Math. 206 (2011), no. 1, 127–204. MR 2784665, DOI 10.1007/s11511-011-0061-3
- P. Van Mieghem, Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks, arXiv e-prints, page arXiv:1401.4580, Jan 2014.
- Piet Van Mieghem, Graph spectra for complex networks, Cambridge University Press, Cambridge, 2011. MR 2767173
- H. F. Weinberger, Error bounds in the Rayleigh-Ritz approximation of eigenvectors, J. Res. Nat. Bur. Standards Sect. B 64B (1960), 217–225. MR 129121
- J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. MR 161456
- N. Wolchover, Neutrinos lead to unexpected discovery in basic math, Quanta Magazine, Nov 2019.
- S. Xu, Theories and Methods of Matrix Calculations (in Chinese), Peking University Press, Beijing, 1995.
Bibliographic Information
- Peter B. Denton
- Affiliation: Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
- MR Author ID: 1181364
- ORCID: 0000-0002-5209-872X
- Email: pdenton@bnl.gov
- Stephen J. Parke
- Affiliation: Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
- MR Author ID: 1181367
- ORCID: 0000-0003-2028-6782
- Email: parke@fnal.gov
- Terence Tao
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles California 90095-1555
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- Xining Zhang
- Affiliation: Enrico Fermi Institute & Department of Physics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 1315731
- Email: xining@uchicago.edu
- Received by editor(s): March 4, 2020
- Published electronically: February 18, 2021
- Additional Notes: The first author acknowledges the United States Department of Energy under Grant Contract desc0012704 and the Fermilab Neutrino Physics Center.
This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. FERMILAB-PUB-19-377-T
The third author was supported by a Simons Investigator grant, the James and Carol Collins Chair, the Mathematical Analysis & Application Research Fund Endowment, and by NSF grant DMS-1764034 - © Copyright 2021 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 59 (2022), 31-58
- MSC (2020): Primary 15A18; Secondary 15A42, 15B57
- DOI: https://doi.org/10.1090/bull/1722
- MathSciNet review: 4340826