Helly-type problems
HTML articles powered by AMS MathViewer
- by Imre Bárány and Gil Kalai;
- Bull. Amer. Math. Soc. 59 (2022), 471-502
- DOI: https://doi.org/10.1090/bull/1753
- Published electronically: October 29, 2021
- HTML | PDF
Abstract:
In this paper we present a variety of problems in the interface between combinatorics and geometry around the theorems of Helly, Radon, Carathéodory, and Tverberg. Through these problems we describe the fascinating area of Helly-type theorems and explain some of their main themes and goals.References
- Ron Aharoni and Eli Berger, The intersection of a matroid and a simplicial complex, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4895–4917. MR 2231877, DOI 10.1090/S0002-9947-06-03833-5
- Ron Aharoni and Eli Berger, Rainbow matchings in $r$-partite $r$-graphs, Electron. J. Combin. 16 (2009), no. 1, Research Paper 119, 9. MR 2546322, DOI 10.37236/208
- V. H. Almendra-Hernández, G. Ambrus, and M. Kendall, Quantitative Helly-type theorems via sparse approximation, arXiv:2108:05745 (2021).
- Noga Alon, Imre Bárány, Zoltán Füredi, and Daniel J. Kleitman, Point selections and weak $\epsilon$-nets for convex hulls, Combin. Probab. Comput. 1 (1992), no. 3, 189–200. MR 1208800, DOI 10.1017/S0963548300000225
- N. Alon and G. Kalai, Bounding the piercing number, Discrete Comput. Geom. 13 (1995), no. 3-4, 245–256. MR 1318775, DOI 10.1007/BF02574042
- Noga Alon, Gil Kalai, Jiří Matoušek, and Roy Meshulam, Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math. 29 (2002), no. 1, 79–101. MR 1921545, DOI 10.1016/S0196-8858(02)00003-9
- Noga Alon and Daniel J. Kleitman, Piercing convex sets, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 252–256. MR 1149871, DOI 10.1090/S0273-0979-1992-00304-X
- Noga Alon and Daniel J. Kleitman, Piercing convex sets and the Hadwiger-Debrunner $(p,q)$-problem, Adv. Math. 96 (1992), no. 1, 103–112. MR 1185788, DOI 10.1016/0001-8708(92)90052-M
- Noga Alon, János Pach, Rom Pinchasi, Radoš Radoičić, and Micha Sharir, Crossing patterns of semi-algebraic sets, J. Combin. Theory Ser. A 111 (2005), no. 2, 310–326. MR 2156215, DOI 10.1016/j.jcta.2004.12.008
- N. Amenta, Helly-type theorems and generalized linear programming, Discrete Comput. Geom. 12 (1994), no. 3, 241–261. ACM Symposium on Computational Geometry (San Diego, CA, 1993). MR 1298910, DOI 10.1007/BF02574379
- Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila, and Luis Montejano, Very colorful theorems, Discrete Comput. Geom. 42 (2009), no. 2, 142–154. MR 2519872, DOI 10.1007/s00454-009-9180-4
- E. G. Bajmóczy and I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 3-4, 347–350 (1980). MR 565677, DOI 10.1007/BF01896131
- Imre Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), no. 2-3, 141–152. MR 676720, DOI 10.1016/0012-365X(82)90115-7
- I. Bárány, Combinatorial convexity, University Lecture Series, American Mathematical Society, Providence, RI. In press.
- I. Bárány, Pairwise intersecting convex bodies and cylinders in $\mathbb {R}^3$, arXiv:2104.02148 (2021).
- I. Bárány, Z. Füredi, and L. Lovász, On the number of halving planes, Combinatorica 10 (1990), no. 2, 175–183. MR 1082647, DOI 10.1007/BF02123008
- Imre Bárány, Gil Kalai, and Roy Meshulam, A Tverberg type theorem for matroids, A journey through discrete mathematics, Springer, Cham, 2017, pp. 115–121. MR 3726596
- I. Bárány, G. Kalai, and A. Pór, Universal sets of lines and $k$-flats, in preparation, (2021).
- Imre Bárány, Meir Katchalski, and János Pach, Quantitative Helly-type theorems, Proc. Amer. Math. Soc. 86 (1982), no. 1, 109–114. MR 663877, DOI 10.1090/S0002-9939-1982-0663877-X
- I. Bárány and D. G. Larman, A colored version of Tverberg’s theorem, J. London Math. Soc. (2) 45 (1992), no. 2, 314–320. MR 1171558, DOI 10.1112/jlms/s2-45.2.314
- Imre Bárány and Jiří Matoušek, A fractional Helly theorem for convex lattice sets, Adv. Math. 174 (2003), no. 2, 227–235. MR 1963693, DOI 10.1016/S0001-8708(02)00037-3
- Imre Bárány, Jiří Matoušek, and Attila Pór, Curves in $\Bbb {R}^d$ intersecting every hyperplane at most $d+1$ times, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2469–2482. MR 3562348, DOI 10.4171/JEMS/645
- Imre Bárány, Roy Meshulam, Eran Nevo, and Martin Tancer, Pach’s selection theorem does not admit a topological extension, Discrete Comput. Geom. 60 (2018), no. 2, 420–429. MR 3835618, DOI 10.1007/s00454-018-9998-8
- I. Bárány and M. Perles, The Carathéodory number for the $k$-core, Combinatorica 10 (1990), 185–194., DOI 10.1007/BF02123009
- I. Bárány, S. B. Shlosman, and A. Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), no. 1, 158–164. MR 602247, DOI 10.1112/jlms/s2-23.1.158
- Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented matroids, Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1993. MR 1226888
- Pavle V. M. Blagojević, Florian Frick, and Günter M. Ziegler, Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 7, 2107–2116. MR 3959859, DOI 10.4171/JEMS/881
- Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler, Optimal bounds for the colored Tverberg problem, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 739–754. MR 3336834, DOI 10.4171/JEMS/516
- E. Boros and Z. Füredi, The number of triangles covering the center of an $n$-set, Geom. Dedicata 17 (1984), no. 1, 69–77. MR 771183, DOI 10.1007/BF00181519
- Silouanos Brazitikos, Quantitative Helly-type theorem for the diameter of convex sets, Discrete Comput. Geom. 57 (2017), no. 2, 494–505. MR 3602863, DOI 10.1007/s00454-016-9840-0
- B. Bukh, Radon partitions in convexity spaces, arXiv:1009.2384 (2010).
- Boris Bukh and Alfredo Hubard, On a topological version of Pach’s overlap theorem, Bull. Lond. Math. Soc. 52 (2020), no. 2, 275–282. MR 4171365, DOI 10.1112/blms.12302
- Boris Bukh, Po-Shen Loh, and Gabriel Nivasch, Classifying unavoidable Tverberg partitions, J. Comput. Geom. 8 (2017), no. 1, 174–205. MR 3670821, DOI 10.20382/jocg.v8i1a9
- Boris Bukh, Jiří Matoušek, and Gabriel Nivasch, Lower bounds for weak epsilon-nets and stair-convexity, Israel J. Math. 182 (2011), 199–208. MR 2783971, DOI 10.1007/s11856-011-0029-1
- A. Bulavka, D. Goodarzi, and M. Tancer, Optimal bounds for the colorful fractional Helly theorem, arXiv:2010.15765 (2020).
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883
- T. Chow, Rota’s basis conjecture: Polymath 12, 2017. https://polymathprojects.org/2017/05/05/rotas-basis-conjecture-polymath-12-post-3/.
- Maria Chudnovsky, Alex Scott, Paul Seymour, and Sophie Spirkl, Proof of the Kalai-Meshulam conjecture, Israel J. Math. 238 (2020), no. 2, 639–661. MR 4145813, DOI 10.1007/s11856-020-2034-8
- David Conlon, Jacob Fox, János Pach, Benny Sudakov, and Andrew Suk, Ramsey-type results for semi-algebraic relations, Trans. Amer. Math. Soc. 366 (2014), no. 9, 5043–5065. MR 3217709, DOI 10.1090/S0002-9947-2014-06179-5
- Gábor Damásdi, Viktória Földvári, and Márton Naszódi, Colorful Helly-type theorems for the volume of intersections of convex bodies, J. Combin. Theory Ser. A 178 (2021), Paper No. 105361, 11. MR 4175892, DOI 10.1016/j.jcta.2020.105361
- Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, RI, 1963, pp. 101–180. MR 157289
- Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa, The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 3, 415–511. MR 3974609, DOI 10.1090/bull/1653
- H. E. Debrunner, Helly type theorems derived from basic singular homology, Amer. Math. Monthly 77 (1970), 375–380. MR 261443, DOI 10.2307/2316144
- Raghavan Dhandapani, Jacob E. Goodman, Andreas Holmsen, and Richard Pollack, Interval sequences and the combinatorial encoding of planar families of convex sets, Rev. Roumaine Math. Pures Appl. 50 (2005), no. 5-6, 537–553. MR 2204134
- Travis Dillon and Pablo Soberón, A mélange of diameter Helly-type theorems, SIAM J. Discrete Math. 35 (2021), no. 3, 1615–1627. MR 4287348, DOI 10.1137/20M1365119
- Jean-Paul Doignon, Convexity in cristallographical lattices, J. Geom. 3 (1973), 71–85. MR 387090, DOI 10.1007/BF01949705
- Jürgen Eckhoff, Radon’s theorem revisited, Contributions to geometry (Proc. Geom. Sympos., Siegen, 1978) Birkhäuser Verlag, Basel-Boston, Mass., 1979, pp. 164–185. MR 568498
- Jürgen Eckhoff, An upper-bound theorem for families of convex sets, Geom. Dedicata 19 (1985), no. 2, 217–227. MR 809468, DOI 10.1007/BF00181472
- Jürgen Eckhoff, Intersection properties of boxes. I. An upper-bound theorem, Israel J. Math. 62 (1988), no. 3, 283–301. MR 955133, DOI 10.1007/BF02783298
- Jürgen Eckhoff, Intersection properties of boxes. II. Extremal families, Israel J. Math. 73 (1991), no. 2, 129–149. MR 1135208, DOI 10.1007/BF02772945
- Jürgen Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 389–448. MR 1242986
- Jürgen Eckhoff, The partition conjecture, Discrete Math. 221 (2000), no. 1-3, 61–78. Selected papers in honor of Ludwig Danzer. MR 1778908, DOI 10.1016/S0012-365X(99)00386-6
- Jürgen Eckhoff, A survey of the Hadwiger-Debrunner $(p,q)$-problem, Discrete and computational geometry, Algorithms Combin., vol. 25, Springer, Berlin, 2003, pp. 347–377. MR 2038482, DOI 10.1007/978-3-642-55566-4_{1}6
- Jürgen Eckhoff and Klaus-Peter Nischke, Morris’s pigeonhole principle and the Helly theorem for unions of convex sets, Bull. Lond. Math. Soc. 41 (2009), no. 4, 577–588. MR 2521353, DOI 10.1112/blms/bdp024
- Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach, Overlap properties of geometric expanders, J. Reine Angew. Math. 671 (2012), 49–83. MR 2983197, DOI 10.1515/crelle.2011.157
- Jacob Fox, János Pach, and Csaba D. Tóth, Intersection patterns of curves, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 389–406. MR 2776643, DOI 10.1112/jlms/jdq087
- F. Frick, Counterexamples to the topological Tverberg conjecture, Oberwolfach Reports 12 (2015), 318–321.
- F. Frick and P. Soberón, The topological Tverberg beyond prime powers, arXiv:2005.05251 (2020).
- Jie Gao, Michael Langberg, and Leonard J. Schulman, Analysis of incomplete data and an intrinsic-dimension Helly theorem, Discrete Comput. Geom. 40 (2008), no. 4, 537–560. MR 2453327, DOI 10.1007/s00454-008-9107-5
- X. Goaoc, P. Paták, Z. Patákova, M. Tancer, and U. Wagner, Bounding Helly numbers via Betti numbers, Journey through Discrete Mathematics. A Tribute to Jiří Matoušek, 2017, pp. 407–447.
- J. E. Goodman and R. Pollack, Allowable sequences and order types in discrete and computational geometry, New Trends in Discrete and Computational Geometry, 1985, pp. 103–134.
- Jacob E. Goodman, Richard Pollack, and Rephael Wenger, Geometric transversal theory, New trends in discrete and computational geometry, Algorithms Combin., vol. 10, Springer, Berlin, 1993, pp. 163–198. MR 1228043, DOI 10.1007/978-3-642-58043-7_{8}
- Mikhail Gromov, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal. 20 (2010), no. 2, 416–526. MR 2671284, DOI 10.1007/s00039-010-0073-8
- Branko Grünbaum and Theodore S. Motzkin, On components in some families of sets, Proc. Amer. Math. Soc. 12 (1961), 607–613. MR 159262, DOI 10.1090/S0002-9939-1961-0159262-6
- H. Hadwiger and H. Debrunner, Über eine Variante zum Hellyschen Satz, Arch. Math. (Basel) 8 (1957), 309–313 (German). MR 92987, DOI 10.1007/BF01898794
- Stephan Hell, On the number of Tverberg partitions in the prime power case, European J. Combin. 28 (2007), no. 1, 347–355. MR 2261824, DOI 10.1016/j.ejc.2005.06.005
- E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresberichte der Deutschen Math.-Verein. 32 (1923), 175–176.
- Eduard Helly, Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys. 37 (1930), no. 1, 281–302 (German). MR 1549795, DOI 10.1007/BF01696777
- Andreas F. Holmsen, Geometric transversal theory: $T(3)$-families in the plane, Geometry—intuitive, discrete, and convex, Bolyai Soc. Math. Stud., vol. 24, János Bolyai Math. Soc., Budapest, 2013, pp. 187–203. MR 3204559, DOI 10.1007/978-3-642-41498-5_{7}
- G. Ivanov and M. Naszódi, A quantitative Helly-type theorem: containment in a homothet, arXiv:2103:04122 (2021).
- Andreas F. Holmsen and Donggyu Lee, Radon numbers and the fractional Helly theorem, Israel J. Math. 241 (2021), no. 1, 433–447. MR 4242156, DOI 10.1007/s11856-021-2102-8
- Gil Kalai, Characterization of $f$-vectors of families of convex sets in $\textbf {R}^d$. I. Necessity of Eckhoff’s conditions, Israel J. Math. 48 (1984), no. 2-3, 175–195. MR 770700, DOI 10.1007/BF02761163
- Gil Kalai, Intersection patterns of convex sets, Israel J. Math. 48 (1984), no. 2-3, 161–174. MR 770699, DOI 10.1007/BF02761162
- Gil Kalai, Characterization of $f$-vectors of families of convex sets in $\textbf {R}^d$. II. Sufficiency of Eckhoff’s conditions, J. Combin. Theory Ser. A 41 (1986), no. 2, 167–188. MR 834268, DOI 10.1016/0097-3165(86)90079-8
- Gil Kalai, Combinatorics and convexity, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 1363–1374. MR 1404038
- G. Kalai, Combinatorics with a geometric flavor, Visions in Mathematics (N. Alon, J. Bourgain, M. Gromov, and V. Milman, eds.), 2000, pp. 742–791.
- Gil Kalai, Algebraic shifting, Computational commutative algebra and combinatorics (Osaka, 1999) Adv. Stud. Pure Math., vol. 33, Math. Soc. Japan, Tokyo, 2002, pp. 121–163. MR 1890098, DOI 10.2969/aspm/03310121
- G. Kalai, Combinatorial and topological aspects of Helly type theorems, 2010. https://gilkalai.files.wordpress.com/2010/10/es.pdf.
- Gil Kalai and Roy Meshulam, A topological colorful Helly theorem, Adv. Math. 191 (2005), no. 2, 305–311. MR 2103215, DOI 10.1016/j.aim.2004.03.009
- Gil Kalai and Roy Meshulam, Leray numbers of projections and a topological Helly-type theorem, J. Topol. 1 (2008), no. 3, 551–556. MR 2417442, DOI 10.1112/jtopol/jtn010
- Meir Katchalski, The dimension of intersections of convex sets, Israel J. Math. 10 (1971), 465–470. MR 305237, DOI 10.1007/BF02771734
- M. Katchalski, Reconstructing dimensions of intersections of convex sets, Aequationes Math. 17 (1978), no. 2-3, 249–254. MR 500552, DOI 10.1007/BF01818564
- M. Katchalski and A. Liu, A problem of geometry in $\textbf {R}^{n}$, Proc. Amer. Math. Soc. 75 (1979), no. 2, 284–288. MR 532152, DOI 10.1090/S0002-9939-1979-0532152-6
- Chaya Keller and Shakhar Smorodinsky, On piercing numbers of families satisfying the $(p,q)_r$ property, Comput. Geom. 72 (2018), 11–18. MR 3774362, DOI 10.1016/j.comgeo.2018.02.001
- Chaya Keller and Shakhar Smorodinsky, From a $(p,2)$-theorem to a tight $(p,q)$-theorem, Discrete Comput. Geom. 63 (2020), no. 4, 821–847. MR 4110522, DOI 10.1007/s00454-018-0048-3
- Chaya Keller, Shakhar Smorodinsky, and Gábor Tardos, Improved bounds on the Hadwiger-Debrunner numbers, Israel J. Math. 225 (2018), no. 2, 925–945. MR 3805671, DOI 10.1007/s11856-018-1685-1
- Minki Kim, A note on the colorful fractional Helly theorem, Discrete Math. 340 (2017), no. 1, 3167–3170. MR 3557813, DOI 10.1016/j.disc.2016.07.001
- Daniel J. Kleitman, András Gyárfás, and Géza Tóth, Convex sets in the plane with three of every four meeting, Combinatorica 21 (2001), no. 2, 221–232. Paul Erdős and his mathematics (Budapest, 1999). MR 1832447, DOI 10.1007/s004930100020
- D. G. Larman, Helly type properties of unions of convex sets, Mathematika 15 (1968), 53–59. MR 239505, DOI 10.1112/S0025579300002370
- D. G. Larman, On sets projectively equivalent to the vertices of a convex polytope, Bull. London Math. Soc. 4 (1972), 6–12. MR 307040, DOI 10.1112/blms/4.1.6
- David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik, A Ramsey-type result for convex sets, Bull. London Math. Soc. 26 (1994), no. 2, 132–136. MR 1272297, DOI 10.1112/blms/26.2.132
- C. G. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962/63), 45–64. MR 139159, DOI 10.4064/fm-51-1-45-64
- Isaac Mabillard and Uli Wagner, Eliminating Tverberg points, I. An analogue of the Whitney trick, Computational geometry (SoCG’14), ACM, New York, 2014, pp. 171–180. MR 3382296
- Leonardo Martínez-Sandoval, Edgardo Roldán-Pensado, and Natan Rubin, Further consequences of the colorful Helly hypothesis, Discrete Comput. Geom. 63 (2020), no. 4, 848–866. MR 4110523, DOI 10.1007/s00454-019-00085-y
- J. Matoušek, A Helly-type theorem for unions of convex sets, Discrete Comput. Geom. 18 (1997), no. 1, 1–12. MR 1453439, DOI 10.1007/PL00009305
- Jiří Matoušek, Bounded VC-dimension implies a fractional Helly theorem, Discrete Comput. Geom. 31 (2004), no. 2, 251–255. MR 2060639, DOI 10.1007/s00454-003-2859-z
- D. McGinnis, A family of convex sets in the plane satisfying the $(4,3)$-property can be pierced by nine points, arXiv:2010.13195 (2020).
- P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184. MR 283691, DOI 10.1112/S0025579300002850
- Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein, The rainbow at the end of the line—a $\mathsf {PPAD}$ formulation of the colorful Carathéodory theorem with applications, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2017, pp. 1342–1351. MR 3627816, DOI 10.1137/1.9781611974782.87
- Luis Montejano, A new topological Helly theorem and some transversal results, Discrete Comput. Geom. 52 (2014), no. 2, 390–398. MR 3249387, DOI 10.1007/s00454-014-9613-6
- Luis Montejano and Pablo Soberón, Piercing numbers for balanced and unbalanced families, Discrete Comput. Geom. 45 (2011), no. 2, 358–364. MR 2765536, DOI 10.1007/s00454-010-9295-7
- Shay Moran and Amir Yehudayoff, On weak $\epsilon$-nets and the Radon number, Discrete Comput. Geom. 64 (2020), no. 4, 1125–1140. MR 4183358, DOI 10.1007/s00454-020-00222-y
- Theodore S. Motzkin, A proof of Hilbert’s Nullstellensatz, Math. Z. 63 (1955), 341–344. MR 74388, DOI 10.1007/BF01187946
- Márton Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach, Discrete Comput. Geom. 55 (2016), no. 1, 243–248. MR 3439267, DOI 10.1007/s00454-015-9753-3
- Shmuel Onn, The Radon-split and the Helly-core of a point configuration, J. Geom. 72 (2001), no. 1-2, 157–162. MR 1891463, DOI 10.1007/s00022-001-8577-x
- M. Özaydin, Equivariant maps for the symmetric group, 1987. unpublished preprint, University of Winsconsin-Madison, 17 pages.
- János Pach, A Tverberg-type result on multicolored simplices, Comput. Geom. 10 (1998), no. 2, 71–76. MR 1614605, DOI 10.1016/S0925-7721(97)00022-9
- Dömötör Pálvölgyi, Radon numbers grow linearly, 36th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 164, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, pp. Art. No. 60, 5. MR 4117773
- Micha A. Perles and Moriah Sigron, Some variations on Tverberg’s theorem, Israel J. Math. 216 (2016), no. 2, 957–972. MR 3557472, DOI 10.1007/s11856-016-1434-2
- A. Pór, Universality of vector sequences and universality of Tverberg partitions, arXiv:1805.07197 (2018).
- Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI 10.1007/BF01464231
- J. L. Ramírez Alfonsín, Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes, European J. Combin. 22 (2001), no. 5, 723–731. Combinatorial geometries (Luminy, 1999). MR 1845496, DOI 10.1006/eujc.2000.0492
- John R. Reay, Several generalizations of Tverberg’s theorem, Israel J. Math. 34 (1979), no. 3, 238–244 (1980). MR 570883, DOI 10.1007/BF02760885
- N. Rubin, An improved bound for weak $\varepsilon$-nets in the plane, Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2018, pp. 224–235.
- N. Rubin, Stronger bounds for weak $\varepsilon$-nets in higher dimensions, Proceedings of the Annual Symposium on Foundations of Computer Science (STOC 2021), 2021, pp. 62.
- K. S. Sarkaria, Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), no. 2-3, 317–320. MR 1248921, DOI 10.1007/BF02808223
- Alex Scott and Paul Seymour, A survey of $\chi$-boundedness, J. Graph Theory 95 (2020), no. 3, 473–504. MR 4174126, DOI 10.1002/jgt.22601
- G. Sierksma, Convexity without linearity; the Dutch cheese problem, 1979. Mimeographed notes.
- Pablo Soberón, Equal coefficients and tolerance in coloured Tverberg partitions, Combinatorica 35 (2015), no. 2, 235–252. MR 3347469, DOI 10.1007/s00493-014-2969-7
- Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 458437, DOI 10.1002/sapm1975542135
- Andrew Suk, A note on order-type homogeneous point sets, Mathematika 60 (2014), no. 1, 37–42. MR 3164517, DOI 10.1112/S0025579313000247
- Martin Tancer, Intersection patterns of convex sets via simplicial complexes: a survey, Thirty essays on geometric graph theory, Springer, New York, 2013, pp. 521–540. MR 3205172, DOI 10.1007/978-1-4614-0110-0_{2}8
- H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128. MR 187147, DOI 10.1112/jlms/s1-41.1.123
- Aleksandar Vučić and Rade T. Živaljević, Note on a conjecture of Sierksma, Discrete Comput. Geom. 9 (1993), no. 4, 339–349. MR 1206796, DOI 10.1007/BF02189327
- Gerd Wegner, $d$-collapsing and nerves of families of convex sets, Arch. Math. (Basel) 26 (1975), 317–321. MR 375333, DOI 10.1007/BF01229745
- Rephael Wenger, Progress in geometric transversal theory, Advances in discrete and computational geometry (South Hadley, MA, 1996) Contemp. Math., vol. 223, Amer. Math. Soc., Providence, RI, 1999, pp. 375–393. MR 1661395, DOI 10.1090/conm/223/03150
- Moshe J. White, On Tverberg partitions, Israel J. Math. 219 (2017), no. 2, 549–553. MR 3649599, DOI 10.1007/s11856-017-1490-2
- M. J. White, A new topological property of nerves of convex sets in ${\mathbb R}^d$, 2021. manuscript.
- Rade T. Živaljević and Siniša T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory Ser. A 61 (1992), no. 2, 309–318. MR 1185000, DOI 10.1016/0097-3165(92)90028-S
Bibliographic Information
- Imre Bárány
- Affiliation: Rényi Institute of Mathematics, 13-15 Reáltanoda Street, Budapest, 1053 Hungary; and, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- MR Author ID: 30885
- Email: barany.imre@renyi.hu
- Gil Kalai
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel; and Efi Arazy School of Computer Science, IDC, Herzliya, Israel
- MR Author ID: 195990
- Email: kalai@math.huji.ac.il
- Received by editor(s): May 12, 2021
- Published electronically: October 29, 2021
- Additional Notes: Research of the first author was partially supported by Hungarian National Research grants (no. 131529, 131696, and 133819), and research of the second author by the Israel Science Foundation (grant no. 1612/17)
- © Copyright 2021 Imre Bárány and Gil Kalai
- Journal: Bull. Amer. Math. Soc. 59 (2022), 471-502
- MSC (2020): Primary 52A35; Secondary 52A20
- DOI: https://doi.org/10.1090/bull/1753
- MathSciNet review: 4478031