Harold Widom’s work in random matrix theory
HTML articles powered by AMS MathViewer
- by Ivan Z. Corwin, Percy A. Deift and Alexander R. Its;
- Bull. Amer. Math. Soc. 59 (2022), 155-173
- DOI: https://doi.org/10.1090/bull/1757
- Published electronically: January 21, 2022
- HTML | PDF | Request permission
Abstract:
This is a survey of Harold Widom’s work in random matrices. We start with his pioneering papers on the sine-kernel determinant, continue with his and Craig Tracy’s groundbreaking results concerning the distribution functions of random matrix theory, touch on the remarkable universality of the Tracy–Widom distributions in mathematics and physics, and close with Tracy and Widom’s remarkable work on the asymmetric simple exclusion process.References
- Harold Widom, The strong Szegő limit theorem for circular arcs, Indiana Univ. Math. J. 21 (1971/72), 277–283. MR 288495, DOI 10.1512/iumj.1971.21.21022
- Harold Widom, Toeplitz determinants with singular generating functions, Amer. J. Math. 95 (1973), 333–383. MR 331107, DOI 10.2307/2373789
- Harold Widom, The asymptotics of a continuous analogue of orthogonal polynomials, J. Approx. Theory 77 (1994), no. 1, 51–64. MR 1273699, DOI 10.1006/jath.1994.1033
- Janko Gravner, Craig A. Tracy, and Harold Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models, J. Statist. Phys. 102 (2001), no. 5-6, 1085–1132. MR 1830441, DOI 10.1023/A:1004879725949
- Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Phys. Lett. B 305 (1993), no. 1-2, 115–118. MR 1215903, DOI 10.1016/0370-2693(93)91114-3
- Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174. MR 1257246
- Craig A. Tracy and Harold Widom, Fredholm determinants, differential equations and matrix models, Comm. Math. Phys. 163 (1994), no. 1, 33–72. MR 1277933
- C. A. Tracy and H. Widom, Systems of partial differential equations for a class of operator determinants, Partial differential operators and mathematical physics (Holzhau, 1994) Oper. Theory Adv. Appl., vol. 78, Birkhäuser, Basel, 1995, pp. 381–388. MR 1365352
- Harold Widom, Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Comm. Math. Phys. 171 (1995), no. 1, 159–180. MR 1341698
- Craig A. Tracy and Harold Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys. 177 (1996), no. 3, 727–754. MR 1385083
- Craig A. Tracy and Harold Widom, Correlation functions, cluster functions, and spacing distributions for random matrices, J. Statist. Phys. 92 (1998), no. 5-6, 809–835. MR 1657844, DOI 10.1023/A:1023084324803
- Harold Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Statist. Phys. 94 (1999), no. 3-4, 347–363. MR 1675356, DOI 10.1023/A:1004516918143
- Estelle L. Basor and Harold Widom, On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory 37 (2000), no. 4, 397–401. MR 1780119, DOI 10.1007/BF01192828
- Harold Widom, On convergence of moments for random Young tableaux and a random growth model, Int. Math. Res. Not. 9 (2002), 455–464. MR 1884467, DOI 10.1155/S1073792802109056
- Craig A. Tracy and Harold Widom, Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys. 279 (2008), no. 3, 815–844. MR 2386729, DOI 10.1007/s00220-008-0443-3
- Craig A. Tracy and Harold Widom, A Fredholm determinant representation in ASEP, J. Stat. Phys. 132 (2008), no. 2, 291–300. MR 2415104, DOI 10.1007/s10955-008-9562-7
- Craig A. Tracy and Harold Widom, Asymptotics in ASEP with step initial condition, Comm. Math. Phys. 290 (2009), no. 1, 129–154. MR 2520510, DOI 10.1007/s00220-009-0761-0
- Craig A. Tracy and Harold Widom, On ASEP with step Bernoulli initial condition, J. Stat. Phys. 137 (2009), no. 5-6, 825–838. MR 2570751, DOI 10.1007/s10955-009-9867-1
- A. Aggarwal, A. Borodin, and M. Wheeler, Colored fermionic vertex models and symmetric functions, arXiv:2101.01605, 2021.
- David Aldous and Persi Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 413–432. MR 1694204, DOI 10.1090/S0273-0979-99-00796-X
- Jinho Baik, Robert Buckingham, and Jeffery DiFranco, Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Comm. Math. Phys. 280 (2008), no. 2, 463–497. MR 2395479, DOI 10.1007/s00220-008-0433-5
- Jinho Baik, Percy Deift, and Kurt Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), no. 4, 1119–1178. MR 1682248, DOI 10.1090/S0894-0347-99-00307-0
- Jinho Baik and Eric M. Rains, The asymptotics of monotone subsequences of involutions, Duke Math. J. 109 (2001), no. 2, 205–281. MR 1845180, DOI 10.1215/S0012-7094-01-10921-6
- E. Basor, A. Böttcher, and T. Ehrhardt, Harold Widom’s work in Toeplitz determinants, Bull. Amer. Math. Soc. 59 (2022), no. 2,
- Fa Yueh Wu, Exactly solved models: a journey in statistical mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. Selected papers with commentaries (1963–2008); With an introduction by C. N. Yang and a review of Wu’s research by J.-M. Maillard. MR 2723317, DOI 10.1142/6825
- D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980), no. 2, 109–157. MR 603127, DOI 10.1016/0196-8858(80)90008-1
- H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71, 205 (1931).
- Pavel M. Bleher and Alexander R. Its, Asymptotics of the partition function of a random matrix model, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 1943–2000 (English, with English and French summaries). MR 2187941, DOI 10.5802/aif.2147
- Alexei Borodin and Andrei Okounkov, A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), no. 4, 386–396. MR 1780118, DOI 10.1007/BF01192827
- Alexei Borodin, Determinantal point processes, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011, pp. 231–249. MR 2932631
- Alexei Borodin, Integrable probability, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 199–216. MR 3728469
- Alexei Borodin, Ivan Corwin, Leonid Petrov, and Tomohiro Sasamoto, Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, Comm. Math. Phys. 339 (2015), no. 3, 1167–1245. MR 3385995, DOI 10.1007/s00220-015-2424-7
- A. Borodin and V. Gorin, Lectures on integrable probability, arXiv:1212.3351, 2012.
- Alexei Borodin and Leonid Petrov, Integrable probability: from representation theory to Macdonald processes, Probab. Surv. 11 (2014), 1–58. MR 3178541, DOI 10.1214/13-PS225
- Alexei Borodin and Leonid Petrov, Higher spin six vertex model and symmetric rational functions, Selecta Math. (N.S.) 24 (2018), no. 2, 751–874. MR 3782413, DOI 10.1007/s00029-016-0301-7
- A. Borodin, M. Wheeler, Coloured stochastic vertex models and their spectral theory, arXiv:1808.01866, 2018.
- Ivan Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76. MR 2930377, DOI 10.1142/S2010326311300014
- Ivan Corwin, Two ways to solve ASEP, Topics in percolative and disordered systems, Springer Proc. Math. Stat., vol. 69, Springer, New York, 2014, pp. 1–13. MR 3229284, DOI 10.1007/978-1-4939-0339-9_{1}
- Ivan Corwin, Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 1007–1034. MR 3729062
- Ivan Corwin, Commentary on “Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem” by David Aldous and Persi Diaconis, Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 3, 363–374. MR 3803162, DOI 10.1090/bull/1623
- P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1677884
- Percy Deift, Integrable operators, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 69–84. MR 1730504, DOI 10.1090/trans2/189/06
- Percy Deift, Universality for mathematical and physical systems, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 125–152. MR 2334189, DOI 10.4171/022-1/7
- Percy Deift and Dimitri Gioev, Universality in random matrix theory for orthogonal and symplectic ensembles, Int. Math. Res. Pap. IMRP 2 (2007), Art. ID rpm004, 116. MR 2335245
- Percy Deift and Dimitri Gioev, Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), no. 6, 867–910. MR 2306224, DOI 10.1002/cpa.20164
- P. Deift, A. Its, and I. Krasovsky, Asymptotics of the Airy-kernel determinant, Comm. Math. Phys. 278 (2008), no. 3, 643–678. MR 2373439, DOI 10.1007/s00220-007-0409-x
- P. Deift, T. Kriecherbauer, and K. T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95 (1998), no. 3, 388–475. MR 1657691, DOI 10.1006/jath.1997.3229
- Percy A. Deift, Alexander R. Its, and Xin Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math. (2) 146 (1997), no. 1, 149–235. MR 1469319, DOI 10.2307/2951834
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), no. 11, 1335–1425. MR 1702716, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
- P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), no. 12, 1491–1552. MR 1711036, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R
- Momar Dieng, Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations, Int. Math. Res. Not. 37 (2005), 2263–2287. MR 2181265, DOI 10.1155/IMRN.2005.2263
- J. des Cloizeaux and M. L. Mehta, Asymptotic behavior of spacing distributions for the eigenvalues of random matrices, J. Mathematical Phys. 14 (1973), 1648–1650. MR 328158, DOI 10.1063/1.1666239
- Tobin A. Driscoll, Folkmar Bornemann, and Lloyd N. Trefethen, The chebop system for automatic solution of differential equations, BIT 48 (2008), no. 4, 701–723. MR 2465699, DOI 10.1007/s10543-008-0198-4
- Freeman J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys. 3 (1962), 140–156. MR 143556, DOI 10.1063/1.1703773
- Freeman J. Dyson, Fredholm determinants and inverse scattering problems, Comm. Math. Phys. 47 (1976), no. 2, 171–183. MR 406201
- L. Erdësh, Universality of Wigner random matrices: a survey of recent results, Uspekhi Mat. Nauk 66 (2011), no. 3(399), 67–198 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 3, 507–626. MR 2859190, DOI 10.1070/RM2011v066n03ABEH004749
- Torsten Ehrhardt, Dyson’s constant in the asymptotics of the Fredholm determinant of the sine kernel, Comm. Math. Phys. 262 (2006), no. 2, 317–341. MR 2200263, DOI 10.1007/s00220-005-1493-4
- N. M. Ercolani and K. D. T.-R. McLaughlin, Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration, Int. Math. Res. Not. 14 (2003), 755–820. MR 1953782, DOI 10.1155/S1073792803211089
- J. S. Geronimo and K. M. Case, Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys. 20 (1979), no. 2, 299–310. MR 519213, DOI 10.1063/1.524077
- P. J. Forrester, The spectrum edge of random matrix ensembles, Nuclear Phys. B 402 (1993), no. 3, 709–728. MR 1236195, DOI 10.1016/0550-3213(93)90126-A
- Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, Mathematical Surveys and Monographs, vol. 128, American Mathematical Society, Providence, RI, 2006. The Riemann-Hilbert approach. MR 2264522, DOI 10.1090/surv/128
- Michio Jimbo, Tetsuji Miwa, Yasuko Môri, and Mikio Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D 1 (1980), no. 1, 80–158. MR 573370, DOI 10.1016/0167-2789(80)90006-8
- W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. 49 (1928), 619–636.
- S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), no. 1, 31–51. MR 555581, DOI 10.1007/BF00283254
- A. R. It⋅s, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, Differential equations for quantum correlation functions, Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, 1990, pp. 1003–1037. MR 1064758, DOI 10.1142/S0217979290000504
- Kurt Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), no. 1, 151–204. MR 1487983, DOI 10.1215/S0012-7094-98-09108-6
- Kurt Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), no. 2, 437–476. MR 1737991, DOI 10.1007/s002200050027
- I. V. Krasovsky, Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle, Int. Math. Res. Not. 25 (2004), 1249–1272. MR 2047176, DOI 10.1155/S1073792804140221
- A. Lenard, One-dimensional impenetrable bosons in thermal equilibrium, J. Mathematical Phys. 7 (1966), 1268–1272. MR 198890, DOI 10.1063/1.1705029
- E. H. Lieb, Residual Entropy of Square Ice, Phys. Rev. 162, 162 (1967).
- B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26 (1977), no. 2, 206–222. MR 1417317, DOI 10.1016/0001-8708(77)90030-5
- Madan Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR 1083764
- Neil O’Connell, Whittaker functions and related stochastic processes, Random matrix theory, interacting particle systems, and integrable systems, Math. Sci. Res. Inst. Publ., vol. 65, Cambridge Univ. Press, New York, 2014, pp. 385–409. MR 3380693
- John Palmer, Deformation analysis of matrix models, Phys. D 78 (1994), no. 3-4, 166–185. MR 1302407, DOI 10.1016/0167-2789(94)90113-9
- Michael Prähofer and Herbert Spohn, Current fluctuations for the totally asymmetric simple exclusion process, In and out of equilibrium (Mambucaba, 2000) Progr. Probab., vol. 51, Birkhäuser Boston, Boston, MA, 2002, pp. 185–204. MR 1901953
- Jeremy Quastel and Herbert Spohn, The one-dimensional KPZ equation and its universality class, J. Stat. Phys. 160 (2015), no. 4, 965–984. MR 3373647, DOI 10.1007/s10955-015-1250-9
- A. Rákos and G. M. Schütz, Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process, J. Stat. Phys. 118 (2005), no. 3-4, 511–530. MR 2123646, DOI 10.1007/s10955-004-8819-z
- L. A. Sahnovič, Operators, similar to unitary operators, with absolutely continuous spectrum, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 51–63 (Russian). MR 232243
- Gunter M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Statist. Phys. 88 (1997), no. 1-2, 427–445. MR 1468391, DOI 10.1007/BF02508478
- Alexander Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys. 207 (1999), no. 3, 697–733. MR 1727234, DOI 10.1007/s002200050743
- Frank Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246–290 (1970). MR 268959, DOI 10.1016/0001-8708(70)90034-4
- A. M. Veršik and S. V. Kerov, Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Dokl. Akad. Nauk SSSR 233 (1977), no. 6, 1024–1027 (Russian). MR 480398
Bibliographic Information
- Ivan Z. Corwin
- Affiliation: Columbia University, New York, New York 10027
- MR Author ID: 833613
- ORCID: 0000-0002-1499-3969
- Email: corwin@math.columbia.edu
- Percy A. Deift
- Affiliation: Courant Institute of Mathematical Sciences, New York, New York 10003
- MR Author ID: 56085
- Email: deift@courant.nyu.edu
- Alexander R. Its
- Affiliation: Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202-3216
- MR Author ID: 196891
- Email: aits@iu.edu
- Received by editor(s): July 8, 2021
- Published electronically: January 21, 2022
- Additional Notes: This work was supported in part by the National Science Foundation through grants DMS:1937254, DMS:1811143, DMS:1664650 of the first author, DMS:1001886 of the second author, and DMS:1001777, DMS:1955265 of the third author. The first author is also supported through a Packard Fellowship in Science and Engineering and a W.M. Keck Foundation Science and Engineering Grant.
- © Copyright 2022 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 59 (2022), 155-173
- MSC (2020): Primary 60B20; Secondary 34M55, 82C22
- DOI: https://doi.org/10.1090/bull/1757
- MathSciNet review: 4390497