Book Reviews
Book reviews do not contain an abstract.
You may download the entire review from the links below.
- Full text review in PDF
- This review is available free of charge
- The random matrix theory of the classical compact groups by Elizabeth Meckes
- Bull. Amer. Math. Soc. 59 (2022), 127-131
- Additional book information: Cambridge Tracts in Mathematics, Vol. 218, Cambridge University Press, Cambridge, 2019, xi+212 pp., ISBN 978-1-108-41952-9
- Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR 2760897
- L.-P. Arguin, P. Bourgade, M. Radziwiłł. The Fyodorov-Hiary-Keating Conjecture. I. arXiv:2007.00988 (2020).
- Jinho Baik, Percy Deift, and Toufic Suidan, Combinatorics and random matrix theory, Graduate Studies in Mathematics, vol. 172, American Mathematical Society, Providence, RI, 2016. MR 3468920, DOI 10.1090/gsm/172
- Reda Chhaibi, Thomas Madaule, and Joseph Najnudel, On the maximum of the $\textrm {C}\beta \textrm {E}$ field, Duke Math. J. 167 (2018), no. 12, 2243–2345. MR 3848391, DOI 10.1215/00127094-2018-0016
- László Erdős and Horng-Tzer Yau, A dynamical approach to random matrix theory, Courant Lecture Notes in Mathematics, vol. 28, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2017. MR 3699468
- Y. V. Fyodorov, G. A. Hiary, J. P. Keating. Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. Phys. Rev. Let. 108, 107601 (2012).
- P. J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs Series, vol. 34, Princeton University Press, Princeton, NJ, 2010. MR 2641363, DOI 10.1515/9781400835416
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- Rowan Killip and Irina Nenciu, Matrix models for circular ensembles, Int. Math. Res. Not. 50 (2004), 2665–2701. MR 2127367, DOI 10.1155/S1073792804141597
- Case Western University: Remembering Professor of Mathematics Elizabeth Meckes. https://thedaily.case.edu/remembering-professor-of-mathematics-elizabeth-meckes/
- Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Terence Tao, Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. MR 2906465, DOI 10.1090/gsm/132
- Eugene P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67 (1958), 325–327. MR 95527, DOI 10.2307/1970008
- J. Wishart. Generalized product moment distribution in samples. Biometrika 20A, 32–52 (1928).
- Reviewer: Ofer Zeitouni
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel;, Courant Institute, New York University, New York City, New York
- Journal: Bull. Amer. Math. Soc. 59 (2022), 127-131
- DOI: https://doi.org/10.1090/bull/1733
- Published electronically: September 14, 2021
- Review Copyright: © Copyright 2021 by the author