
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 59, Number 2, April 2022, Pages 175–190
https://doi.org/10.1090/bull/1758

Article electronically published on January 7, 2022

HAROLD WIDOM’S WORK IN TOEPLITZ OPERATORS

ESTELLE BASOR, ALBRECHT BÖTTCHER, AND TORSTEN EHRHARDT

Abstract. This is a survey of Harold Widom’s work in Toeplitz operators,
embracing his early results on the invertibility and spectral theory of Toeplitz
operators, his investigations of the eigenvalue distribution of convolution op-
erators, and his groundbreaking research into Toeplitz and Wiener–Hopf de-
terminants.

1. The first half of the 20th century

In 1911, Otto Toeplitz studied doubly-infinite matrices of the form

(aj−k)
∞
j,k=−∞

and showed in particular that such a matrix generates a bounded operator on �2(Z)
if and only if the simply-infinite matrix (aj−k)

∞
j,k=1 induces a bounded operator on

�2(N). The former are now called Laurent matrices, whereas the latter are since
then referred to as (infinite) Toeplitz matrices. It turns out that, and this is implicit
already in Toeplitz’s article, the matrices define bounded operators on �2 if and only
if there is a function a in L∞ defined on the unit circle T such that the entries of
the matrices are just the Fourier coefficients of a, that is,

ak =
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ (k ∈ Z).

If such a function a exists, it is unique and is called the symbol of the corresponding
Laurent or Toeplitz matrix, and these, as well as the operators they induce, are
denoted by L(a) and T (a), respectively.

A finite n × n Toeplitz matrix may be regarded as a truncation of T (a), and
accordingly we write Tn(a) := (aj−k)

n
j,k=1. For such matrices, a pioneering result

goes back to Gabor Szegő, who in 1915 established his celebrated first limit theorem,
which states that if a is positive, then the quotient detTn(a)/ detTn−1(a) converges

to G(a) := exp( 1
2π

∫ 2π

0
log a(eiθ) dθ) as n → ∞. This theorem implies that if a is

real-valued, in which case the matrices Tn(a) are all Hermitian, and if we denote
by λ1(Tn(a)) ≤ · · · ≤ λn(Tn(a)) the eigenvalues of Tn(a), then

lim
n→∞

1

n

n∑
j=1

ϕ(λj(Tn(a))) =
1

2π

∫ 2π

0

ϕ(a(eiθ)) dθ
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for every test function ϕ ∈ C(R). This is a first-order asymptotic result for the
collective eigenvalue distribution of Toeplitz matrices. In 1952, eventually moti-
vated by Lars Onsager’s formula for the spontaneous magnetization of the two-
dimensional Ising model, Szegő improved the result to a second-order asymptotic
formula, which is now called Szegő’s strong limit theorem. We refer to the article
[DIK3] for an exhaustive treatment of this story. Almost at the same time, in 1953,
M. Kac, W. L. Murdock, and G. Szegő succeeded in describing the behavior of the
extreme eigenvalues λj(Tn(a)) and λn−j(Tn(a)) (j fixed and n → ∞).

Since L(a) is unitarily equivalent to the operator of multiplication by a on L2(T),
it follows that L(a) is invertible if and only if a is invertible in L∞(T). Invertibilty
of T (a) is a much more delicate issue and is a problem that has been studied by
many authors since the appearance of Toeplitz operators up to the present. In
1929, A. Wintner solved the problem for triangular matrices T (a), and in 1954,
P. Hartman and A. Wintner showed that if a is real-valued (⇔ T (a) is Hermitian),
then the spectrum of T (a) is the convex hull of the essential range of a.

Toeplitz operators are closely related to a series of other operators, namely,
the operators coming from the Riemann–Hilbert boundary value problem, singular
integral operators, and Wiener–Hopf integral operators. This connection was not
fully understood in those times, but nowadays we know that every result on an
operator belonging to one of the last three classes is a result on Toeplitz operators.
Many mathematicians, including F. Noether, J. Plemelj, S. G. Mikhlin, G. Fichera,
and T. Carleman, studied singular integral operators with continuous coefficients
and realized that, stated in terms of Toeplitz operators with continuous symbols,
for T (a) to be invertible it is sufficient that a have no zeros on T and that the
winding number of a about the origin be zero. Finally, in 1952, Israel Gohberg,
by an ingenious application of the Gelfand theory of Banach algebras, was able to
prove that these two conditions are also necessary for T (a) to be invertible.

In 1931, Norbert Wiener and Eberhard Hopf published their paper on what is
now called Wiener–Hopf factorization. This factorization amounts to factoring T (a)
into a product of an upper and a lower triangular matrix. However, a complete
understanding of that method was gained only in the works of F. D. Gakhov in
1949 and of I. Gohberg and Mark Krein in the 1950s.

2. Invertiblity, Fredholmness, and spectra

Harold Widom entered the Toeplitz operators scene with his 1959 paper [2]
jointly with Alberto Calderón and Frank Spitzer. This paper deals with Toeplitz
operators T (a) generated by symbols a in the Wiener algebra, that is, by symbols a
satisfying

∑
|an| < ∞. The authors consider T (a) as an operator on �∞ and on �2,

and they show that in both contexts T (a) is invertible if and only if a has no zeros
on T and has winding number zero about the origin. The approach is based on the
Wiener–Hopf factorization a(t) = a−(t)t

κa+(t), which gives the inverse operator
T−1(a) = T (a−1

+ )T (a−1
− ) in the case of invertibility (⇔ κ = 0) and the kernel and

co-kernel dimensions of T (a) for κ �= 0. The paper was submitted in May 1958,
and in a note added in proof, the authors remark that a substantial part of their
results are also in a 1958 paper by M. Krein. However, one theorem of [2] was not
in Krein’s paper: it replaces the condition

∑
|an| < ∞ by the sole requirement that

a ∈ L∞(T) and says that T (a) is invertible on �2 whenever a is invertible in L∞(T)
and a/|a| = exp(i ṽ) with v ∈ L∞(T) and ṽ denoting the conjugate function of v.
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In his 1960 paper [3], which was submitted in August 1958, Widom then laid
the foundations for the invertibility theory of Toeplitz operators on �2. The paper
has four theorems. In Theorems II and III, unaware of the work of Wintner and
of Hartman–Wintner, he rediscovered their invertibility criteria for triangular and
Hermitian Toeplitz matrices. Theorem I was a real breakthrough. It states that for
T (a) to be invertible, it is necessary and sufficient that a = a−a+ with a±1

− ∈ L2
−(T),

a±1
+ ∈ L2

+(T) such that the operator f �→ a−1
+ Pa−1

− f is bounded on L2(T). Here
L2
±(T) are the usual Hardy spaces and P is the orthogonal projection of L2(T)

onto L2
+(T). Note that P = (I + S)/2, where S is the Cauchy singular integral

operator. It was a lucky tie of events that just at that time, in 1960, H. Helson
and G. Szegő were able to characterize the weights w for which S is bounded on
L2(T, w). Combining his Theorem I and the Helson–Szegő theorem, Widom arrived
at the conclusion that T (a) is invertible if and only if

a/|a| = exp(i(c+ u+ ṽ)),

where c is a real constant, u and v are two real-valued functions in L∞(T), and
‖u‖∞ < π/2. This beautiful result, which was published in 1960 by Widom in [5]
and was rediscovered by Allen Devinatz in 1964, is referred to in the textbooks as
the Widom–Devinatz theorem. We should mention that an essential generalization
of Widom’s Theorem I, namely, its extension to Toeplitz operators with matrix-
valued symbols on the Hardy spaces Lp

+(T) was independently discovered by Igor
Simonenko in 1961.

Theorem IV of Widom’s paper [3] was another milestone. It concerns the case
where a is piecewise continuous with at most finitely many jumps. Consider the
continuous and naturally oriented curve in the plane that arises from the essential
range of a by filling in line segments between the endpoints a(t − 0) and a(t + 0)
of each jump. Widom proved that T (a) is invertible on �2 if and only if this curve
does not contain the origin and has winding number zero about the origin. This
was the very beginning of a long and fascinating story.

The first chapter of this story was written by none other than Widom himself in
[6]. The �2 theory of Toeplitz operators bifurcates into the �p and Lp theories for
1 < p < ∞. The latter two theories are based on completely different techniques
although, and this is something of a mystery, in the case of piecewise continuous
symbols the final results are almost identical. In [6], Widom studied Toeplitz oper-
ators T (a) with piecewise continuous symbols a on the Hardy space Lp

+(R) of the
upper half-plane. These operators are defined by f �→ P (af), where P = (I +S)/2
and S is the Cauchy singular integral operator on Lp(R). (One could equally well
work on Lp

+(T), the differences being only technical and psychological.) Widom

again arrived at the boundedness of f �→ a−1
+ Pa−1

− f on Lp
+(R), understood that

this is a question about the weights w for which S is bounded on Lp(R, w), and
showed that S is bounded if

w(x) = (1 + |x|)α
m∏

k=1

|x− xk|αk

with

−1/p < αk < 1/q and − 1/p < α+
m∑

k=1

αk < 1/q,
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where 1/p+1/q = 1. Using this insight, he was able to prove that T (a) is invertible
on Lp

+(R) if and only if a certain curve does not contain the origin and has winding
number zero about the origin. This curve results from the essential range of a by
filling in certain circular arcs Ap(a(x − 0), a(x + 0)) depending on p between the
endpoints of the jumps at x ∈ R and the arc Aq(a(+∞), a(−∞)) for the jump
at infinity. Here, for two distinct points α, β ∈ C and a number r ∈ (1,∞), we
denote by Ar(α, β) the circular arc at the points of which the line segment [α, β]
is seen at the angle 2π/max{r, s}, where 1/r + 1/s = 1, and which lies on the
right (resp., left) of the oriented line passing first α and then β if 1 < r < 2 (resp.,
2 < r < ∞). For r = 2, Ar(α, β) is simply the line segment [α, β]. For example, if
a(x) = sign x, then we have two circular arcs Ap(−1, 1) and Aq(1,−1), and since
Aq(1,−1) = Ap(−1, 1), it follows that T (sign) is invertible if and only if p �= 2.
Widom also computed the kernel and co-kernel dimensions of the operators if the
curve has nonzero winding number. Overall, paper [6] contained the full Fredholm
theory of Toeplitz operators with piecewise continuous symbols on Lp

+(R), including
an index formula.

In different language, particular cases of the Fredholm results of [6] were al-
ready evident in papers by B. V. Hvedelidze since 1947. The characterization of
the weights w for which S is bounded on Lp(Γ, w) has a long history, starting
with G. H. Hardy and J. E. Littlewood and culminating with work by R. Hunt,
B. Muckenhoupt, R. Wheeden (1973), A. Calderón (1977), and G. David (1984).
In the late 1960s and the 1970s, I. Gohberg and N. Krupnik introduced their local
principle by means of which they could not only give a simpler proof of Widom’s
result but also consider Lyapunov curves Γ with power weights w, the case of
matrix-valued symbols, and Banach algebras generated by Toeplitz operators with
piecewise continuous symbols. In 1972, R. Duduchava settled matters for Toeplitz
operators on �p. The theory reached a certain final stage only in the 1990s by work
of I. Spitkovsky (general weights w) and Yu. I. Karlovich and the second author
(general curves Γ and general weights w). In these more general situations, Harold
Widom’s circular arcs undergo a metamorphosis into horns, logarithmic spirals,
logarithmic horns, and eventually into logarithmic leaves with a halo [BK].

The invertibility and Fredholm criteria for Toeplitz operators with analytic, real-
valued, or piecewise continuous symbols imply a description of the spectrum and
of the essential spectrum of the operators. (The essential spectrum of an operator
T is the set of all complex λ for which T − λI is not Fredholm, that is, not invert-
ible modulo compact operators.) In all known cases, the spectrum and essential
spectrum turned out to be connected sets, and in 1963, Paul Halmos posed the
question whether the spectrum of T (a) is connected for every a ∈ L∞(T). In [10],
submitted in April 1963, Widom proved that the answer is Yes for the spectrum
of Toeplitz operators on �2, and in his paper [12] of 1966, he performed the same
feat for Toeplitz operators on Lp

+(T). In 1972, Ronald Douglas established the
connectedness of the essential spectrum of Toeplitz operators on �2, and only in
2009, A. Yu. Karlovich and I. Spitkovsky [KS] were able to prove that both the
spectrum and the essential spectrum of Toeplitz operators are always connected on
Lp
+(Γ, w) for 1 < p < ∞ and general curves Γ and weights w.
We cannot conclude this section without mentioning that several basic results

on Toeplitz operators, which nowadays appear on the first pages of the textbooks,
were established just around 1960, and that tracing back to the sources of these
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results is a subtle matter. For example, the Brown–Halmos theorem, according to
which the spectrum of T (a) is a subset of the convex hull of the essential range of a,
though explicitly published for the first time by P. Halmos and A. Brown in 1963,
was known to at least Widom and I. B. Simonenko already in 1960. As for Widom,
the theorem is in his article [11], which is based on lectures at the IAS in 1960. We
also remark that in the very early 1960s, Simonenko [Sim1,Sim2] already had the
results of [14] on locally sectorial symbols and the theorem that a Toeplitz operator
is invertible if and only if it is Fredholm of index zero, which was published by
Lewis Coburn in 1967 and has been known as Coburn’s lemma since then. Those
years were indeed turbulent times.

3. Extreme eigenvalues of convolution operators

Another topic of Harold Widom’s early work is extreme eigenvalues of integral
operators of the form

(Cτf)(x) =

∫ τ

−τ

k(x− y)f(y) dy, x ∈ (−τ, τ ),

considered on L2(−τ, τ ). These operators are the continuous analogue of finite
Toeplitz matrices. Since the kernel of the operator is translation invariant, we may
change integration over (−τ, τ ) to integration over (0, 2τ ) and therefore think of
Cτ as the compression to L2(0, 2τ ) of the Wiener–Hopf operator with the kernel
k(x − y), in which integration goes from 0 to ∞. The symbol of such operators

is the Fourier transform of the function k, k̂(ξ) :=
∫∞
−∞ k(x)eiξx dx. Of interest is

the case in which the function k is real-valued and even and in L1(R). In that
case Cτ is a compact Hermitian operator and we may label the eigenvalues as
λ1(Cτ ) ≥ λ2(Cτ ) ≥ · · · . As predicted by Kac, Murdock, and Szegő, who studied
the extreme eigenvalues of Hermitian Toeplitz matrices, the asymptotic behavior
of λj(Cτ ) for fixed j and for τ → ∞ depends heavily on the behavior of the symbol

k̂ near its maximum. Suppose that the maximal value is 1 and that it is attained

at ξ = 0 and only there. Under the assumption that k̂(ξ) = 1 − c|ξ|α + o(|ξ|α) as
ξ → 0 and that some more minor technical conditions are satisfied, Widom proved
that

λj(Cτ ) = 1− c

μj,α

1

τα
+ o

(
1

τα

)
as τ → ∞,

where the μj,α are certain constants. For α = 2, this was done in his 1958 pa-
per [1], where he even improved the o(1/τ2) to νj,α/τ

3+o(1/τ3). Papers [7] and [8]
of 1961 are for general α ∈ (0,∞). The constants μj,α are shown to be the eigen-
values of a certain positive definite integral operator with some kernel Kα(x, y) on
L2(−1, 1). If α = 2k is an even natural number, then Kα(x, y) is Green’s function
of the differential operator u �→ (−1)ku(2k) on (−1, 1) with the boundary conditions
u(�)(−1) = u(�)(1) = 0 for 0 ≤ � ≤ k − 1.

To prove these results, Widom derives a formula for the determinants of banded
Toeplitz matrices and some kind of an analogue of this formula for integral oper-
ators. These formulas are of interest by themselves and the starting point of yet
another story. Subtracting λI and setting the resulting determinants zero, he gets
the eigenvalues, and a clever approximation argument then yields the desired result.
Widom’s 1963 paper [9] is devoted to the extreme eigenvalues of the compressions
of convolution operators on L2(Rn) to L2(τΩ) as τ → ∞.
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Extreme eigenvalues of Hermitian Toeplitz matrices, whose symbol has a pre-
scribed behavior near the maximum that is governed by a parameter α ∈ (0,∞),
were thoroughly studied by Seymor Parter in the 1960s. As Harold told us, there
was an agreement between Parter and him that Parter should focus on the Toeplitz
case while he would embark on the Wiener–Hopf case.

This is also the right place for another story. In May 2008, the second author
received a (handwritten!) letter from Peter Dörfler with the question whether there
are results on the large n behavior of the maximal singular value (= spectral norm)
of the (n+ 1)× (n+ 1) triangular Toeplitz matrices,

Tn = (−1)ν

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(

0
ν−1

) (
1

ν−1

)
· · ·

(
n−1
ν−1

)
0

(
0

ν−1

)
· · ·

(
n−2
ν−1

)
. . .

...(
0

ν−1

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

composed of binomial coefficients with an integer ν ≥ 1. The matrix Tn is the rep-
resentation of the operator taking the νth derivative, f �→ Dνf , in the orthonormal
basis of Laguerre polynomials in the space Pn of algebraic polynomials of degree
at most n with the Laguerre norm given by ‖f‖2 =

∫∞
0

|f(x)|2e−x dx. Thus, the
norm ‖Tn‖ is just the best constant for which the so-called Markov-type inequality
‖Dνf‖ ≤ M‖f‖ holds for all f ∈ Pn.

This question reminded the second author of an ingenious trick used in Harold
Widom’s 1966 paper [13] (and employed independently also by Lawrence Shampine
in [Sha]). Let us consider an n × n matrix An = (ajk)

n−1
j,k=0 and denote by Hn the

integral operator on L2(0, 1) with the piecewise constant kernel hn(x, y) = a[nx],[ny],
where [·] stands for the integral part. Widom and Shampine proved that ‖An‖ =
n‖Hn‖, thus transferring consideration of An on the sequence {Cn} of increasing
spaces to the consideration of a sequence {Hn} of operators in one and the same
space L2(0, 1). If one could show that after appropriate scaling the operators Hn

converge in the operator norm to some nonzero operator H, that is, n−μHn → H
in norm, it would follow that n−μ‖Hn‖ → ‖H‖ and hence ‖An‖ ∼ ‖H‖nμ+1.

To compute ‖Tn‖, we may ignore the factor (−1)ν and the diagonal of zeros. In

the resulting n×n matrix, the j, k entry is equal to
(
k−j
ν−1

)
for j < k. Consequently,

if x < y, then the kernel of the scaled integral operator n−(ν−1)Hn is

1

nν−1
a[nx],[ny] =

1

nν−1

(
[ny]− [nx]

ν − 1

)

=
1

(ν − 1)!

[ny]− [nx]

n

[ny]− [nx]− 1

n
· · · [ny]− [nx]− ν + 2

n
,

which converges uniformly to (y − x)ν−1/(ν − 1)! as n → ∞ and thus yields the
asymptotics ‖Tn‖ = ‖Lν‖nν(1 + o(1)), where Lν is the Volterra integral operator
on L2(0, 1) given by

(Lνf)(x) =
1

(ν − 1)!

∫ 1

x

(y − x)ν−1f(y) dy.
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Clearly, Lν = Lν
1 and ‖Lν‖ = ‖L∗

ν‖ with

(L∗
νf)(x) =

1

(ν − 1)!

∫ x

0

(x− y)ν−1f(y) dy.

Note that ‖L1‖ = 2/π. For more on the subject and, in particular, for more about
pieces of the amazing story around the norms of the Volterra operators Lν , we refer
to [BD].

4. Eigenvalue distribution

Widom made several fundamental contributions to the collective eigenvalue dis-
tribution of truncated Toeplitz and Wiener–Hopf operators and their generaliza-
tions, such as pseudodifferential operators. In this section, we focus our attention
on two of his papers on this topic.

In his 1980 paper [24] with Henry Landau, he investigated the positive definite
operator given on L2(−τ, τ ) by

(Cτf)(x) =
γ

2πi

∫ τ

−τ

e−iα(x−y) − e−iβ(x−y)

x− y
f(y) dy, x ∈ (−τ, τ ).

This operator is of crucial interest in random matrix theory and in laser theory.
For example, as observed by H. Brunner, A. Iserles, and S. Nørsett [BIN], if γ = π,
α = −2, β = 2, in which case the operator is convolution by sin(2t)/t, the eigen-
values of Cτ are the singular values of the famous Fox–Li operator. The symbol of
Cτ is γχ(α,β), and hence it has two jumps. No general result of the type of Szegő’s
strong limit theorem delivered a second-order trace formula in this situation. By
an extremely ingenious argument, Landau and Widom nevertheless succeeded in
establishing a second-order result for the eigenvalues, which confirmed a conjecture
by D. Slepian of 1965. The result says that if ϕ is in C∞(R) and ϕ(0) = 0, then

∞∑
j=1

ϕ(λj(Cτ )) = τ
ϕ(γ)(β − α)

π
+

log(2τ )

π2

∫ γ

0

γϕ(x)− xϕ(γ)

x(γ − x)
dx+O(1).

The other paper we want to emphasize here is [28] of 1990. One is tempted to
think that the eigenvalues of the n×n Toeplitz matrices Tn(a) somehow mimic the
spectrum of the infinite Toeplitz matrix T (a) as n → ∞. This is indeed the case if a
is real-valued, but already in 1960, P. Schmidt and F. Spitzer showed that this is in
general no longer true if a is a Laurent polynomial (⇔ T (a) is banded). On the other
hand, it was known that if a is piecewise continuous with exactly one jump and this
jump is not too large, then the spectrum of Tn(a) converges to the essential range of
a. So what could the overall picture be? In [28], Widom raised the brave conjecture
that except in rare cases, the eigenvalues of Tn(a) are, in a sense, asymptotically
distributed as the values of a. Such a rare case takes place, for instance, if a extends
analytically a little into the interior or the exterior of T, which happens in particular
if a is a Laurent polynomial. And Widom proved this conjecture for various classes
of symbols. One of the results of [28] says that if a is continuous, the range a(T) is
a Jordan curve, a is C1 with nonvanishing derivative on T \ {1} but not in C1 on
all of T, then the eigenvalues asymptotically cluster along a(T); see Figure 1. The
proof is based on a thorough analysis of the determinants det(Tn(a)− λI). In the
case at hand, the function a− λ is nonvanishing but has nonzero winding number
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Figure 1. The left picture shows the range a(T) of the Laurent
polynomial

a(t) = −t−4−(3+2i)t−3+it−2+t−1+10t+(3+i)t2+4t3+it4

and the 100 eigenvalues of T100(a). On the right we see the range
b(T) of b(eiθ) = (θ4/100 + 1)eiθ (with θ ∈ [−π, π]) and the 100
eigenvalues of T100(b). The eigenvalues of Tn(a) are distributed as
predicted by Schmidt and Spitzer. The function b is continuous but
not C1, so that, in accordance with Widom’s result, the eigenvalues
are canonically distributed.

about the origin, and getting asymptotic formulas for such determinants is one of
the most difficult problems in the Toeplitz determinants business.

The ideas, methods, and results on extreme eigenvalues and eigenvalue dis-
tribution sketched in this and the previous sections foreshadowed some of the
work on random matrix theory and gave hints of good things to come. We refer
to [BBGM,DIK2] for recent developments concerning eigenvalues of large Toeplitz
matrices and to [CDI] for the fascinating advances in the field of random matrices.

5. Toeplitz determinants with regular symbols

Widom made his debut at Toeplitz determinants with the 1960 paper [4] on
Wiener–Hopf determinants. In 1954, Marc Kac proved a continuous analogue of
Szegő’s strong limit theorem, now known as the Akhiezer–Kac formula, and Widom
extended this formula to the higher-dimensional case.

The revolutionary contributions of Widom to the topic are in his papers [17], [18],
[19], which appeared from 1974 to 1976. Szegő’s strong limit theorem says that,
under certain assumptions, detTn(a)/G(a)n converges to a nonzero limit E(a) as
n → ∞. The original positivity assumption by Szegő was relaxed over the years
by many mathematicians, including G. Baxter, I. I. Hirshman, Jr., A. Devinatz, to
the requirement that a satisfies some mild smoothness condition, has no zeros on
T, and has winding number zero about the origin. The constants G(a) and E(a)
are then given by

G(a) = exp(log a)0 and E(a) = exp
∞∑
k=1

k(log a)k(log a)−k,
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where (log a)j denotes the jth Fourier coefficient of any continuous logarithm of a.
Widom did two important things. First, he extended the theorem to block Toeplitz
matrices, and secondly, he found a remarkably elegant operator theoretic proof with
immense impact on subsequent research into the asymptotics of Toeplitz matrices.

In the block case, a is a function of T into CN×N , the Fourier coefficients aj are
N ×N matrices, Tn(a) is accordingly a matrix of order nN , and it turns out that
the function ã associated with a and defined by ã(t) = a(1/t) for t ∈ T plays an
important role. In addition to the block Toeplitz operator T (a), we need the block
Hankel operator H(a) defined by the infinite block Hankel matrix (aj+k−1)

∞
j,k=1 on

the CN -valued �2. Widom’s smoothness assumption was that

‖a‖ := ‖a‖∞ +
( ∞∑

j=−∞
|j| ‖aj‖2

)1/2

< ∞.

In 1966, Mark Krein showed that such matrix functions form a Banach algebra.
If a satisfies this smoothness condition, then T (a) is bounded while H(a) is a
Hilbert–Schmidt operator. The theorem of [18] and [19] states that if T (a) and
T (ã) are Fredholm of index zero, then T (a)T (a−1)− I is a trace class operator and
detTn(a)/G(a)n → E(a) where

G(a) = exp(log det a)0 and E(a) = detT (a)T (a−1).

This result is now in the textbooks as the Szegő–Widom limit theorem.
That T (a)T (a−1)− I is a trace class operator follows from the nice identity

T (ab) = T (a)T (b) +H(a)H(b̃),

which was established in [19]. This identity had been known and used for a long
time, for example in the form PabP = PaPbP + PaQbP , but writing it in this
form, with the Hankel operators, was one of Widom’s strokes of genius. Why
is detT (a)T (a−1) equal to Szegő’s original constant in the scalar case? Widom
observed that this follows from another remarkable identity, namely, the formula

det(eAeBe−Ae−B) = etr (AB−BA),

which holds whenever A,B are bounded Hilbert space operators such that AB−BA
is of trace class. This formula was established independently by J. D. Pincus in
1972 and by J. W. Helton and R. E. Howe in 1973, and a simple proof was given
by the third author [E2] in 2003. Widom expressed T (a)T (a−1) as eAeBe−Ae−B so
that the commutator AB − BA is the product H(c)H(c̃ ) of two Hankel operators
generated by c = log a, and since

trH(c)H(c̃ ) = tr

⎛
⎜⎜⎝

c1 c2 c3 . . .
c2 c3 . . .
c3 . . .
. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c−1 c−2 c−3 . . .
c−2 c−3 . . .
c−3 . . .
. . .

⎞
⎟⎟⎠ =

∞∑
k=1

kckc−k,

he arrived at Szegő’s scalar case formula for the constant E(a).
In [17], Widom derived an alternative expression for E(a) in the case where a is

a block Laurent polynomial and also used this in order to determine the limiting set
of the eigenvalues of Tn(a) in this situation, thus generalizing results by Schmidt,
Spitzer, and Hirschman to the block case. In his 1989 paper [27], Widom showed
in a direct way that detT (a)T (a−1) coincides with still another expression, which
was obtained by I. Gohberg, M. A. Kaashoek, and F. van Schagen [GKS] in 1987.
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As for Widom’s proof in [19], we first of all want to remark that all previous
proofs of the Szegő strong limit theorem were very complicated and rather indirect
and did not convincingly reveal where the E(a) actually comes from. This changed
with Widom’s operator theoretic proof. Instead of embarking on this proof here,
we go some 25 years ahead. In 2000, Alexei Borodin and Andrei Okounkov [BO]
established a formula which, in notation subsequently suggested by no-one but
Widom, reads

detTn(a)

G(a)n
=

det(I −QnH(b)H(c̃)Qn)

det(I −H(b)H(c̃))
.

Here Qn is projection onto the coordinates indexed by n+1, n+2, . . . , a is assumed
to have a Wiener–Hopf factorization a = a−a+, and b, c are defined by b = a−a

−1
+ ,

c = a−1
− a+. Since Qn → 0 strongly and H(b)H(c̃) is of trace class, it follows that

the right-hand side converges to 1/ det(I −H(b)H(c̃)), which can be shown to be
just detT (a)T (a−1). The result is the Szegő–Widom limit theorem. Something like
the Borodin–Okounkov formula was asked for by P. Deift and A. Its in 1999, and
later it turned out that J. Geronimo and K. Case [GC] had a similar formula proved
earlier in 1979. Borodin and Okounov’s proof of their formula was very intricate.
Simple operator theoretic proofs were subsequently given by Widom and Basor in
[32], and by Widom and Böttcher in [35].

To mention at least one impact of Widom’s proof in [19] on subsequent research,
we note that [19] contains the beautiful identity

Tn(a)Tn(b) = Tn(ab)− PnH(a)H(b̃)Pn −WnH(ã)H(b)Wn

for the product of two finite Toeplitz matrices. Here Pn is projection onto the first n
coordinates, and Wn is Pn followed by reversal of the coordinates. We remark that
Widom himself wrote Qn instead of Wn. The Wn was introduced in [BS1] (which
was written before [Sil] but appeared only after that paper), not only because Qn is
there used for I − Pn but mainly to give merit to Widom. It was this eye-catching
identity along with the observation that the products of the Hankel operators are
compact if a or b is continuous which inspired Bernd Silbermann in 1980 to study
the stability of the sequence {Tn(a)}∞n=1 by embedding it into a Banach algebra of
sequences in which sequences of the form

{PnKPn +WnLWn + Cn}∞n=1

with compact K,L and ‖Cn‖ → 0 form a closed two-sided ideal [Sil]. Since then,
this idea has led to enormous progress in the foundation of plenty of approximation
methods and numerical algorithms; see, e.g., [BS2,HRS1,HRS2,PS].

6. Toeplitz determinants with singular symbols

Symbols with discontinuities, zeros, poles, or nonzero winding number are re-
ferred to as singular symbols. If one of these four evils happens, Szegő’s limit
theorem breaks down. Widom’s first paper on Toeplitz determinants in the strict
sense is his 1971 paper [15], and there he considered a sheer monster of a singular
symbol: the case where a is a positive function supported in [δ, 2π − δ] ⊂ (0, 2π)
and satisfying a(θ) = a(2π − θ). He proved that then

detTn(a) ∼ 21/12e3ζ
′(−1)(sin(δ/2))−1/4E0(f)

2G(f)nn−1/4(cos(δ/2))n
2

,
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where G(f) = exp(log f)0 is as before, E0(f) = exp( 14
∑∞

k=1 k(log f)k(log f)−k),
and f is given by

f(θ) := a(2 arccos(cos(δ/2) cos θ)).

This paper was an important step toward the development connected with the sine
kernel; see [CDI]. It should also be emphasized that the difficulties and asymptotics
arising for symbols vanishing on entire arcs are far beyond the problems for the
symbol class we will embark on now.

Namely, it was the 1968 paper [FH] by Michael Fisher and Robert Hartwig that
set a big ball rolling. They introduced the class of singular symbols given by

a(eiθ) = b(eiθ)
R∏

r=1

|eiθ − eiθr |2αr ϕβr,θr (e
iθ),

where b is a nice function (smooth, nonvanishing on T, and with winding number
zero about the origin), eiθ1 , . . . , eiθR are distinct points on T, and the functions
ϕβr,θr are defined by

ϕβr,θr (e
iθ) = exp(iβrarg(−ei(θ−θr)))

with the argument taken in (−π, π]. The function ϕβr,θr satisfies

ϕβr,θr (e
i(θr+0)) = e−πiβr , ϕβr,θr (e

i(θr−0)) = eπiβr ,

and it is continuous on T \ {eiθr}. Such symbols a may have zeros (Reαr > 0),
poles (Reαr < 0), oscillating discontinuities (Reαr = 0), jumps (βr /∈ Z), and
nonzero winding numbers (βr ∈ Z).

Hartwig and Fisher raised the conjecture that

detTn(a)/G(a)n ∼ C(a)n
∑

(α2
r−β2

r)

with some nonzero constant C(a) = C(b, θ1, . . . , θR, α1, . . . , αR, β1, . . . , βR). It is
required that Reαr > −1/2 for all r, which guarantees that a is in L1(0, 2π) and
hence has well-defined Fourier coefficients. The assumption that |Re βr| < 1/2 for
all r is a basic case of the conjecture. It avoids certain unpleasant ambiguities
caused by larger exponents βr, in particular by the situation where some of the
numbers αr ± βr are integers.

In special cases, the conjecture was confirmed by A. Lenard and by Fisher and
Hartwig themselves. With his 1973 paper [16], Widom was the first to provide a
rigorous proof of the conjecture in a sufficiently general case: he proved it under
the assumption that βr = 0 for all r. Hirschman writes in his review MR0331107
(48#9441):

The present paper represents a jump of several quanta in depth
and sophistication in an area which is not only of great interest to
mathematicians, but to theoretical physicists as well.

In fact, Widom’s proof is a gigantic piece of mathematical analysis that takes its
starting point at a formula by Hirschman, which gives an exact expression for
detTn(a) in terms of the solutions pn and qn in Cn of the equations Tn(a)pn = e1
and Tn(a)qn = e1, where e1 = (1, 0, . . . , 0)�. Widom also proved the conjecture for
R = 1, α1 > −1/2, −1/2 < β1 < 1/2, however, without determining the constant
C(a) in this case.
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The Fisher–Hartwig conjecture was subsequently confirmed by the first author
under the assumption that Reβr = 0 for all r (1978) or that αr = 0 and |Reβr| <
1/2 for all r (1979), by B. Silbermann and the second author in the case where
|Reαr| < 1/2 and |Re βr| < 1/2 for all r (1985), and by B. Silbermann and the
third author for R = 1, Reα1 > −1/2, β1 ∈ C arbitrary (1996). See [BS2] for
precise references. In each case, the constant C(a) was completely identified. It
was observed by several authors, for example by Silbermann and the second author
already in 1981, that the conjecture is in general no longer true if αr±βr may assume
values in Z\{0}. A new conjecture, which covers all possible cases, was formulated
by Craig Tracy and the first author [BT] in 1991. This new conjecture was proved
by the third author [E1] in 1997 in all cases in which it coincides with the original
conjecture and by Percy Deift, Alexander Its, and Igor Krasovsky [DIK1] in 2009
in full generality. The entire development from Fisher and Hartwig’s 1968 paper up
to the present has both demanded and produced great progress in operator theory
for Toeplitz and related matrices.

The Fisher–Hartwig conjecture has a continuous analogue for Wiener–Hopf de-
terminants. In the 1983 paper [25] by Widom and the first author, this conjecture
was proved for piecewise continuous symbols with a continuous argument, that is,
for the case where αr = 0 and Re βr = 0 for all r. The idea of the proof is that
Wiener–Hopf determinants when discretized become Toeplitz determinants. Un-
fortunately, one is led to determinants of the form detTn(a

(n)) in this way. Thus,
not only the order of the determinant but also the symbol depend on n. However,
sufficiently precise asymptotic results for Toeplitz matrices and determinants elim-
inate this obstacle. For general piecewise symbols, the continuous analogue of the
Fisher–Hartwig conjecture was settled in 1994 in the papers [29] and [30] by Widom,
Silbermann, and the second author. These papers are based on another idea. This
time it is that Wiener–Hopf operators may be regarded as Toeplitz matrices with
operator-valued entries.

Over the years it has become clear that the asymptotic behavior of Toeplitz and
Wiener–Hopf determinants with several Fisher–Hartwig singularities can be deter-
mined by employing localization techniques, provided one knows the asymptotics
for at least one symbol with a single Fisher–Hartwig singularity. In the Toeplitz
case, such a symbol is (1− t)γ(1− 1/t)δ (t ∈ T) because we have the factorizations

|t− 1|2α = (1− t)α(1− 1/t)α,

ϕβ,0(t) = exp(iβarg(−t)) = (1− t)β(1− 1/t)−β,

which gives (1 − t)γ(1 − 1/t)δ with γ = α + β and δ = α − β. Both exact and
asymptotic formulas for the corresponding Toeplitz determinants were found in
1985 by Silbermann and the second author, and two elementary derivations of
these formulas are also in the 2005 paper [34].

In the Wiener–Hopf case, things are dramatically more complicated. Only in
2004, in [33], Widom and the first author were able to prove the predicted asymp-
totic behavior for the Wiener–Hopf determinants with the symbol(

ξ + 0i

ξ + i

)γ (
ξ − 0i

ξ − i

)δ

(ξ ∈ R),

still requiring that γ = α+β and δ = α−β with the real parts of α, β in (−1/2, 1/2).
The proof is highly sophisticated. Roughly speaking, it is based on introducing a
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parameter to regularize the symbol, on applying the Wiener–Hopf analogue of the
Borodin–Okounkov formula, which was established in 2003 by Y. Chen and the first
author, on considering the quotient of the Wiener–Hopf determinant over (0, R)
and an appropriate n×n Toeplitz determinant, on taking the limit n,R → ∞ with
n/R → 1, and on finally returning to the original symbol by passing to the limit
that makes the regularization parameter disappear.

In his journey from eigenvalue distribution problems to Szegő’s theorem and
generalizations for singular symbols, Widom sometimes made an excursion into
other more general classes of operators. In a series of papers in the late 1970s,
[20,21,22,23], he proved a far-reaching extension of the classical Szegő theorem by
developing a symbolic calculus for pseudodifferential operators. The context was
general enough to include extensions with variable convolutions, higher dimensions,
and general Riemannian manifolds. The applications ranged from the classical
theorems in the Toeplitz case to heat expansions for Laplace–Beltrami operators.
Many of these results entered his book [26].

Finally, we mention that in the 1995 paper [31] he found the asymptotic ex-
pansion of the Fredholm determinant of the sine kernel on a union of intervals.
This Fredholm determinant is intimately connected to the eigenvalue distribution
problem for random unitary matrices, and that paper is a beautiful bridge between
his work in Toeplitz operators and his work in random matrix theory, which is the
subject of the article by Corwin, Deift, and Its [CDI] in this issue.

———————————————

Harold Widom has significantly enriched several fields of mathematics, and we hope
we were able to convey an idea of the grand work done by him solely in Toeplitz
and Wiener–Hopf operators as well as an idea of the pioneering spirit of the 1960s
and of his achievements in those times. We remember with pleasure that his papers
were among the first we read at the very beginnings of our careers, and since then
up to the present, we count ourselves truly lucky for the many opportunities we
had to learn from and to work with him and to benefit from his genius and his
personality.

On a final personal note, the first author was privileged to be his graduate
student. She was not only inspired by the strength and beauty of his mathematical
creations, but also by his sense of integrity and fairness. Harold Widom was the
perfect mentor, long before that word was popular. He knew when to give advice
and be helpful, knew when to back off and let students mature, and was forever
willing to lend an ear and inspire confidence.

———————————————
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