Getting a handle on the Conway knot
HTML articles powered by AMS MathViewer
- by Jennifer Hom;
- Bull. Amer. Math. Soc. 59 (2022), 19-29
- DOI: https://doi.org/10.1090/bull/1745
- Published electronically: September 13, 2021
- HTML | PDF
Abstract:
A knot is said to be slice if it bounds a smooth disk in the 4-ball. For 50 years, it was unknown whether a certain 11 crossing knot, called the Conway knot, was slice or not, and until recently, this was the only one of the thousands of knots with fewer than 13 crossings whose slice-status remained a mystery. We will describe Lisa Piccirillo’s proof that the Conway knot is not slice. The main idea of her proof is given in the title of this article.References
- Tetsuya Abe, On annulus twists, RIMS Kôkyûroku 2004 (2016), 108–114.
- Selman Akbulut, On $2$-dimensional homology classes of $4$-manifolds, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 1, 99–106. MR 433476, DOI 10.1017/S0305004100053718
- Selman Akbulut, Cappell-Shaneson homotopy spheres are standard, Ann. of Math. (2) 171 (2010), no. 3, 2171–2175. MR 2680408, DOI 10.4007/annals.2010.171.2171
- Jonathan M. Bloom, Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17 (2010), no. 1, 1–10. MR 2592723, DOI 10.4310/MRL.2010.v17.n1.a1
- Sylvain E. Cappell and Julius L. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. (2) 103 (1976), no. 2, 349–353. MR 413117, DOI 10.2307/1970942
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- Michael Freedman, Robert Gompf, Scott Morrison, and Kevin Walker, Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1 (2010), no. 2, 171–208. MR 2657647, DOI 10.4171/QT/5
- Ralph H. Fox and John W. Milnor, Singularities of $2$-spheres in $4$-space and cobordism of knots, Osaka Math. J. 3 (1966), 257–267. MR 211392
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR 804721
- David Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–viii and 1–98. MR 823442, DOI 10.1090/memo/0339
- C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371–415. MR 965210, DOI 10.1090/S0894-0347-1989-0965210-7
- Robert E. Gompf, More Cappell-Shaneson spheres are standard, Algebr. Geom. Topol. 10 (2010), no. 3, 1665–1681. MR 2683748, DOI 10.2140/agt.2010.10.1665
- Kyle Hayden, Thomas E. Mark, and Lisa Piccirillo, Exotic Mazur manifolds and knot trace invariants, arXiv:1908.05269 (2019).
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Artem Kotelskiy, Liam Watson, and Claudius Zibrowius, On symmetries of peculiar modules; or, $\delta$-graded link Floer homology is mutation invariant, arXiv:1910.14584 (2019).
- Eun Soo Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005), no. 2, 554–586. MR 2173845, DOI 10.1016/j.aim.2004.10.015
- Allison N. Miller and Lisa Piccirillo, Knot traces and concordance, J. Topol. 11 (2018), no. 1, 201–220. MR 3784230, DOI 10.1112/topo.12054
- Jeffrey Meier and Alexander Zupan, Generalized square knots and homotopy 4-spheres, arXiv:1904.08527 (2019).
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. MR 2026543, DOI 10.2140/gt.2003.7.615
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1–68. MR 2764036, DOI 10.2140/agt.2011.11.1
- Lisa Piccirillo, The Conway knot is not slice, Ann. of Math. (2) 191 (2020), no. 2, 581–591. MR 4076631, DOI 10.4007/annals.2020.191.2.5
- Jacob Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419–447. MR 2729272, DOI 10.1007/s00222-010-0275-6
- Robert Riley, Homomorphisms of knot groups on finite groups, Math. Comp. 25 (1971). MR 295332, DOI 10.1090/S0025-5718-1971-0295332-4
- Horst Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), no. 3, 57–104 (German). MR 31733
- Stephan M. Wehrli, Mutation invariance of Khovanov homology over $\Bbb F_2$, Quantum Topol. 1 (2010), no. 2, 111–128. MR 2657645, DOI 10.4171/QT/3
- Claudius Zibrowius, On symmetries of peculiar modules; or, $\delta$-graded link Floer homology is mutation invariant, arXiv:1909.04267 (2019).
Bibliographic Information
- Jennifer Hom
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia
- MR Author ID: 923914
- ORCID: 0000-0003-4839-8276
- Email: hom@math.gatech.edu
- Received by editor(s): June 8, 2021
- Published electronically: September 13, 2021
- Additional Notes: The author was partially supported by NSF grant DMS-1552285.
- © Copyright 2021 Jennifer Hom
- Journal: Bull. Amer. Math. Soc. 59 (2022), 19-29
- MSC (2020): Primary 57K10
- DOI: https://doi.org/10.1090/bull/1745
- MathSciNet review: 4340825