Harold Widom’s work in Toeplitz operators
HTML articles powered by AMS MathViewer
- by Estelle Basor, Albrecht Böttcher and Torsten Ehrhardt;
- Bull. Amer. Math. Soc. 59 (2022), 175-190
- DOI: https://doi.org/10.1090/bull/1758
- Published electronically: January 7, 2022
- HTML | PDF | Request permission
Abstract:
This is a survey of Harold Widom’s work in Toeplitz operators, embracing his early results on the invertibility and spectral theory of Toeplitz operators, his investigations of the eigenvalue distribution of convolution operators, and his groundbreaking research into Toeplitz and Wiener–Hopf determinants.References
- Harold Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1958), 491–522. MR 98321, DOI 10.1090/S0002-9947-1958-0098321-8
- Alberto Calderón, Frank Spitzer, and Harold Widom, Inversion of Toeplitz matrices, Illinois J. Math. 3 (1959), 490–498. MR 121652
- Harold Widom, Inversion of Toeplitz matrices. II, Illinois J. Math. 4 (1960), 88–99. MR 130572
- Harold Widom, A theorem on translation kernels in $n$ dimensions, Trans. Amer. Math. Soc. 94 (1960), 170–180. MR 110925, DOI 10.1090/S0002-9947-1960-0110925-1
- Inversion of Toeplitz matrices, III, Notices Amer. Math. Soc. bf 97 (1960) 63.
- Harold Widom, Singular integral equations in $L_{p}$, Trans. Amer. Math. Soc. 97 (1960), 131–160. MR 119064, DOI 10.1090/S0002-9947-1960-0119064-7
- Harold Widom, Stable processes and integral equations, Trans. Amer. Math. Soc. 98 (1961), 430–449. MR 121882, DOI 10.1090/S0002-9947-1961-0121882-7
- Harold Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc. 100 (1961), 252–262. MR 138980, DOI 10.1090/S0002-9947-1961-0138980-4
- Harold Widom, Extreme eigenvalues of $N$-dimensional convolution operators, Trans. Amer. Math. Soc. 106 (1963), 391–414. MR 145294, DOI 10.1090/S0002-9947-1963-0145294-7
- On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365–375.
- Toeplitz matrices, In: Studies in Real and Complex Analysis (edited by I. I. Hirschman), Studies in Math. 3 (1965), 179–201.
- Harold Widom, Toeplitz operators on $H_{p}$, Pacific J. Math. 19 (1966), 573–582. MR 201982
- Harold Widom, Hankel matrices, Trans. Amer. Math. Soc. 121 (1966), 1–35. MR 187099, DOI 10.1090/S0002-9947-1966-0187099-X
- R. G. Douglas and Harold Widom, Toeplitz operators with locally sectorial symbols, Indiana Univ. Math. J. 20 (1970/71), 385–388. MR 264430, DOI 10.1512/iumj.1970.20.20032
- Harold Widom, The strong Szegő limit theorem for circular arcs, Indiana Univ. Math. J. 21 (1971/72), 277–283. MR 288495, DOI 10.1512/iumj.1971.21.21022
- Harold Widom, Toeplitz determinants with singular generating functions, Amer. J. Math. 95 (1973), 333–383. MR 331107, DOI 10.2307/2373789
- Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants, Advances in Math. 13 (1974), 284–322. MR 409511, DOI 10.1016/0001-8708(74)90072-3
- Harold Widom, On the limit of block Toeplitz determinants, Proc. Amer. Math. Soc. 50 (1975), 167–173. MR 370254, DOI 10.1090/S0002-9939-1975-0370254-4
- Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants. II, Advances in Math. 21 (1976), no. 1, 1–29. MR 409512, DOI 10.1016/0001-8708(76)90113-4
- Harold Widom, Asymptotic expansions of determinants for families of trace class operators, Indiana Univ. Math. J. 27 (1978), no. 3, 449–478. MR 482329, DOI 10.1512/iumj.1978.27.27031
- Harold Widom, Families of pseudodifferential operators, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 345–395. MR 538027
- Harold Widom, Szegő’s theorem and a complete symbolic calculus for pseudodifferential operators, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., No. 91, Princeton Univ. Press, Princeton, NJ, 1979, pp. 261–283. MR 547022
- Harold Widom, A complete symbolic calculus for pseudodifferential operators, Bull. Sci. Math. (2) 104 (1980), no. 1, 19–63 (English, with French summary). MR 560744
- H. J. Landau and H. Widom, Eigenvalue distribution of time and frequency limiting, J. Math. Anal. Appl. 77 (1980), no. 2, 469–481. MR 593228, DOI 10.1016/0022-247X(80)90241-3
- Estelle Basor and Harold Widom, Toeplitz and Wiener-Hopf determinants with piecewise continuous symbols, J. Funct. Anal. 50 (1983), no. 3, 387–413. MR 695420, DOI 10.1016/0022-1236(83)90010-1
- Harold Widom, Asymptotic expansions for pseudodifferential operators on bounded domains, Lecture Notes in Mathematics, vol. 1152, Springer-Verlag, Berlin, 1985. MR 811855, DOI 10.1007/BFb0075033
- Harold Widom, On Wiener-Hopf determinants, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 519–543. MR 1038355, DOI 10.1007/978-3-0348-9278-0_{2}9
- Harold Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 387–421. MR 1207410, DOI 10.1016/0165-1765(89)90222-x
- A. Böttcher, B. Silbermann, and H. Widom, A continuous analogue of the Fisher-Hartwig formula for piecewise continuous symbols, J. Funct. Anal. 122 (1994), no. 1, 222–246. MR 1274588, DOI 10.1006/jfan.1994.1066
- A. Böttcher, B. Silbermann, and H. Widom, Determinants of truncated Wiener-Hopf operators with Hilbert-Schmidt kernels and piecewise continuous symbols, Arch. Math. (Basel) 63 (1994), no. 1, 60–71. MR 1277912, DOI 10.1007/BF01196300
- Harold Widom, Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Comm. Math. Phys. 171 (1995), no. 1, 159–180. MR 1341698
- Estelle L. Basor and Harold Widom, On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory 37 (2000), no. 4, 397–401. MR 1780119, DOI 10.1007/BF01192828
- Estelle L. Basor and Harold Widom, Wiener-Hopf determinants with Fisher-Hartwig symbols, Operator theoretical methods and applications to mathematical physics, Oper. Theory Adv. Appl., vol. 147, Birkhäuser, Basel, 2004, pp. 131–149. MR 2053687
- Albrecht Böttcher and Harold Widom, Two elementary derivations of the pure Fisher-Hartwig determinant, Integral Equations Operator Theory 53 (2005), no. 4, 593–596. MR 2187441, DOI 10.1007/s00020-005-1380-6
- Albrecht Böttcher and Harold Widom, Szegö via Jacobi, Linear Algebra Appl. 419 (2006), no. 2-3, 656–667. MR 2277996, DOI 10.1016/j.laa.2006.06.009
- Estelle L. Basor and Craig A. Tracy, The Fisher-Hartwig conjecture and generalizations, Phys. A 177 (1991), no. 1-3, 167–173. Current problems in statistical mechanics (Washington, DC, 1991). MR 1137031, DOI 10.1016/0378-4371(91)90149-7
- Alexei Borodin and Andrei Okounkov, A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), no. 4, 386–396. MR 1780118, DOI 10.1007/BF01192827
- A. Bëttcher, Ĭ. M. Bogoya, S. M. Grudskiĭ, and E. A. Maksimenko, Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices, Mat. Sb. 208 (2017), no. 11, 4–28 (Russian, with Russian summary); English transl., Sb. Math. 208 (2017), no. 11, 1578–1601. MR 3717195, DOI 10.4213/sm8865
- Albrecht Böttcher and Peter Dörfler, Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions, Math. Nachr. 283 (2010), no. 1, 40–57. MR 2598592, DOI 10.1002/mana.200810274
- Albrecht Böttcher and Yuri I. Karlovich, Carleson curves, Muckenhoupt weights, and Toeplitz operators, Progress in Mathematics, vol. 154, Birkhäuser Verlag, Basel, 1997. MR 1484165, DOI 10.1007/978-3-0348-8922-3
- A. Bottcher and B. Silbermann, Über das Reduktionsverfahren für diskrete Wiener-Hopf-Gleichungen mit unstetigem Symbol, Z. Anal. Anwendungen 1 (1982), no. 2, 1–5 (German, with English and Russian summaries). MR 693284, DOI 10.4171/ZAA/9
- Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990. MR 1071374, DOI 10.1007/978-3-662-02652-6
- Hermann Brunner, Arieh Iserles, and Syvert P. Nørsett, The spectral problem for a class of highly oscillatory Fredholm integral operators, IMA J. Numer. Anal. 30 (2010), no. 1, 108–130. MR 2580549, DOI 10.1093/imanum/drn060
- I. Corwin, P. Deift, and A. Its, Harold Widom’s work on the distribution functions of random matrix theory, Bull. Amer. Math. Soc. 59 (2022), no. 2,
- Percy Deift, Alexander Its, and Igor Krasovsky, Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. of Math. (2) 174 (2011), no. 2, 1243–1299. MR 2831118, DOI 10.4007/annals.2011.174.2.12
- P. Deift, A. Its, and I. Krasovsky, Eigenvalues of Toeplitz matrices in the bulk of the spectrum, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 4, 437–461. MR 3077466
- Percy Deift, Alexander Its, and Igor Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Comm. Pure Appl. Math. 66 (2013), no. 9, 1360–1438. MR 3078693, DOI 10.1002/cpa.21467
- Torsten Ehrhardt, A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities, Recent advances in operator theory (Groningen, 1998) Oper. Theory Adv. Appl., vol. 124, Birkhäuser, Basel, 2001, pp. 217–241. MR 1839838
- T. Ehrhardt, A generalization of Pincus’ formula and Toeplitz operator determinants, Arch. Math. (Basel) 80 (2003), no. 3, 302–309. MR 1981184, DOI 10.1007/s00013-003-0470-4
- M. E. Fisher and R. E. Hartwig, Toeplitz determinants: some applications, theorems, and conjectures, Adv. Chem. Phys. 15 (1968), 333–353.
- J. S. Geronimo and K. M. Case, Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys. 20 (1979), no. 2, 299–310. MR 519213, DOI 10.1063/1.524077
- I. Gohberg, M. A. Kaashoek, and F. van Schagen, Szegő-Kac-Achiezer formulas in terms of realizations of the symbol, J. Funct. Anal. 74 (1987), no. 1, 24–51. MR 901229, DOI 10.1016/0022-1236(87)90037-1
- Roland Hagen, Steffen Roch, and Bernd Silbermann, Spectral theory of approximation methods for convolution equations, Operator Theory: Advances and Applications, vol. 74, Birkhäuser Verlag, Basel, 1995. MR 1320262, DOI 10.1007/978-3-0348-9067-0
- Roland Hagen, Steffen Roch, and Bernd Silbermann, $C^*$-algebras and numerical analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 236, Marcel Dekker, Inc., New York, 2001. MR 1792428
- Alexei Yu. Karlovich and Ilya M. Spitkovsky, Connectedness of spectra of Toeplitz operators on Hardy spaces with Muckenhoupt weights over Carleson curves, Integral Equations Operator Theory 65 (2009), no. 1, 83–114. MR 2545663, DOI 10.1007/s00020-009-1710-1
- Siegfried Prössdorf and Bernd Silbermann, Numerical analysis for integral and related operator equations, Operator Theory: Advances and Applications, vol. 52, Birkhäuser Verlag, Basel, 1991. MR 1193030
- Lawrence F. Shampine, An inequality of E. Schmidt, Duke Math. J. 33 (1966), 145–150. MR 186978
- Bernd Silbermann, Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren, Math. Nachr. 104 (1981), 137–146 (German). MR 657888, DOI 10.1002/mana.19811040111
- I. B. Simonenko, Riemann’s boundary problem with a measurable coefficient, Dokl. Akad. Nauk SSSR 135, 538–541 (Russian); English transl., Soviet Math. Dokl. 1 (1960), 1295–1298. MR 140698
Bibliographic Information
- Estelle Basor
- Affiliation: American Institute of Mathematics, 360 Portage Avenue, Palo Alto, California 94306
- MR Author ID: 32255
- ORCID: 0000-0003-2506-6463
- Email: ebasor@aimath.org
- Albrecht Böttcher
- Affiliation: Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany
- Email: aboettch@mathematik.tu-chemnitz.de
- Torsten Ehrhardt
- Affiliation: Mathematics Department, University of California, Santa Cruz, California 95064
- MR Author ID: 349739
- Email: tehrhard@ucsc.edu
- Received by editor(s): September 9, 2021
- Published electronically: January 7, 2022
- © Copyright 2021 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 59 (2022), 175-190
- MSC (2020): Primary 47B35; Secondary 01A60, 15B05, 45E10
- DOI: https://doi.org/10.1090/bull/1758
- MathSciNet review: 4390498