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HELLY-TYPE PROBLEMS

IMRE BÁRÁNY AND GIL KALAI

Abstract. In this paper we present a variety of problems in the interface
between combinatorics and geometry around the theorems of Helly, Radon,
Carathéodory, and Tverberg. Through these problems we describe the fasci-
nating area of Helly-type theorems and explain some of their main themes and
goals.

1. Helly, Carathéodory, and Radon theorems

In this paper, we present a variety of problems in the interface between com-
binatorics and geometry around the theorems of Helly, Radon, Carathéodory, and
Tverberg.

Helly’s theorem [Hel23] asserts that for a family {K1,K2, . . . ,Kn} of convex sets
in R

d, where n ≥ d+1, if every d+1 of the sets have a point in common, then all of
the sets have a point in common. The closely related Carathéodory theorem [Car07]
states that for S ⊂ R

d, if x ∈ conv S, then x ∈ conv R for some R ⊂ S, |R| ≤ d+1.
The more general colorful Carathéodory theorem [Bár82] says the following.

Let S1, S2, . . . , Sd+1 be d + 1 sets (or colors if you wish) in R
d. Suppose that

x ∈
⋂d+1

i=1 conv Si. Then there is a transversal T = {x1, . . . , xd+1} of the system
S1, . . . , Sd+1, meaning that x1 ∈ S1, x2 ∈ S2, . . . , xd+1 ∈ Sd+1 such that x ∈
conv T . A transversal is also called a rainbow set when S1, . . . , Sd+1 are considered
as colors. The uncolored version, that is, when S1 = S2 = · · · = Sd+1, is the classic
result of Carathéodory. There is a closely related colorful version of Helly’s theorem
due to Lovász that appeared in [Bár82].

Tverberg’s theorem [Tve66] states the following. Let x1, x2, . . . , xm be points
in R

d with m ≥ (r − 1)(d + 1) + 1. Then there is a partition S1, S2, . . . , Sr of
{1, 2, . . . ,m} such that

⋂r
j=1 conv {xi : i ∈ Sj} �= ∅. This was a conjecture by

Birch, who also proved the planar case in a slightly different form. The bound of
(r−1)(d+1)+1 in the theorem is sharp as can easily be seen from the configuration
of points in a sufficiently general position.

The case r = 2 is Radon’s theorem [Rad21], another classic from 1921, which
was used by Radon to prove Helly’s theorem. Helly’s original proof (published
later) was based on a separation argument. Sarkaria [Sar92] gave a simple proof of
Tverberg’s theorem based on the colorful Carathéodory theorem.

Received by the editors May 12, 2021.
2020 Mathematics Subject Classification. Primary 52A35; Secondary 52A20.
Research of the first author was partially supported by Hungarian National Research grants (no.

131529, 131696, and 133819), and research of the second author by the Israel Science Foundation
(grant no. 1612/17).

c©2021 Imre Bárány and Gil Kalai

471

https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1753
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This paper describes the fascinating area of Helly-type theorems and explains
some of their main themes and goals through a large and colorful bouquet of prob-
lems and conjectures. Some of these problems are very precise and clear-cut; see,
for instance, Sierksma’s conjecture (Conjecture 4.1), the cascade conjecture (Con-
jecture 5.1), and Problem 3.2 about volumes of intersections. Some of them are
rather vague; see, for instance, Problem 2.1 about intersection patterns of Euclidean
convex sets, Problem 3.9 about the mutual position of convex sets, and Problem 5.5
about topological conditions for the existence of Tverberg partitions. We hope to
see the answers to many of the questions presented here in the near future. Often,
results from convexity give a simple and strong manifestation of theorems from
topology: Helly’s theorem manifests the nerve theorem from algebraic topology,
and Radon’s theorem can be regarded as an early linear version of the Borsuk–
Ulam theorem. One of our main themes is to further explore these connections
to topology. Helly-type theorems also offer complex and profound combinatorial
connections and applications that represent a second theme of this paper.

For a wider perspective and many other problems we refer the reader to survey
papers by Danzer, Grünbaum, and Klee [DGK63]; Eckhoff [Eck79] and [Eck93];
Tancer [Tan13]; De Loera, Goaoc, Meunier, and Mustafa [DLGMM19]; and the
forthcoming book of Bárány [Bár].

Here is a quick summary of the paper. Section 2 defines the nerve that records
the intersection pattern of convex sets in R

d, describes some of its combinatorial and
topological properties, and considers various extensions of Helly’s theorem, such as
the fractional Helly theorem, which asserts that if a fraction α of all sets in a family
of convex sets have a nonempty intersection, then there is a point that belongs to a
fraction β(α, d) of the sets in the family. Section 3 considers various refinements and
generalizations of Helly theorems, such as the study of dimensions of intersections of
convex sets and the study of Helly-type theorems for unions of convex sets. Section
4 presents various extensions and refinements of Tverberg’s theorem, starting with
Sierksma’s conjecture on the number of Tverberg partitions. Section 5 studies
the cascade conjecture about the dimensions of the Tverberg points and considers
several connections with graph theory including a speculative connection with the
four-color theorem. Section 6 deals with other Tverberg-type problems. Section 7
brings problems related to the Carathéodory theorem and weak-epsilon nets, and
Section 8 gives a glance at common transversals; rather than piercing a family of
sets by a single point or a few points, we want to stab them with a single or a few
j-dimensional affine spaces. Final conclusions are drawn in the last section.

2. Around Helly’s theorem

2.1. Nerves, representability, and collapsibility. We start this section with
the following basic definition: for a finite collection of sets F = {K1,K2, . . . ,Kn},
the nerve of F is a simplicial complex defined by

N (F) = {S ⊂ [n] :
⋂
i∈S

Ki �= ∅}.

Helly’s theorem can be seen as a statement about nerves of convex sets in R
d, and

nerves come in to play in many extensions and refinements of Helly’s theorem.
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A missing face S of a simplicial complex K is a set of vertices of K that is
not a face, but every proper subset of S is a face. Helly’s theorem asserts that a
d-representable complex does not have a missing face with more than d+1 vertices.

A simplicial complex is d-representable if it is the nerve of a family of convex
sets in R

d.

Problem 2.1. Explore d-representable simplicial complexes.

We refer the reader to the survey on d-representable complexes by Tancer [Tan13].
Let K be a simplicial complex. A face F ∈ K is free if it is contained in a unique

maximal face. An elementary d-collapse step is the removal from K of a free face
F with at most d vertices and all faces containing F . A simplicial complex is d-
collapsible if it can be reduced to the empty complex by a sequence of elementary
d-collapse steps. Wegner proved [Weg75] that every d-representable complex is d-
collapsible. The converse does not hold even for d = 1: 1-representable complexes
are the clique complex of interval graphs, and 1-collapsible complexes are the clique
complexes of chordal graphs.

Here, a clique complex of a graph G is a simplicial complex whose faces cor-
respond to the sets of vertices of complete subgraphs of G. Chordal graphs are
graphs with no induced cycles of length greater than 3. Intersection patterns of
intervals (which are the same as 1-representable complexes) were completely char-
acterized by Lekkerkerker and Boland [LB62]. They proved that interval graphs
are characterized by being chordal graphs with the additional property that among
every three vertices, one is a vertex or is adjacent to a vertex in any path between
the other two. They also described interval graphs in terms of a list of forbidden
induced subgraphs.

2.2. The upper bound theorem. For a finite collection of sets

F = {K1,K2, . . . ,Kn}, n ≥ d+ 1, in R
d,

let N = N (F) be the nerve of F . We put fk(N ) = |{S ∈ N : |S| = k + 1}|. (The
vector (f0(N ), f1(N ), . . . ) is called the f -vector of N , and is sometimes referred
to also as the f -vector of F and written as f(F).) Helly’s theorem states that if
fn−1(N ) = 0, then fd(N ) <

(
n

d+1

)
or, with the f(F) notation, fn−1(F) = 0 implies

fd(F) <
(

n
d+1

)
A far-reaching extension of Helly’s theorem was conjectured by Katchalski and

Perles and proved by Kalai [Kal84b] and Eckhoff [Eck85].

Theorem 2.1 (Upper bound theorem). Let F be a family of n convex sets in R
d,

and suppose that every d+ r+ 1 members of F have an empty intersection. Then,
for k = d, . . . , d+ r − 1,

fk(N (F)) ≤
d+r−1∑
j=k

(
j − d

k − d

)(
n− j + d− 1

d

)
.

The theorem provides best upper bounds for fd(F), . . . , fd+r−1(F) in terms of
f0(F) provided fd+r(F) = 0. The proofs rely on d-collapsibility. There is a simple
case of equality: the family consists of r copies of Rd and n − r hyperplanes in
general position. Theorem 2.1 is closely related to the upper bound theorem for
convex polytopes of Peter McMullen [McM70]. In fact, a common proof was given
by Alon and Kalai in [AK95].
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Problem 2.2. Study cases of equality for the upper bound theorem.

A place to start would be to understand 2-representable complexes K with
f3(K) = 0 and f2(K) =

(
n−1
2

)
.

Theorem 2.1 implies the sharp version of the fractional Helly theorem of Katchal-
ski and Liu [KL79]. The sharp version is due to Kalai [Kal84b].

Theorem 2.2. Let K be a d-representable complex. If fd(K) ≥ α
(

n
d+1

)
, then

dim(K) ≥ βn, where β = β(d, α) = 1− (1− α)1/d+1.

In other words, if F = {K1, . . . ,Kn} is a family of convex sets in R
d (n ≥ d+1)

and at least α
(

n
d+1

)
of the d+1 tuples in F intersect, then F contains an intersecting

subfamily of size βn. This is a result of central importance around Helly’s theorem.
The existence of β(α) is referred to as the fractional Helly property, and if β → 1
when α → 1 this is referred to as the strong fractional Helly property.

We note that a complete characterization of f -vectors of d-representable com-
plexes was conjectured by Eckhoff and proved by Kalai [Kal84a,Kal86].

2.3. Helly numbers and Helly orders. It is useful to consider the following
abstract notions of Helly numbers and Helly orders. Let F be a family of sets.
The Helly number h(F) of F is the minimal positive integer h such that if a finite
subfamily K ⊂ F satisfies

⋂
K′ �= ∅ for all K′ ⊂ K of cardinality ≤ h, then

⋂
K �= ∅.

The Helly order ho(F) of F is the minimal positive integer h such that if a finite
subfamily K ⊂ F satisfies

(1) every finite intersection of sets in K belongs to F , and
(2)

⋂
K′ �= ∅ for all K′ ⊂ K of cardinality ≤ h,

then
⋂
K �= ∅. Of course, when we consider families of sets closed under intersection,

the Helly number and the Helly order coincide. So, for example, the topological
Helly theorem (discussed in Section 2.4) asserts that the Helly order of topologically
trivial sets in R

d is d+ 1, and Amenta’s theorem (see Section 3.3) asserts that the
family of unions of k pairwise disjoint convex sets in R

d has the Helly order k(d+1).
Let F be a family of sets. The fractional Helly number g(F) of F is the minimal

positive integer g such that there is a function f(α) > 0, defined for α > 0, with the
following property: for every family K ⊂ F of cardinality n, if at least α

(
n
g

)
of the

g-tuples in F intersect, then F contains an intersecting subfamily of size f(α)n.

2.4. Topological Helly theorem and Leray complexes. Helly himself proved
a topological version of his theorem [Hel30]. A good cover is a family of compact
subsets of R

d such that every intersection of sets in the family is either empty
or topologically trivial. (By topologically trivial we mean contractible, but it is
sufficient to assume that all homology groups vanish.)

Theorem 2.3 (Topological Helly). If in a good cover of n subsets of Rd, n ≥ d+1,
every intersection of d+ 1 sets is nonempty, then the intersection of all the sets in
the family is nonempty.

A simplicial complex K is d-Leray if Hi(K′) = 0 for every induced subcomplex
K′ of K and for every i ≥ d. The well-known nerve theorem from algebraic topology
asserts that if K is a finite family of sets that form a good cover, then the nerve
of K is topologically equivalent to

⋃
K. (The notion of topologically equivalent

corresponds to the notion of topologically trivial in the definition of good covers.)
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It follows from the homological version of the nerve theorem that d-representable
complexes are d-Leray. It is also easy to see that d-collapsible complexes are d-
Leray.

Remark. The nerve theorem played an important role in algebraic topology in the
1940s and 1950s, e.g., in showing that de Rham homology coincides with other
notions of homology. Helly’s topological theorem is remarkable since it came ear-
lier than these developments. In Section 4.2 we will mention that Radon’s theo-
rem can be seen as an early incarnation of the Borsuk–Ulam theorem in topology.
Topological extensions of Helly-type theorems are an important part of the the-
ory. Often, such extensions are considerably more difficult to prove, but in a few
cases the topological proofs are the only known ones even for the geometric re-
sults. There are also a few cases where natural topological extensions turned out
to be incorrect. The survey paper [DLGMM19] of De Loera, Goaoc, Meunier, and
Mustafa emphasizes connections with combinatorial theorems closely related to the
Brouwer fixed-point theorem, starting with the Sperner lemma and the Knaster–
Kuratowski–Mazurkiewicz theorem.

A general problem is the following.

Problem 2.3.

(i) Find finer and finer topological and combinatorial properties of d-represen-
table complexes.

(ii) Extend Helly-type theorems to good covers, Leray complexes, and beyond.
(iii) Find weaker topological conditions that suffice for the topological Helly

theorem to hold.

There is much to say about part (ii) of Problem 2.3. In several cases the way to
go about it is to extend properties of d-representable complexes to d-Leray com-
plexes. We will come back to such extensions later, but we note that the upper
bound theorem (Theorem 2.1) as well as the full characterization of their f -vectors,
extends to d-Leray complexes; see [Kal02]. This is also closely related to Stanley’s
characterization [Sta75] of f -vectors of Cohen–Macaulay complexes.

Regarding part (i) of Problem 2.3, we first note a very easy connection with
embeddability: If G is a graph we denote by TG the graph where for every edge e,
we add a new vertex ve that is adjacent to the endpoints of e, and remove e itself;
see Figure 1. If G is not planar, e.g., when G = T5, then TG is not 2-representable.
(Note however that Kn itself is 2-representable for every n.)

Figure 1. TK5
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White [Whi21] defined the class of d-Matoušek simplicial complexes that are
related to topological invariants for embeddability as follows. Let K be an abstract
simplicial complex with vertices V (K) = [n] = {1, 2, . . . , n}. We define the dual
simplicial complex K ′, with vertices V (K′) = {J ∈ K : J is inclusion maximal}
and faces K′ = {α ⊆ V (K′) :

⋂
J∈α J �= ∅}.

We say that K is d-Matoušek, if the Z2-index of the space

K̂ = {(x, y) ∈ ||K′ || 2 :
(⋂

supp(x)
)
∩
(⋂

supp(y)
)
/∈ K}

is less than d. Here supp(x) denotes the support of x in K′, which is the inclusion-
minimal face of K′ containing x.

It is straightforward to verify that K is d-representable iff there exists a linear
map f : K′ → R

d, such that for every set I ⊆ V (K) not in K, we have
⋂

i∈I f(αi) =
∅, where αi = {J ∈ V (K′) : i ∈ J}. This implies the existence of a Z2-map from

K̂ to Sd−1; thus any d-representable complex is also d-Matoušek. White proved
that nerves of good covers in R

d are d-Matoušek, and he also showed that being
1-Matoušek is equivalent to being 1-representable.

Regarding part (iii), Debrunner [Deb70] showed that for the statement of the
topological Helly property it suffices to assume that the (reduced) homology of
intersections of k sets in the family 1 ≤ k ≤ d+1 vanishes at and below dimension
d− k. Even more general conditions were found by Montejano [Mon14].

2.5. Conditions for the fractional Helly property.

Problem 2.4.

(i) Find geometric, topological, and combinatorial conditions that imply the
fractional Helly property.

(ii) Find geometric, topological, and combinatorial conditions that imply the
strong fractional Helly property.

We will mention here two conjectures regarding the fractional Helly property
and two related theorems. A class of simplicial complexes is hereditary if it is
closed under induced subcomplexes. Recall that for a simplicial complex K, fi(K)
is the number of i-faces of K and b(K) is the sum of (reduced) Betti numbers of
K. In connection with the fractional Helly theorem, Kalai and Meshulam [Kal10]
formulated the following conjecture.

Conjecture 2.5 (Kalai and Meshulam). Let C > 0 be a positive number. Let F be
the hereditary family of simplicial complexes defined by the property that for every
simplicial complex K ∈ F with n vertices,

b(K) ≤ Cnd.

Then for every α > 0 there is β = β(d, C) > 0 such that K ∈ F and fd(K) ≥ α
(

n
d+1

)
imply dim(K) ≥ βn.

The conclusion of the conjecture is referred to as the fractional Helly property of
degree d. Kalai and Meshulam further conjectured that the conclusion holds even if
one replaces b(K) with |χ(K)|, where χ(K) is the Euler characteristic of K. When
d = 0, this conjecture is about graphs and it was proved (in its strong version) in
[CSSS20]; see also [SS20].
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Conjecture 2.6 (Kalai and Meshulam). Let U be a family of sets in R
d. Suppose

that for every intersection L of m members of U , b(L) ≤ γmd+1. Then U satisfies
the fractional Helly property of order d.

In some special cases the fractional Helly property has been established. For
instance, Matoušek [Mat04] showed that families of sets with a bounded VC dimen-
sion in R

d satisfy the fractional Helly property of order d. Another case includes
the so-called convex lattice sets. These are sets of the form Z

d ∩ C where Z
d is

the lattice of integer points in R
d and C is a convex set in R

d. A result of Bárány
and Matoušek [BM03] asserts that families of convex lattice sets in R

d satisfy the
fractional Helly property of order d + 1. In both of these theorems the fractional
Helly number is considerably smaller than the Helly number. For example, let F
be the family of all convex lattice sets in R

d. The Helly number of F , h(F), is equal
to 2d, as shown by Doignon [Doi73], while the fractional Helly number is d+1; see
[BM03].

Problem 2.7. Does the assertion of the Radon theorem imply the fractional Helly
property?

An affirmative solution to one interpretation of this question was recently given
by Holmsen and Lee [HL21], who showed that for abstract convexity spaces, the
finite Radon number r implies that the fractional Helly number is bounded by some
function m(r) of r.

Problem 2.8. Estimate m(r).

Convex sets are sets of solutions of systems of linear inequalities, and we can
consider systems of polynomial inequalities of higher degrees.

Conjecture 2.9. The family Bd
k of sets of solutions in R

d of polynomial inequalities
of degree ≤ k has the fractional Helly property.

It is known [Mot55] (and is an easy consequence of Helly’s theorem itself) that
the class Ad

k of sets in R
d of common zeroes of systems of polynomial inequalities

of degree ≤ k has the Helly number
(
d+k
k

)
. And we can even ask if this formula

gives the precise fractional Helly number for the class Bd
k.

We conclude this section by mentioning an interesting recent abstract notion
of convexity described by Moran and Yehudayoff [MY20], which seems relevant
to various problems raised in this paper and, in particular, to Problem 2.7. In
this notion of abstract convexity, which we call MY-convexity, we assume that
every convex set is the intersection of half-spaces. We assume further that the VC
dimension of the class of half-spaces is at most D. The class Bd

k is an example of
an MY-convexity space where the half-spaces are the sets of solutions of a single
polynomial inequality of degree k.

Problem 2.10. Consider an MY-convexity space X where the VC dimension of
the class of half-spaces is at most D.

(i) Does X have the fractional Helly number f(D) for some function f of D?
(ii) Does X have the fractional Helly number D?

2.6. The (p, q)-property. The conclusion of Helly’s theorem is that the family is
intersecting; i.e., there is a point Rd that is included in all sets in the family.
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Problem 2.11. What conditions guarantee that the family is t-pierceable, meaning
that there are t points such that every set in the family contains at least one?

In the language of nerves, what conditions guarantee that the set of vertices of
the nerve can be expressed as the union of t faces?

A family of sets has the (p, q)-property if for every p members of the family some
q have a nonempty intersection. Note that here we assume p ≥ q > d. (For nerves
this says that every set of p vertices spans a face with q vertices, and this is closely
related to Turán’s problem for hypergraphs.)

Hadwiger and Debrunner [HD57] introduced the (p, q)-property and proved

Theorem 2.4. If a finite family of convex sets in R
d has the (p, q)-property and

(d− 1)p < (q − 1)d, then it is p− q + 1-pierceable.

A family of sets has the (p, q)r-property if in its nerve every p vertices span at
least r faces with q vertices. This was introduced by Montejano and Soberón [MS11]
and further studied by Keller and Smorodinsky [KS18]. Montejano and Soberón
proved (among other results)

Theorem 2.5. A family of convex sets in R
d with the (d + 2, d + 1)d-property is

2-pierceable.

Hadwiger and Debrunner [HD57] conjectured in 1957 and Alon and Kleitman
[AK92b,AK92a] proved the following important theorem.

Theorem 2.6 ((p, q)-theorem). For all p ≥ q > d there exists f(d, p, q) such that if
a family of convex sets in R

d has the (p, q)-property, then it is f(d, p, q)-pierceable.

The bound on f(d, p, q) given in [AK92b] is enormous. The first open case is d =
2 and p = 4, q = 3. It is known that f(2, 4, 3) is between 3 and 9, the lower bound
is from [KGT01], and the upper bound is a recent result of McGinnis [McG20] who
brought down the upper bound of 13 of [KGT01] to 9. Substantial improvements
for the general case were given by Keller, Smorodinsky, and Tardos [KST18] and
by Keller and Smorodinsky [KS20].

Problem 2.12. Improve further the bounds on f(2, 4, 3) and, more generally, on
f(d, p, q).

Alon, Kalai, Matoušek, and Meshulam [AKMM02] proved the following result
that implies that the Alon–Kleitman theorem extends to good covers and Leray
complexes (but with worse bounds).

Theorem 2.7. For every q > d+1 there exists C(d, q) with the following property.
Let F be a hereditary class of simplicial complexes satisfying the fractional Helly
property of degree d. If a simplicial complex K ∈ F has the property that every q
vertices span a d-dimensional face, then the vertices of K can be covered by C(d, q)-
faces.

See Eckhoff [Eck03] for a survey on (p, q)-theorems.

2.7. A Ramsey type question.

Conjecture 2.13. For integers d ≥ 1 and r > 1 + �d/2�, there is α = α(d, r) > 0
such that the following holds. Let F be a family of n convex sets in R

d. Then F
contains nα(d,r)-sets such that either every r has a point in common or no r has a
point in common.
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There is a large literature on this and related questions starting with a theorem
of Larman, Matoušek, Pach, and Törőcsik [LMPT94] that proves the case d = 2
and r = 2. Subsequent works are [APP+05] and [FPT11]. When r = d + 1, this
conjecture holds with α = 1/(d+1). This was observed by Keller and Smorodinsky
(private communication) and follows from their improved (p, q)-theorems. The gen-
eral phenomenon here (with several interesting manifestations) is that graphs and
hypergraphs arising in geometry satisfy much stronger forms of Ramsey’s theorem
than arbitrary graphs and hypergraphs.

2.8. Colorful, fractional colorful, and matroidal Helly theorems. The col-
orful Helly theorem of Lovász (see [Bár82]) asserts the following. Assume that
C1, . . . , Cd+1

are finite families of convex sets in R
d with the property that if every transversal

K1, . . . ,Kd+1 is intersecting, then
⋂
Ci �= ∅ for some i ∈ [d+1]. Here “transversal”

means that Ki ∈ Ci for every i ∈ [d + 1]. The colorful version implies the original
one when C1 = · · · = Cd+1.

The analogous colorful version of the fractional Helly theorem says that if an
α fraction of all transversals of the system C1, . . . , Cd+1 is intersecting, then one
of the families, say Ci, contains an intersecting subfamily of size β|Ci|. Here α >
0, of course, and β = β(d, α) has to be positive. Such a theorem (with β =
α/(d + 1)) was proved and used first in [ABB+09]. The dependence of β was
improved by Kim [Kim17], who showed in particular that β → 1 as α → 1. The
optimal dependence of β on α and d is a recent result of Bulavka, Goodarzi, and
Tancer [BGT20]. They use Kalai’s algebraic shifting technique [Kal84b] and raise
the following interesting conjecture.

Conjecture 2.14. Let K be a d-Leray simplicial complex whose vertex set V is
partitioned into sets V1, . . . , Vd+1, called colors, and |Vi| = ni for i ∈ [d + 1].

Assume that K contains at least α
∏d+1

1 ni colorful d-faces for some α > 0. Then
there is i ∈ [d+ 1] such that the dimension of the restriction of K to Vi is at least
(1− (1− α)1/(d+1))ni − 1.

Kalai and Meshulam [KM05] extended the assertion of the colorful Helly theo-
rem to the topological setting and also considered a matroidal version. A matroidal
complex is the complex consisting of the independent sets of a matroid. Equiva-
lently, M is a matroidal complex if and only if every induced subcomplex is pure,
i.e., if all its maximal faces have the same cardinality.

Theorem 2.8. Let X be a d-Leray complex on the vertex set V . Suppose that M
is a matroidal complex on the same vertex set V with rank function ρ. If M ⊂ X,
then there exists τ ∈ X with ρ(V \τ ) ≤ d.

This theorem gives the colorful Helly property when M is a transversal matroid
and it suggests a general way to extend results about colorings. We will encounter
this idea again in Section 4.3, where we try to move from colorful versions of
Tverberg’s theorem to matroidal versions. Theorem 2.8 has interesting connections
with advances in topological combinatorics related to Hall’s marriage theorem and
rainbow matchings; see [AB06] and [AB09].
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3. More around Helly’s theorem

3.1. Dimensions of intersections: Katchalski’s theorems. Let g(d, k) be the
smallest integer with the following property: for every family of n convex sets in
R

d, n ≥ g(d, k), such that the dimension of intersection of every g(d, k) set in the
family is at least k, the dimension of intersection of all members of the family is at
least k. Helly’s theorem asserts that g(d, 0) = d + 1. In 1971 Katchalski [Kat71]
proved the following interesting result.

Theorem 3.1. g(d, 0) = d+ 1, g(d, k) = max{d+ 1, 2(d− k + 1)} if 1 ≤ k ≤ d.

Given a family K = {K1,K2, . . . ,Kn} of convex sets in R
d and J ⊂ [n], set

K(J) =
⋂

j∈J Kj and write d(J) = dimK(J). A further remarkable result of

Katchalski [Kat78] “reconstructs” the dimension of the intersection:

Theorem 3.2. Let K = {K1,K2, . . . ,Kn} and K′ = {K ′
1,K

′
2, . . . ,K

′
n} be two

families of compact convex sets in Rd. If dK(J) = dK′(J) for every J , |J | ≤ d+ 1,
then dK(J) = dK′(J) for every J .

Katchalski actually proved a stronger statement, namely, that the condition
dK(J) = dK′(J) for every J with (d + 1) − d/2� ≤ |J | ≤ d + 1 suffices for the
conclusion of Theorem 3.2. More generally he proved that for every r ≥ 1 if
dK(J) = dK′(J) for every J with (d+ r)− d/(r+ 1)� ≤ |J | ≤ d+ r, then dK(J) =
dK′(J) for every J .

Define the D-nerve of a finite set of convex sets as its nerve K where every
face S ∈ K is labeled by the dimension of

⋂
i∈S Ki. We can regard the D-nerve

as a nested collection of simplicial complexes that correspond to intersections of
dimension ≥ j.

Problem 3.1. Explore combinatorial and topological properties of D-nerves of
families of compact convex sets in R

d.

3.2. Helly with volume. Theorems about volumes of intersections are closely
related to theorems about dimensions of intersections. The natural question is,
given a finite family F of convex sets in R

d, what condition guarantees that the
intersection

⋂
F not only is nonempty but also has volume at least one, say. The

first result in this direction is in [BKP82] of Bárány, Katchalski, and Pach.

Theorem 3.3 (Helly with volume). Assume that F is a finite family of convex
sets in R

d, |F| ≥ 2d, such that the intersection of any 2d sets from F has volume

at least one. Then vol(
⋂
F) ≥ d−2d2

.

The example of the 2d half-spaces in R
d whose intersection is the unit cube

shows that the number 2d is the best possible in this theorem. In other words,

2d is the Helly number for volumes. However, the bound d−2d2

is not sharp and
was improved first by Naszódi [Nas16] to (cd)−2d and later by Brazitikos [Bra17] to
(cd)−1.5d. In both estimates, c > 0 is a universal constant. The following question
is still open.

Problem 3.2. Show that under the conditions of Theorem 3.3 vol(
⋂
F) ≥ (cd)−d/2

where c > 0 is a constant.

A similar result was established in [BKP82] for the diameter of the intersection.
The Helly number is again 2d. So if the intersection of any 2d sets from the family F
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has diameter at least one, then diam F ≥ cd−d/2. The lower bound was improved
in a series of recent papers: first by Brazitikos [Bra17] to cd−11/2, then by Ivanov
and Naszódi [IN21] to (2d)−3, and more recently by Almendra-Hernández, Ambrus,
and Kendall [AHAK21] to (2d)−2. This leads to the next problem.

Problem 3.3. Assume that F is a finite family of convex sets in R
d, |F| ≥ 2d,

such that the intersection of any 2d sets from F has diameter at least one. Then
diam

⋂
F ≥

√
2/d.

Recently, several further quantitative Helly-type results have appeared; see for
instance [DFN21] and [DS21].

3.3. Unions of convex sets: around the Grünbaum–Motzkin conjecture.
Nina Amenta [Ame94] proved a Helly-type result on unions of disjoint convex sets.

Theorem 3.4. Let F be a family of sets in R
d such that every member in F is the

union of k disjoint compact convex sets. Suppose further that every intersection of
members of F is also a union of k disjoint convex sets. If every k(d+ 1) sets in F
has a point in common, then

⋂
F �= ∅.

In the language of Section 2.3, Theorem 3.4 asserts that the Helly order of the
family of disjoint unions of k compact convex sets in R

d is (d + 1)k. This was
conjectured by Grünbaum and Motzkin [GM61] who proved the case k = 2, by
Larman [Lar68] who proved their conjecture for k = 3, and by Amenta in its full
generality. It is easy to see that this family has no finite Helly number.

Kalai and Meshulam [KM08] proved that Amenta’s theorem extends topologi-
cally. They consider the following setting. Let K and L be simplicial complexes
with a map from V (K) to V (L) such that the inverse image of every i face in L is
the union of at most k i-faces of L. If K is d-Leray, then the Leray number of L is
at most dk + k − 1.

Eckhoff and Nischke [EN09] showed that Amenta’s theorem extends combinato-
rially. In the setting of the previous paragraph they proved that if K has no missing
face of size d+ 1 or larger, then L has no missing face of size k(d+ 1) or larger.

3.4. More on families of unions of convex sets. We may consider sets in
R

d that can be represented as unions of k convex sets but delete the disjointness
assumption. In this case Alon and Kalai [AK95] and Matoušek [Mat97] proved the
following result.

Theorem 3.5. Assume that F is a finite family of sets in R
d such that every

member in F is the union of k compact convex sets. Then F has a finite Helly
order.

Let us mention a recent topological Helly-type theorem by Goaoc, Paták, Patá-
ková, Tancer, and Wagner [GPP+17] that strengthens Theorem 3.5.

Theorem 3.6. For every γ > 0 there is h(γ, d) with the following property. Let U
be a family of sets in R

d. Suppose that for every intersection L of some members
of U and every i ≤ �d/2� − 1, we have bi(L) ≤ γ. Then, if every h(γ, d) members
of U have a point in common, then all sets in U have a point in common.

We note that Theorem 3.6 implies Theorem 3.5. In fact, its proof relies on
the method developed by Matoušek in [Mat97]. His method, connecting topologi-
cal obstructions for embeddability to Helly-type theorems, is the basis of White’s
notion [Whi21] of d-Matoušek complexes.
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In connection with this we mention the following curious question.

Conjecture 3.4. The Helly order of families of unions of two disjoint nonempty
sets in R

d is d+ 1.

This is known to be false if “two” is replaced by a large integer even when d = 2.
We say that two compact sets intersect nicely if the long Meyer–Vietoris exact

sequence splits into short exact sequences dimensionwise.

Problem 3.5. Let K = {K1,K2, . . . ,Kn} be a finite family of compact sets such
that for every set of indices I ⊂ [n], K(I) is topologically equivalent to a fixed
topological space Z, and for every two sets of indices I, J ⊂ [n], K(I) and K(J)
intersect nicely. Then

⋃
K is topologically equivalent to a fiber bundle over N (K)

with fibers topologically equivalent to Z.

A positive answer to Problem 3.5 would imply Conjecture 3.4 because a pair of
disjoint unions of nonempty convex sets whose intersection is also a disjoint union
of nonempty convex sets always intersects nicely.

3.5. A conjecture by Gao, Landberg, and Schulman. Here is an interesting
Helly-type conjecture by Gao, Langberg, and Schulman [GLS08]. For a convex set
K in R

d an ε enlargement of K is K+ε(K−K) (where K−K = {x−y : x, y ∈ K}).

Conjecture 3.6. For every d, k, and ε there is some h = h(d, k, ε) with the
following property. Let F be a family of unions of k convex sets. Let Fε be the
family obtained by enlarging all the involved convex sets by ε. If every h members
of F have a point in common, then all members of Fε have a point in common.

Of course, for k = 1 we can take ε = 0 by Helly’s theorem.

3.6. Boxes and products.

Problem 3.7. Let d1, d2, . . . , dr be a partition of d. Study Helly-type theorems for
families of Cartesian products K1×K2×· · ·×Kr of convex sets where dimKi = di.

The case of standard boxes, namely when d1 = d2 = · · · = dd = 1 is of special
interest. Standard boxes have Helly number 2, and therefore their nerves are de-
termined by their graphs. Eckhoff proved an upper bound theorem for standard
boxes in [Eck88] and studied the extremal families in [Eck91]. It is easiest to de-
scribe the families where the upper bound is attained. If fd+r = 0 (that is, the
largest nonempty intersection is for d+ r sets), then the family consists of r copies
of Rd and roughly the same number of parallel copies of each of the d coordinate’s
hyperplanes.

Let K be the nerve of a family of standard boxes in R
d. Then K is a d-Leray

complex and has the further property that if S is a set of vertices such that every
pair of vertices in S form an edge, then S is a face of K. This property of the nerve
corresponds to Helly number 2 for the original family, and we refer to it as Helly
number 2.

Problem 3.8. Extend Eckhoff’s upper bound theorem to the class of d-Leray
complexes with no missing faces of size greater than 3 (namely, those corresponding
to Helly number 2).
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3.7. Mutual position of convex sets. The study of nerves of convex sets is the
study of intersection patterns of families of convex sets. When we start with a
family of convex sets in R

d, we can go further and consider intersection patterns of
the convex hulls of all subfamilies. (We can go even further by alternating between
taking convex hulls and intersections and by considering statements regarding k-flat
transversals rather than plain intersections.)

(a) (b)

(c) (d)

Figure 2. Mutual positions of three convex sets.

Figure 2 shows various possible positions of three convex sets in the plane:

(a) the convex hull of every two sets intersects the third set;
(b) the convex hull of any two sets is disjoint from the third set, but all pairwise

convex hulls have a point in common;
(c) the three convex hulls of pairs of sets have no point in common;
(d) the convex hull of two sets intersects the third set.

Statements in this wider language can be regarded as the study of mutual positions
of convex sets and they are, of course, of interest even for configurations of points,
which we discuss in the next sections.

Problem 3.9. Are there interesting things to say about the mutual position of
convex sets?

3.8. Order types for points and sets. To conclude this section and prepare for
the next, we briefly mention the notion of order types (a.k.a. oriented matroids).
These objects arise from configurations of points (or of hyperplanes) in real vector
spaces, and can also be associated with directed graphs. Consider a sequence Y =
(y1, y2, . . . , yn) of n points in R

d that affinely span R
d. The order type described by

Y can be seen as the set of all minimal Radon partitions. There is a more general
axiomatic definition of order types that roughly requires that the restriction to
every d + 3 points be an order type of d + 3 points in a real space. For general
order types there is a topological representation that replaces the linear description
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of order types that correspond to point configurations. Another equivalent way
to describe the order type is as follows: for every set J of subscripts i1, . . . , id+1

with 1 ≤ i1 < · · · < id+1 ≤ n, let sg(J, Y ) be the sign of the determinant of the
(d+ 1)× (d+ 1) matrix

(1)

(
yi1 yi2 · · · yid+1

1 1 · · · 1

)
.

Two sequences Y = (y1, y2, . . . , yn) and Z = (z1, z2, . . . , zn) of n points in R
d are

equivalent (or have the same order type) if sg(J, Y ) = sg(J, Z) for all J ⊂ [n] of size
d+ 1.

For more on oriented matroids see [BLVS+93]. Returning to families of con-
vex sets, we note that one way to record the mutual position of n convex sets
K1,K2, . . . ,Kn in R

d is by listing all order types of sequences y1 ∈ K1, y2 ∈
K2, . . . , yn ∈ Kn.

Goodman and Pollack’s notion of allowable sequences for configurations [GP85]
is a very useful way to study order types of planar configurations. The more general
notion of interval sequences by Dhandapani, Goodman, Holmsen, and Pollack gives
a way to record mutual positions of n convex planar sets [DGHP05].

4. Around Tverberg’s theorem

4.1. Sierksma’s conjecture.

Conjecture 4.1 (Sierksma’s conjecture). The number of Tverberg r-partitions of
a set of (r − 1)(d+ 1) + 1 points in R

d is at least ((r − 1)!)d.

This question was raised by Sierksma [Sie79] in 1979 and not much progress
has been achieved since. The best lower bound is about the square root of the
conjectured one; this is a result of [VŽ93] and [Hel07]. The conjecture, if true, is
sharp, as shown by the example in Figure 3 for d = 2, r = 4: the vertices of the
three triangles plus the point in the center is a set with ten points and 3!2 Tverberg
partitions.

Figure 3. Ten points with 3!2 Tverberg partitions.

In R
d take analogously r − 1 d-dimensional simplices with their center at the

origin; their vertices together with the origin form a set of (r− 1)(d+1)+ 1 points
with (r − 1)!d Tverberg partitions. There are further cases where equality holds,
such as the one connected to the following problem raised by Perles. We need a
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definition: a Tverberg partition S1, . . . , Sr of an m-element set X ⊂ R
d is of type

(a1, a2, . . . , ar) if the multisets {a1, a2, . . . , ar} and {|S1|, |S2|, . . . , |Sr|} coincide.

Problem 4.2. Suppose that a1, a2, . . . , ar is a partition of m = (r − 1)(d+ 1) + 1
such that 1 ≤ ai ≤ d+ 1 for every i. Is there a configuration of m points in R

d for
which all of Tverberg partitions are of type (a1, a2, . . . , ar)?

This problem was raised by Perles many years ago and a positive answer was
given by White [Whi17]. White’s examples provide a rich family of examples for
cases of equality in Sierksma’s conjecture. An even more general family of con-
structions for the equality cases, based on staircase convexity, is in the paper of
Bukh, Loh, and Nivasch [BLN17]. A similar construction was given by Pór [Pór18]
in connection with the so-called universal Tverberg partitions.

Problem 4.3. Explore further examples of equality cases in Sierksma’s conjecture.

4.2. Topological Tverberg.

Conjecture 4.4 (Topological Tverberg conjecture). Let f be a continuous function
from the m-dimensional simplex σm to R

d. If m ≥ (d+ 1)(r− 1), then there are r
pairwise disjoint faces of σm whose images have a point in common.

If f is a linear function, this conjecture reduces to Tverberg’s theorem. The
case r = 2 was proved by Bajmóczy and Bárány [BB79] using the Borsuk–Ulam
theorem. Moreover, for r = 2, one can replace the simplex by any other polytope
of the same dimension. The case where r is a prime number was proved in an
important paper of Bárány, Shlosman, and Szűcs [BSS81]. The prime power case

was settled by Özaydin, in an unpublished (yet available) paper [Öza87]. For the
prime power case, the proofs are quite difficult and are based on computations of
certain characteristic classes.

In 2015 the topological Tverberg conjecture was disproved in a short note by
Frick [Fri15]. This involves some early result on vanishing of topological obstruc-

tions by Özaydin, a theory developed by Mabillard and Wagner [MW14] extending
Whitney’s trick to k-fold intersections, and a fruitful reduction by Gromov [Gro10],
rediscovered and extended by Blagojević, Frick, and Ziegler [BFZ19].

Conjecture 4.5. Let f be a linear function from an m-dimensional polytope P
to R

d. If m ≥ (d + 1)(r − 1), then there are r pairwise disjoint faces of P whose
images have a point in common.

Problem 4.6. Does the conclusion of the topological Tverberg conjecture hold if
the images of the faces under f form a good cover (that is if all those images and
all their nonempty intersections are contractible)?

4.3. Colorful Tverberg. Let C1, . . . , Cd+1 be disjoint subsets of R
d, called colors,

each of cardinality at least t. A (d + 1)-subset S of Rd is said to be multicolored
(or rainbow) if |S ∩Ci| = 1 for i = 1, . . . , d+1. Let r be an integer, and let T (r, d)
denote the smallest value t such that for every collection of colors C1, . . . , Cd+1

of size at least t each there exist r disjoint multicolored sets S1, . . . , Sr such that⋂r
i=1 conv Si �= ∅. The question of finiteness of T (r, d) was raised in [BFL90] and

proved there for the case d = 2.
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The general case was solved by an important theorem of Živaljević and Vrećica
[ŽV92]. It asserts that T (r, d) ≤ 2r− 1 if r is a prime, which implies that T (r, d) ≤
4r − 1 for all r and d. This theorem is one of the highlights of discrete geometry
and topological combinatorics. The only known proofs of this theorem rely on
topological arguments although the statement is about convex hulls, partitions,
and linear algebra. The following question is a challenge for convex geometers.

Problem 4.7. Find a nontopological proof of the finiteness of T (r, d).

Bárány and Larman [BL92] showed that T (r, 2) = r and asked the following.

Conjecture 4.8 (Colorful Tverberg conjecture). T (r, d) = r.

The case where r + 1 is a prime was proved by Blagojević, Matschke, and
Ziegler [BMZ15]. It is a neat result by Lovász from [BL92] that T (2, d) = 2 for
all d. Soberón gives an equally neat (and very different) proof of the same result
in [Sob15].

The colorful Tverberg theorem is related to a well-known problem in discrete
geometry, that of halving lines and hyperplanes. Given 2n points in general position
in R

d, a halving hyperplane is a hyperplane with n points on each side.

Problem 4.9. What is the maximum number H(2n, d) of partitions of a set of 2n
points in R

d into equal parts via halving hyperplanes? Equivalently, what is the
minimum number of non-Radon partitions with parts of equal size?

A well-known conjecture, which is open even for d = 2, is that for a fixed d,
H(n, d) = nd−1+o(1). With the help of the colorful Tverberg theorem it was shown
that H(n, d) = nd−εd , where εd is a positive constant depending on d. For d = 2 it
is known that

neC
√
nH(2, n) ≤ O(n4/3).

A matroid version of Tverberg’s theorem is the topic of [BKM17], which states the
following. Assume that M is a matroid of rank d+1. Let b(M) denote the maximal
number of disjoint bases in M . If f is a continuous map from the matroidal complex
of M to R

d, then there exist t ≥ 1
4

√
b(M) independent sets σ1, . . . , σt ∈ M such

that
⋂t

1 f(σi) �= ∅. It is not clear how good this lower estimate on t is.

Conjecture 4.10. In the above theorem,
√
b(M) could be replaced by cb(M) for

some absolute positive constant c.

5. The cascade conjecture and more

When we have r < d + 2 points in R
d, they have a Radon partition iff they

are affinely dependent. Are there conditions that guarantee that the existence of
Tverberg partitions below the Tverberg number? In this section we will discuss
the dimension of Tverberg points and the quest for conditions guaranteeing the
existence of Tverberg partitions for configurations of points below the Tverberg
number.

5.1. The cascade conjecture. For a set A, denote by Tr(A) the set of points in
R

d that belong to the convex hull of r pairwise disjoint subsets of A. We call these
points Tverberg points of order r.

Let t̄r(A) = 1 + dimTr(A). (Note that dim ∅ = −1.) Radon’s theorem can be
stated as follows: if t̄1(A) < |A|, then T2(A) �= ∅. There is a similar statement
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which is still open: if t̄1(A) + t̄2(A) < |A|, then T3(A) �= ∅. We can go one step
further: if t̄1(A) + t̄2(A) + t̄3(A) < |A|, then T4(A) �= ∅. These statements are
special cases of the following.

Conjecture 5.1 (Cascade conjecture). For every A ⊂ R
d,∑

r≥1

t̄r(A) ≥ |A|.

This is a question of Kalai from 1974 [Kal95]; see also [Kal00]. The conjecture
was proved for d ≤ 2 by Akiva Kadari (unpublished MSc thesis in Hebrew). While
this conjecture is wide open, we can ask for topological extensions of various kinds
and for more general topological conditions for configurations of cardinality below
the Tverberg number (r − 1)(d + 1) + 1, that imply the existence of a Tverberg
partition into r parts; see Problem 5.4.

5.2. Reay’s dimension conjecture. The following is a 1979 question from Reay
[Rea79] where general position means weak general position; that is, no d+1 points
lie in a hyperplane.

Conjecture 5.2 (Reay’s conjecture). If A is a set of (d+ 1)(r− 1) + 1 + k points
in general position in R

d, then

dim Tr(A) ≥ k.

In particular, Reay’s conjecture asserts that a set of (d + 1)r points in general
position in R

d can be partitioned into r sets of size d + 1 such that the simplices
described by these sets have an interior point in common. This is easy when
the points are in very general position, for instance, when they are algebraically
independent. The main difficulty is how to use the weak general position condition.
A recent result of Frick and Soberón [FS20] (see Section 7.1) is perhaps relevant
here. While the conclusion of the cascade conjecture seems stronger than that of
Reay’s dimension conjecture, it is not known how to derive it from the cascade
conjecture.

5.3. Special cases of the cascade conjecture and expressing a directed
graph as union of two trees. A special case of the cascade conjecture asserts
that given 2d + 2 points in R

d, you can either partition them into two simplices
whose interiors intersect, or you can find a Tverberg partition into three parts. We
give a reformulation based on positive hulls: given 2d nonzero vectors in R

d such
that the origin is a vertex of the cone spanned by them, it is the case that either:

• we can divide the points into two sets A and B so that the cones spanned
by them have a d-dimensional intersection; or

• we can divide them into three sets A, B, and C so that the cones spanned
by them have a nontrivial intersection.

Another interesting reformulation is obtained when we dualize using the Gale
transform, and this has led to the problem we consider next: a very special class of
configurations arising from graphs. Start from a directed graph G with n vertices
and 2n − 2 edges and associate with each directed edge (i, j) the vector ej − ei.
This leads to the following problem.

Problem 5.3. Let G be a directed graph with n vertices and 2n− 2 edges. When
can we divide the set of edges into two trees T1 and T2 (we disregard the orientation
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of edges) so that when we reverse the directions of all edges in T2 we get a strongly
connected digraph?

One of us (Kalai) conjectured that if G can be written as the union of two trees,
the only additional obstruction is that there is a cut consisting only of two edges
in reversed directions. Chudnovsky and Seymour found an additional necessary
condition: there is no induced cycle v1, vk, . . . , v2k, v1 in G, such that each vertex
ci is cubic, the edges of the cycle alternate in direction, and none of the vertices
v1, . . . , v2k are sources or sinks of G.

5.4. Tverberg partitions of order 3 for configurations below the Tverberg
number.

Problem 5.4. When n < 2d+ 3, find conditions for the set of Radon points and
the set of Radon partitions of a set X of n points in R

d that guarantee the existence
of a Tverberg partition into three parts.

The cascade conjecture asserts that if n = d + 2 + k and the dimension of
Radon points is smaller than k, then there exists a Tverberg partition into three
parts. While this is wide open, it would be interesting to propose a more general
topological condition that suffices for the existence of a Tverberg partition into r
parts.

Conjecture 5.5. If the map from the Radon partitions of X to the Radon points of
X is topologically degenerate (in some sense), then a Tverberg partition into three
parts exists.

In Problem 5.4 and Conjecture 5.5 we can relax the conclusion and can do so in
various ways. For that we need a few definitions: The k-core of a finite set X in R

d

is the intersection of the convex hull of all sets A ⊂ X with |X \A| ≤ k, that is,

corek X =
⋂

{conv A : A ⊂ X, |X \A| ≤ k}.

The case k = 0 is the usual convex hull. The k-Radon core of a finite set X in R
d

is the intersection of Radon points of all sets A ⊂ X with |X \ A| ≤ k; this is the
set of points in R

d that remain Radon points of X even after we delete k points
from X in all possible ways. (Clearly, the Tverberg points of order 3 are in the first
Radon core, and the points in the first Radon core are in the 2-core.)

Problem 5.6. When n < 2d+ 3, find conditions for the set of Radon points and
the set of Radon partitions of a set X of n points in R

d that guarantee the following:

(1) the second core of X, core2 X, is nonempty;
(2) the first Radon core of X is nonempty;
(3) X admits a Reay (3,2)-partition, that is, a partition into three parts such

that the convex hulls are pairwise intersecting (see Section 6.2).

5.5. Radon partitions and Radon points for configurations based on cubic
graphs. Let G be a cubic graph with n vertices {v1, v2, . . . , vn}. Associate with ev-
ery edge {vi, vj} in G its characteristic vector in R

d, giving a configuration Conf(G)
of 3n/2 points in (n− 1)-dimensional space. In [Onn01] and also in personal com-
munication (2011), Onn observed that the existence of a Tverberg 3-partition (or
even of a Reay (3,2)-partition; see Section 6.2) is equivalent to a 3-edge coloring for
G, and he concluded that deciding if a configuration of 3(d+ 1)/2 points in R

d (d
an odd integer) admits a Tverberg partition into three parts is NP-complete.
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The following problem is motivated by the four-color theorem.

Problem 5.7.

(i) Study Radon partitions and Radon points for configurations based on cubic
graphs.

(ii) Find conditions for the Radon points and Radon partitions of Conf(G)
that guarantee a 3-edge coloring for G.

It would be interesting to find conditions for Problem 5.4 and Conjecture 5.5
that would imply the 3-edge colorability of bipartite cubic graphs and, much more
ambitiously, conditions that would imply the four-color theorem, namely, the 3-edge
colorability of planar cubic graphs.

6. More around Tverberg’s theorem

6.1. Eckhoff’s partition conjecture. Let X be a set endowed with an abstract
closure operation X → cl(X). The only requirements of the closure operation are

(1) cl(cl(X)) = cl(X), and
(2) A ⊂ B implies cl(A) ⊂ cl(B).

Define tr(X) to be the largest size of a (multi)set in X that cannot be partitioned
into r parts whose closures have a point in common. The following conjecture is
due to Eckhoff [Eck00].

Conjecture 6.1 (Eckhoff’s partition conjecture). For every closure operation,

tr ≤ t2 · (r − 1).

If X is the set of subsets of R
d and cl(A) is the convex hull operation, then

Radon’s theorem asserts that t2(X) = d + 1 and Eckhoff’s partition conjecture
implies Tverberg’s theorem. In 2010 Eckhoff’s partition conjecture was refuted by
Boris Bukh [Buk10]. Bukh’s beautiful paper contains several important ideas and
further results. We will mention one ingredient. Recall the nerve construction for
moving from a family F of n convex sets to the simplicial complex that records
empty and nonempty intersections for all subfamilies G of F . Bukh studied sim-
plicial complexes whose vertex sets correspond to the power set of a set of size n:
starting with n points in R

d or some abstract convexity space, consider the nerve
of convex hulls of all 2n subsets of these points!

In Bukh’s counterexample, tr = t2 · (r − 1) + 1, which is just one larger than
the conjectured bound. Perhaps tr ≤ t2 · (r − 1) + c for some universal constant
c ≥ 1. There is a recent and positive development about Eckhoff’s conjecture.
Pálvölgyi [Pál20] has proved that tr grows linearly in r, that is, tr ≤ cr where the
constant c depends only on r2.

Problem 6.2. Find classes of closure operations for which

tr ≤ t2 · (r − 1).

We can ask if the inequality tr ≤ t2 · (r − 1) holds for Moran and Yehudayoff’s
convexity spaces considered in Section 2.5.

Bukh’s paper includes an interesting notion that extends the notion of nerves.
Given a configuration of points in the Euclidean space or in an abstract convexity
space, we consider the nerve of convex hulls of all nonempty subsets of the points.
This is a simplicial complex that we refer to as the B-nerve of the configuration,
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with the additional structure that vertices are labeled by subsets, and with some
additional combinatorial properties.

Problem 6.3. Study properties of B-nerves of point configurations in R
d.

6.2. A conjecture by Reay. For a set X ⊂ R
d, a Reay (r, j)-partition is a par-

tition of X into subsets S1, S2, . . . , Sr such that
⋂j

i=1 conv Ski
�= ∅, for every

1 ≤ k1 < k2 < · · · < kj ≤ r. In other words, the convex hulls of any j sets of
the partition intersect. Define R(d, r, j) as the smallest integer m such that every
m-element set X ⊂ R

d has a Reay (r, j)-partition. Reay [Rea79] conjectured that
you cannot improve the value given by Tverberg’s theorem, namely, that

Conjecture 6.4 (Reay’s conjecture). R(d, r, j) = (r − 1)(d+ 1) + 1.

Micha A. Perles believes that Reay’s conjecture is false even for j = 2 and
r = 3 for large dimensions but, with Moriah Sigron, he proved [PS16] the strongest
positive results in the direction of Reay’s conjecture.

6.3. Two old problems and universality.

Problem 6.5 (McMullen and Larman). How many points v(d) guarantee that for
every set X of v(d) points in R

d there exists a partition into two parts X1 and X2

such that for every p ∈ X,

conv (X1\p) ∩ conv (X2\p) �= ∅.
This is a strong form of Radon’s theorem: the partition X1, X2 of X = X1 ∪X2

remains a Radon partition even after we delete any point from X. Similar questions
can be asked about Tverberg partitions. Larman [Lar72] proved that v(d) ≤ 2d+3
and this bound is sharp for d = 1, 2, 3, 4. The lower bound v(d) ≥ � 5d

3 � + 3 is a
result of Ramı́rez Alfonśın [RA01]. This problem is the dual form of the original
question by McMullen: What is the largest integer n = f(d) such that every set of
n points in general position in R

d is projectively equivalent to the set of vertices of
a convex polytope?

A related problem is the following.

Problem 6.6. How many points T (d; s, t) in R
d guarantee that they can be divided

into two parts such that every union of s convex sets containing the first part has
a nonempty intersection with every union of t convex sets containing the second
part?

We explain next why R(d; s, t) is finite. This is a fairly general Ramsey-type
argument and it gives us an opportunity to mention a few recent important results.
The argument has two parts:

(1) Prove that T (d; s, t) is finite (with good estimates) when the points are in
cyclic position (to be defined shortly).

(2) Use the fact that for every d and n there is f(d, n) such that among every
m points in general position in R

d, m > f(d, n), one can find n points in
cyclic position.

The finiteness of T (d; r, s) follows (with horrible bounds) from these two ingredi-
ents by standard Ramsey-type results. It would be nice to understand the behavior
of this function.

Statement (2) is a kind of universality theorem. In a more precise form it says
that for every d and n there is an integer f(d, n) such that the following holds.
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Every sequence x1, . . . , xm in R
d in general position with m ≥ f(d, n) contains a

subsequence y1, . . . , yn such that all simplices of this subsequence are oriented the
same way. The latter condition says, in more precise form, that for every set of
subscripts i1, . . . , id+1 with 1 ≤ i1 < · · · < id+1 ≤ n, the sign of the determinant of
the (d+ 1)× (d+ 1)-matrix

(2)

(
yi1 yi2 · · · yid+1

1 1 · · · 1

)

is the same (and different from 0). Now a point set is cyclic if its elements can be
ordered so that the simplices along this ordering have the same orientation.

Statement (2) says that the property of being cyclic is universal because every
long enough sequence of points in general position contains a cyclic subsequence
of length n. Every finite sequence of points on the moment curve is cyclic. This
shows that no other type of point sequence can be universal. Recently, a fairly good
understanding of f(d, n) has been achieved in a series of papers.

Theorem 6.1. f(d, n) = twrd(θ(n)).

Here, twrd is the d-fold tower function. The lower bound is by Suk [Suk14]
(improving earlier bounds by Conlon, Fox, Pach, Sudakov, and Suk [CFP+14]) and
the upper bound comes from Bárány, Matoušek, and Pór [BMP16].

The following, somewhat vague, question emerges here naturally.

Problem 6.7. Determine the universal type of n lines in R
3 and in R

d. More
generally, what is the universal type of n k-dimensional affine flats in R

d?

Some preliminary results in this direction are the topic of a forthcoming paper
by Bárány, Kalai, and Pór [BKP21].

We note that the order type of a sequence of points does not determine its
Tverberg partitions.

Problem 6.8. Develop a notion of order type based on Tverberg partitions into
at most r parts, r ≥ 3.

Here, Perles and Sigron’s work on strong general position [PS16] and Pór’s uni-
versality theorem [Pór18] could be relevant.

7. Carathéodory and weak ε-nets

7.1. Colorful Carathéodory and the Rota basis conjecture. The following
question was raised in Chow’s Polymath 12 [Cho17] dedicated to Rota’s basis con-
jecture. Consider the d+1 sets (or colors if you wish) C1, C2, . . . , Cd+1 of points in
R

d. Assume that each |Ci| = d+ 1 and that the interior of each conv Ci contains
the origin.

Problem 7.1 (D. H. J. Polymath). Can we find a partition of all points into d+1
rainbow parts such that the interior of the convex hulls of the parts have a point
in common. (A rainbow set is a set containing one element from each Ci.)

To see the connection, first recall Rota’s basis conjecture.

Conjecture 7.2 (Rota’s basis conjecture). If B1, B2, . . . , Bn are disjoint bases in
R

n (or even in an arbitrary matroid), then it is possible to find n new disjoint bases
C1, C2, . . . , Cn such that each Ci contains one element from every Bj.
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Note that Rota’s basis conjecture can be stated (over R) as follows. Consider
d+1 sets (or colors) C1, C2, . . . , Cd+1 of points in R

d. Assume that each |Ci| = d+1
and that the interior of each conv Ci is nonempty. Then there exists a partition of
all points into d+1 rainbow parts such that the interior of the convex hulls of each
part is nonempty.

Returning to Problem 7.1, we note here that according to the colorful Carathé-
odory theorem there is a rainbow set whose convex hull contains the origin. Without
the words “the interiors of”, Problem 7.1 would be a special case of the colorful
Tverberg conjecture (Section 4.3). A positive answer would be a strong variant
of Reay’s conjecture (Section 5.2) on the dimension of Tverberg points, and, as
explained before, also a strong form of Rota’s basis conjecture over the reals.

A recent result of Frick and Soberón [FS20] is that a set of r(d+1) points in R
d

can always be partitioned into r sets, each of size d+ 1, such that the convex hulls
of the parts have a point in common. This theorem is related to the uncolored case
of Problem 7.1 but without the word “interior”.

7.2. The complexity of the colorful Carathéodory theorem and of Tver-
berg partitions.

Problem 7.3. Consider d+ 1 sets C1, C2, . . . , Cd+1 of points in R
d. Assume that

each |Ci| = d+1 and that each conv Ci contains the origin. Is there a polynomial-
time algorithm to find a rainbow simplex containing the origin?

An interesting result in this direction is due to Meunier et al. [MMSS17]. They
show that the problem lies in the intersection of complexity classes PPAD and PLS.
The same applies to the analogous question about Tverberg partitions: Is there a
polynomial-time algorithm to find a Tverberg partition of an (r − 1)(d + 1) + 1-
element point set in R

d? There are very few geometric problems in both classes
PPAD and PLS that are not known to be solvable in polynomial time. The results
in [MMSS17] are the first upper bound on the complexity of these problems.

7.3. Carathéodory-type theorem for cores. Recall the definition of the k-core
of a finite set X in R

d from Section 5.4. The Carathéodory number for the k-
core is the smallest integer f(d, k) with the property that a ∈ corekX (where
X ⊂ R

d) implies the existence of Y ⊂ X such that a ∈ corekY and |Y | ≤ f(d, k).
So f(d, 0) = d + 1 is just the Carathéodory theorem. Bárány and Perles [BP90]
established the finiteness of f(d, k) together with some other properties of this
function, for instance, that f(d, 1) = max{2(d + 1), 1 + d + d2/4�}, and that
f(2, k) = 3(k + 1). Several questions remain open; we mention only two of them.

Problem 7.4. Determine f(d, 2) and f(3, k).

7.4. The covering number theorem. Assume that X ⊂ R
d is finite and |X| ≥

d+ 1. A simplex of X is just conv Y where Y ⊂ X and |Y | = d+ 1. According to
Carathéodory’s theorem every point in conv X is contained in a simplex of X; that
is, conv X is covered by the simplices of X. Which point is covered maximally, and
how many times is it covered? A famous result of Boros and Füredi [BF84] says
that in the planar case there is a point covered by 2

9

(
n
3

)
+O(n2) simplices (that is,

triangles) of X, where n = |X|. This is a positive fraction of all triangles of X and
the constant 2

9 is the best possible. In higher dimensions Tverberg’s theorem and
the colorful Carathéodory theorem imply (see [Bár82]) the following result.



HELLY-TYPE PROBLEMS 493

Theorem 7.1 (Covering number). Assume X is a set of n ≥ d+ 1 points in R
d.

Then there is a point covered by 1
(d+1)d

(
n

d+1

)
simplices of X.

This is again a positive fraction of all simplices of X. Define bd as the supremum
of all β > 0 such for that every set X of n ≥ d + 1 points in R

d there is a
point covered by β

(
n

d+1

)
simplices of X. So bd ≥ (d + 1)−d. In a remarkable

paper, Gromov [Gro10] showed that bd ≥ 2d
(d+1)!(d+1) . Gromov’s theorem applies to

continuous maps from the boundary of an (n− 1)-dimensional simplex to R
d. His

estimate is an exponential improvement on the previous bounds. Both Gromov’s
theorem and Pach’s theorem below play an important role in the emerging theory
of high-dimensional expanders [FGL+12].

From the other direction Bukh, Matoušek, and Nivasch [BMN11] give an exam-

ple, based on the stretched grid, that shows bd ≤ (d+1)!
(d+1)d+1 . They conjecture that

this is the right value of bd.

Conjecture 7.5. Show that bd = (d+1)!
(d+1)d+1 . More modestly, prove that bd is expo-

nential in d.

An interesting extension of the covering number theorem is the following result
of Pach [Pac98].

Theorem 7.2 (Pach’s theorem). Assume that C1, . . . , Cd+1 are sets (colors, if you
like) in R

d, each of size n. Then there is a point p ∈ R
d and there are subsets

Di ⊂ Ci (for all i ∈ [d + 1]), each of size at least c(d)n such that the convex hull
of every transversal of the system D1, . . . , Dd+1 contains p. Here c(d) > 0 is a
constant that depends only on d.

This is a homogeneous version of the covering number theorem. It was conjec-
tured in [BFL90], where case d = 2 was proved more generally even if the sets
C1, C2, C3 need not have the same size. This raises the following question.

Problem 7.6. Does Pach’s theorem remain true if the sets C1, . . . , Cd+1 have
arbitrary sizes?

We mention that Pach’s theorem does not have a topological extension, as shown
in [BMNT18] and in [BH20] in a stonger form.

7.5. Weak ε-nets. An important application of the covering number theorem is
about weak ε-nets. Let ε > 0 be fixed. Given a finite set X of n ≥ d+ 1 points, let
C be the (finite) family of sets conv Y for all Y ⊂ X with |Y | ≥ εn. A set F ⊂ R

d

is called a weak ε-net for X if F ∩ C �= ∅ for every C ∈ C.

Theorem 7.3 (Weak ε-net theorem). Under the above conditions there is a weak
ε-net F for X such that

|F | ≤ cd
εd+1

,

where cd > 0 is a constant.

The upper bound on the size of F is from [AK92b] and [ABFK92] and has been
improved to O(ε−d), disregarding some logarithmic terms. The trivial lower bound
on the size of F is 1

ε . Bukh, Matoušek, and Nivasch [BMN11] give an example
(based on the stretched grid or staircase convexity) where the size of the weak
ε-net is at least of order 1

ε (log
1
ε )

d−1. So the bounds on the size of a weak ε-net
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are far from each other, and the general belief is that the true behavior should be
slightly superlinear in 1

ε .

Problem 7.7. Find a better upper bound for the size of a weak ε-net.

One remarkable improvement in this direction is a result of Rubin [Rub18] who
showed that in the planar case there is always a weak ε-net of size of order 1

ε1.5+δ

for any δ > 0. A more recent result of Rubin [Rub21] applies in any dimension
d ≥ 2 and gives a weak ε-net of size of order 1

εd−1/2+δ for any δ > 0.
Weak ε-nets can be defined not only for points but for k-dimensional affine flats

in R
d. We only state the question for lines in R

3 and leave the rest of the cases
to our imaginary reader. Let L be a set of n lines, and let C be a finite family of
convex sets in R

3. Assume that every C ∈ C intersects an ε-fraction of the lines in
L, that is,

|{L ∈ L : C ∩ L �= ∅}| ≥ εn for every C ∈ C.

Conjecture 7.8 (ε-net of lines). Under these conditions, there is a set of lines L∗

whose size depends only on ε such that every C ∈ C intersects some line in L∗.

The set L∗ can be thought of as a weak ε-net of lines for C. We will encounter
this question again soon in connection with Problem 8.1.

8. A glance at common transversals

8.1. Transversals for intersecting families. A k-transversal of a family of con-
vex sets in R

d is a k-dimensional affine space that intersects every set in the fam-
ily. Transversal theory deals with conditions that guarantee the existence of k-
transversals. The case k = 0 is connected to Helly-type theorems, and there are
some general results for hyperplane transversals, namely, k = d − 1, and very few
general results for 0 < k < d − 1 and, in particular, for line transversals in R

3.
The fascinating theory geometric transversals goes beyond the scope of this paper;
for surveys see Goodman, Pollack, and Wenger [GPW93], Wenger [Wen99], and
Holmsen [Hol13]. We will mention only a few problems where the conditions are in
terms of the intersection pattern of the sets in the family.

Problem 8.1. Assume that a family C of n convex sets in R
3 satisfies the property

that any two sets in C intersect. Show that there is a line intersecting cn elements
in C, where c > 0 is a universal constant.

Partial results in this direction are given in [Bár21]. Problem 8.1 is the first,
and so far most interesting, unsolved case of a series of problems of the same type.
Namely, for what numbers k, r, d is it true that, given a family C of convex sets
in R

d where every k tuple is intersecting, there is an r-flat intersecting a positive
fraction of the sets in C? Of course, the positive fraction should depend only on
k, r, and d.

An interesting example satisfying the conditions is when C consists of n lines in
a two-dimensional plane in R

3. Then, of course, every set in C is a line transversal
for all sets in C. This example shows that degenerate cases are going to make the
problem difficult. Figure 4 is an example of five pairwise intersecting convex sets
in R

3 without a common line transversal. The five sets comprise three rectangles
and two triangles, all of whose vertices belong to two parallel planes H0 and H1.
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H0

H1

Figure 4. Five sets in R
3 that pairwise intersect and have no line transversal.

The question comes from a paper by Mart́ınez, Roldán, and Rubin [MSRPR20]
and is connected to the colorful Helly theorem. They also ask the slightly more
general bipartite version of the question.

Problem 8.2. Assume F and G are finite families of convex sets in R
3 with the

property that A ∩ B �= ∅ for any two sets A ∈ F and B ∈ G. Show that there is
a line intersecting c|F| elements of F or c|G| elements of G where c > 0 is again a
universal constant.

An example is two sets F and G of lines on a doubly ruled surface, which shows
that degenerate cases may cause difficulties again. It is worth mentioning that both
questions are invariant under nondegenerate affine transformation.

We observe here that a positive answer to Conjecture 7.8 from the last section
would imply that in Problem 8.1 there is a very finite set L of lines intersecting
every element of C, where by “very finite” we mean that the size of L is bounded
by 1000, say, or by some other absolute constant.

9. Conclusion

This paper introduces the fascinating area of Helly-type theorems, and describes
some of its main themes and goals through a variety of open problems. Often,
results from convexity give a simple and strong manifestation of theorems from
topology: Helly’s theorem manifests the nerve theorem from algebraic topology, and
Radon’s theorem can be regarded as an early “linear” appearance of the Borsuk–
Ulam theorem. One of our main themes is to further explore these connections
to topology. Helly-type theorems also offer complex and profound combinatorial
connections and applications that represent the second main theme of this paper.
We note that Helly-type theorems and the interplay between convex geometry,
combinatorics, and topology play an important role in the emerging theory of high-
dimensional expanders.

There are various related parts of this theory that we did not consider. We gave
only a small taste of the theory of common transversals, we did not discuss the
closely related theorems of Kirchberger and Krasnoselskǐi, and we did not consider
the rich connections to metric geometry. For example, when you consider families
of translates of a fixed convex set, the theory takes interesting and surprising turns,
and it has applications and connections, e.g., to the theory of Banach spaces.
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d intersecting every hyperplane at

most d + 1 times, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2469–2482, DOI
10.4171/JEMS/645. MR3562348
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theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), no. 1, 158–164, DOI
10.1112/jlms/s2-23.1.158. MR602247

[BLVS+93] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented
matroids, Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge
University Press, Cambridge, 1993. MR1226888
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[Öza87] M. Özaydin, Equivariant maps for the symmetric group, 1987. unpublished preprint,
University of Winsconsin-Madison, 17 pages.

[Pac98] J. Pach, A Tverberg-type result on multicolored simplices, Comput. Geom. 10
(1998), no. 2, 71–76, DOI 10.1016/S0925-7721(97)00022-9. MR1614605

https://www.ams.org/mathscinet-getitem?mr=3805671
https://www.ams.org/mathscinet-getitem?mr=3557813
https://www.ams.org/mathscinet-getitem?mr=1832447
https://www.ams.org/mathscinet-getitem?mr=239505
https://www.ams.org/mathscinet-getitem?mr=307040
https://www.ams.org/mathscinet-getitem?mr=1272297
https://www.ams.org/mathscinet-getitem?mr=139159
https://www.ams.org/mathscinet-getitem?mr=3382296
https://www.ams.org/mathscinet-getitem?mr=4110523
https://www.ams.org/mathscinet-getitem?mr=1453439
https://www.ams.org/mathscinet-getitem?mr=2060639
https://arxiv.org/abs/2010.13195
https://www.ams.org/mathscinet-getitem?mr=283691
https://www.ams.org/mathscinet-getitem?mr=3627816
https://www.ams.org/mathscinet-getitem?mr=3249387
https://www.ams.org/mathscinet-getitem?mr=2765536
https://www.ams.org/mathscinet-getitem?mr=4183358
https://www.ams.org/mathscinet-getitem?mr=74388
https://www.ams.org/mathscinet-getitem?mr=3439267
https://www.ams.org/mathscinet-getitem?mr=1891463
https://www.ams.org/mathscinet-getitem?mr=1614605


HELLY-TYPE PROBLEMS 501

[Pál20] D. Pálvölgyi, Radon numbers grow linearly, 36th International Symposium on Com-
putational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 164, Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2020, pp. Art. 60-5. MR4117773

[PS16] M. A. Perles and M. Sigron, Some variations on Tverberg’s theorem, Israel J. Math.
216 (2016), 957–972. MR3557472
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