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THE CONNES EMBEDDING PROBLEM:

A GUIDED TOUR

ISAAC GOLDBRING

Abstract. The Connes embedding problem (CEP) is a problem in the the-
ory of tracial von Neumann algebras and asks whether or not every tracial
von Neumann algebra embeds into an ultrapower of the hyperfinite II1 factor.
The CEP has had interactions with a wide variety of areas of mathematics,
including C˚-algebra theory, geometric group theory, free probability, and non-
commutative real algebraic geometry, to name a few. After remaining open
for over 40 years, a negative solution was recently obtained as a corollary of
a landmark result in quantum complexity theory known as MIP˚ “ RE. In
these notes, we introduce all of the background material necessary to under-
stand the proof of the negative solution of the CEP from MIP˚ “ RE. In fact,
we outline two such proofs, one following the “traditional” route that goes via
Kirchberg’s QWEP problem in C˚-algebra theory and Tsirelson’s problem in
quantum information theory and a second that uses basic ideas from logic.
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1. Introduction

1.1. What is this all about? The story told in this tour is (in this author’s hum-
ble opinion) absolutely fascinating! It can also be completely confusing and terrify-
ing to an outsider. It contains a seemingly infinite number of acronyms (CEP, WEP,
QWEP, LLP, MIP*, RE, . . . ), all sorts of tensor products pb̄,bmax,bminq, entan-
gled particles, and even good friends Einstein and Gödel both make an appearance
(the latter twice).
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At one end of the story is the Connes embedding problem (CEP), a problem in the
field of von Neumann algebras first posed by Alain Connes in his famous 1976 paper
“Classification of Injective Factors” [15] (the paper mainly responsible for his being
awarded the Fields Medal in 1982). Roughly speaking, a von Neumann algebra is a
collection of bounded operators on a Hilbert space containing the identity operator,
closed under addition, composition, scalar multiplication, and adjoint, and which
is closed in a certain topology known as the weak operator topology. The von
Neumann algebras Connes was considering came equipped with a trace functional
that shares many of the nice properties enjoyed by the (normalized) trace functional
on matrices.

Here is the passage from [15] which led to the establishment of the CEP:

We now construct an approximate imbedding of N in R. Appar-
ently such an imbedding ought to exist for all II1 factors because
it does for the regular representation of free groups. However, the
construction below relies on condition 6.

What is this quote trying to convey? R is the hyperfinite II1 factor, arguably
the most important tracial von Neumann algebra. For now, one should just think
of R as an appropriate limit of matrix algebras MnpCq of increasing sizes. We will
have much to say about this algebra throughout this paper. A II1 factor is just a
particular kind of tracial von Neumann algebra, and the N appearing in the passage
is a particular II1 factor satisfying a certain list of properties. By an approximate
imbedding of N in R, Connes means that any finite amount of information about
elements of N (that is, the trace of finitely many ˚-polynomials with elements from
N plugged in) can be simulated by appropriate elements of R. Connes later shows
that such approximate imbeddings correspond to actual embeddings of N into a so-
called ultrapower of R, denoted RU. He comments that such an embedding “ought”
to always exist since it does for a particular von Neumann algebra, namely the group
von Neumann algebra associated to the free group, denoted LpF2q (see Subsection
3.7). Why that embedding “ought to exist” is not quite clear. Nevertheless, Connes
is only able to show that the N under consideration can be embedded in RU using
one of the conditions (namely the sixth one) he has assumed about this particular
algebra.

Thus, the Connes embedding problem (CEP) states: every tracial von Neumann
algebra embeds (in a trace-preserving way) in an ultrapower RU of R. We will say
this slightly more precisely in Subsection 3.6. Many prefer to call this a “problem”
rather than a “conjecture” since “ought to” is not a very strong sentiment.

The robustness of the CEP lies in its many reformulations and from the many
areas of mathematics it has touched upon; see Section 2 for some examples.

At the other end of this story (and seemingly a world far, far away) is a landmark
theorem in quantum complexity theory known as MIP˚

“ RE [39]. Like most theo-
rems in complexity theory, it compares two complexity classes. Roughly speaking,
a complexity class consists of a collection of problems that all share some common
level of difficulty with which one can solve or verify these problems. The class RE
denotes those problems for which there is a computer program so that, if you left
the program running long enough, would list all instances for which the problem
has a positive answer (but you would never know about instances with a negative
answer). Usually, complexity theorists are more interested in levels of efficiency,
and the class RE is hardly ever discussed. The other complexity class in the above
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equation is MIP˚, which denotes those problems for which a verifier interacting
with multiple cooperating (but noncommunicating) provers who share a source of
quantum entanglement can reliably verify a positive instance of a problem. The
result MIP˚

“ RE states that these two classes coincide! This is a monumen-
tal result, for it shows the power of quantum ideas in computational complexity.
One particular instance of this result is that the (in)famous halting problem, which
asks if a particular computer program will halt on, say, the empty input (which
is known to be an undecidable problem), can actually be efficiently and reliably
verified by two provers sharing some quantum entanglement. Here, “efficiently”
means in polynomial time and “reliably” means that if the machine halts, then the
verifier will accept the provers’ proof of that fact with probability 1, while if it does
not halt, then only half the time will they accept a (necessarily incorrect) proof
purporting to show that the machine halts. (An execution of the protocol has a
probabilistic outcome, whence here the condition is that there is acceptance with
probability at most 1

2 over the verifiers’ and provers’ random choices in the case of
a Turing machine that does not halt. If making a mistake half of the time seems
unacceptable, the reader will find comfort in knowing that the chance of mistake
can be made as close to 0 as one wishes upon repetition of the protocol.) This is
an astounding result!

Even more amazing than the sheer statement of the result is that the equality
MIP˚

“ RE actually yields a negative solution to CEP!

1.2. Connecting the dots. But how could these seemingly unrelated topics be so
tightly connected? The answer lies within a series of previously known connections.
First, in a fundamental paper of Kirchberg [44], it was shown that CEP is equiv-
alent to an important problem (Kirchberg even used the word conjecture) in the
theory of C˚-algebras stemming from the complexity of C˚-tensor products known
now as Kirchberg’s QWEP problem (see Subsection 3.8). Later, Fritz [24] and,
independently, Junge et al. [41] demonstrated that a positive answer to the QWEP
problem would yield a positive answer to a problem in quantum information the-
ory known as Tsirelson’s problem which, roughly speaking, asks whether the usual
quantum mechanical framework and that coming from quantum field theory yield
the same set of quantum correlations corresponding to Bell experiments. While the
jump from the QWEP problem to Tsirelson’s problem might seem like quite a leap,
once one unravels the definitions, this is actually a fairly straightforward argument,
which will be given in Subsection 6.1. Both sets of authors almost proved that
the Kirchberg and Tsirelson problems were actually equivalent; Ozawa succeded in
connecting the last dots in [47].

Now we are at least in the same arena: quantum information theory and quan-
tum complexity theory (both areas at least have “quantum” in their names). The
last step in the puzzle is to use a result of Fritz, Netzer, and Thom [25] about the
computability of the operator norm for universal group C˚-algebras and the anal-
ysis leading to the equivalence of QWEP and Tsirelson to show that if Tsirelson’s
problem has a positive answer, then every language in MIP˚ would actually be
decidable, contradicting MIP˚

“ RE. (See Subsection 6.1 for the complete argu-
ment.)

Okay, so that was a mouthful!



506 ISAAC GOLDBRING

1.3. Why another treatment of CEP? Numerous accounts of the CEP and
its many equivalents can be found in the literature. In fact, Pisier [52] recently
wrote a fascinating account (coming in just shy of 500 pages) on the CEP and its
equivalences with QWEP and Tsirelson (and so, so much more). Much trimmer
accounts were given by Ozawa [47, 48] and Capraro and Lupini [13].

So if there are so many accounts of the CEP, why write another? We have several
good reasons:

First, all of the above accounts were written pre-MIP˚
“ RE, so none of them

actually explain how the story resolves itself.
Second, all of the above accounts go into an extreme amount of detail and assume

a fair amount of background knowledge in operator algebras. We envision the
reader in, say, quantum physics or complexity theory wanting to understand the
main thread of the story and being overburdened by the overhead needed to enter
the fray. In this survey, we try very hard to at least state all of the necessary
definitions. On the other hand, we offer very few details or proofs in the interest of
space and refer the reader to the above references if they are interested in the gritty
details. Also, since we are focusing on the one-way implications (as opposed to the
equivalences the other accounts present), we save ourselves some complications.

Third, the operator algebra community may know very little quantum theory or
complexity theory, so we offer brief introductions to these areas to at least paint
the picture for them.

Finally, and most certainly gratuitously, we offer an alternative and, in this
author’s biased opinion, simpler path from MIP˚

“ RE to the failure of CEP than
that outlined above using basic methods from mathematical logic. This path also
offers some extra bells and whistles to the failure of CEP, including a Gödelian
refutation of the CEP and a proof of the existence of many counterexamples to
the CEP. While we have our logician hats on, we take advantage of the fact that
we have the readers’ attention to describe a model-theoretic weakening of the CEP
that is still open and quite fascinating (at least to us!).

1.4. A quick guide to this guide. In Section 2, we briefly describe some of the
known equivalents of the CEP. The reader may benefit from coming back to this
section after having read some of the definitions, but this is supposed to whet the
reader’s appetite and convince them that the rest of the paper is worth reading.

Section 3 is a crash course in operator algebras, assuming some basic functional
analysis that someone in quantum physics should probably be familiar with. We
cover both the C˚ and von Neumann algebra background needed as well as topics
such as states and traces, the ultrapower construction, operator algebras arising
from groups, and finally, what is so darn complicated about C˚-algebra tensor
products, culiminating in a discussion of why a positive solution to the CEP implies
a positive solution to the QWEP problem.

Section 4 is a similar crash course but this time in complexity theory. We
start from the definition of Turing machines, defining some of the basic complexity
classes, and then work our way up to the class MIP of languages verifiable by a
verifier interacting with multiple cooperating provers.

In Section 5, we make a quantum detour for those unfamiliar with the basic
tenets of quantum mechanics and even take a digression on superdense coding just
for fun (and to indicate the power of entanglement). This section culminates with
the definition of the complexity class MIP˚, the analogue of MIP where the provers
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are allowed to share quantum entanglement as a resource, and the precise statement
of the result MIP˚

“ RE.
Section 6 contains the details of the proof of the failure of the QWEP problem

from MIP˚
“ RE by first showing how the latter yields a negative solution to

Tsirelson’s problem and then by establishing how a negative solution to Tsirelson’s
problem yields a negative solution to the QWEP problem. Combined with our
derivation of a positive solution of the QWEP problem from a positive solution
to the CEP, this completes the proof of the negative solution to the CEP from
MIP˚

“ RE.
Section 7 offers the alternative proof alluded to above using basic ideas from

logic. We present the appropriate logic for studying tracial von Neumann algebras
and discuss the main contribution from logic, namely Gödel’s completeness the-
orem. We also describe the extra information about the CEP gleamed from the
logical perspective mentioned above, including a completely operator-algebraic re-
formulation of our main model-theoretic contribution in terms of the undecidability
of a certain moment approximation problem. We also offer an alternative proof of
the failure of Tsirelson from MIP˚

“ RE using the completeness theorem. Most of
the material in this section represents joint work with Bradd Hart [31, 32].

Finally, in Section 8, we discuss the open problem around the existence of the
so-called enforceable factor, which is the model-theoretic weakening of the CEP
referred to above.

2. Equivalent reformulations of CEP

One of the aspects of the CEP that makes it such an interesting problem is its
numerous equivalences spanning many seemingly different areas of mathematics. In
the main text, the equivalences with Kirchberg’s QWEP conjecture in C˚-algebra
theory and Tsirelson’s problem in quantum information theory will be expounded
on in more detail due to their relevance to the current story. In this section, we
briefly mention some of the other well-known equivalences.

2.1. Free probability theory. In free probability theory, one considers noncom-
mutative probability spaces, such as tracial von Neumann algebras pM, τ q, where
the elements of M act as noncommutative random variables and the trace τ is the
analogue of the integral. Voiculescu demonstrated the robustness of this theory,
establishing free analogues of many familiar facts from ordinary probability theory
and giving applications to operator algebras and random matrices (to name a few).
A nice introduction to free probability is Speicher’s lecture notes [57].

In classical probability theory, the entropy of a random variable is an important
numerical value measuring the amount of information obtained when measuring
the random variable. One method of calculating the entropy of a discrete random
variable with probability distribution tp1, . . . , pnu is to approximate the distribution
using microstates, which are functions f : t1, . . . , Nu Ñ t1, . . . , nu for which the
fraction of j P t1, . . . , Nu, where fpjq “ k is within ε of pk for all k “ 1, . . . , n. By
taking the logarithm of the number of such functions divided by N for a given pair
pN, εq of parameters and then letting N Ñ 8 and ε Ñ 0, we obtain the entropy
Hpp1, . . . , pnq of the distribution. A more general version of this works for a wider
class of random variables.
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When faced with the task of defining the free entropy of a tuple pa1, . . . , anq

of self-adjoint elements in a tracial von Neumann algebra pM, τ q, Voiculescu pro-
ceeds analogously by considering those tuples pA1, . . . , Anq of self-adjoint matrices
in some matrix algebra MkpCq for which a certain finite number of moments ap-
proximate the corresponding moments in the tracial von Neumann algebra; that is,
τ pppa1, . . . , anqq and trpppA1, . . . , Anqq differ by at most ε for finitely many noncom-
mutative ˚-polynomials ppX1, . . . , Xnq in n-variables. Now one has to calculate the
volume of the set of those matrices and let the various parameters involved tend to
infinity or 0. With this definition of free entropy, one can prove a number of results
which are the free analogues of the corresponding result in the classical theory.
For example, it is known that a tuple of classical random variables has maximal
entropy if and only if they are independent and have Gaussian distribution. In the
free theory, the free entropy of a tuple is maximal if and only if the elements of the
tuple are freely independent and have semicircular distributions (which are known
to be the free analogue of the Gaussian distribution). The paper [63] is a survey of
free entropy by Voiculescu himself.

This definition of free entropy leads to an interesting feature: if there are no such
tuples pA1, . . . , Anq that simulate pa1, . . . , anq, then the free entropy of pa1, . . . , anq

equals ´8. It is well-known (see Subsection 3.6) that, for a given tracial von
Neumann algebra pM, τ q, the set of such moments is nonempty for all such tuples
pa1, . . . , anq from M if and only if M embeds into RU (in a trace-preserving way).
Thus, CEP is equivalent to all tuples of self-adjoint elements in tracial von Neumann
algebras having nonnegative free entropy.

2.2. Hyperlinear groups. Okay, so this one really is not an equivalence but rather
an equivalence with a special case of the CEP. An important notion in group theory
is that of a sofic group. Roughly speaking, a countable discrete groupG is sofic if, for
every finite subset F of G, there is a symmetric group Sn and a function φ : F Ñ Sn

that is an approximately injective approximate homomorphism. For example, if
g, h, gh P F , then one would like to say that φpghq is close to φpgqφphq, where
closeness is measured with respect to the normalized Hamming distance between
permutations (which calculates what fraction of elements the permutations disagree
on). The importance of this class of groups is that many important conjectures
in group theory are known to hold when restricted to the class of sofic groups.
Surprisingly, there is no known example of a nonsofic group! One can make a similar
definition, replacing symmetric groups Sn with unitary groups Un, equipped with
their normalized Hilbert–Schmidt metric; the resulting class of groups is called the
class of hyperlinear groups. Every sofic group is hyperlinear, and since we do not
know if every group is sofic, we do not know if this inclusion is proper. Moreover,
there is no known example of a nonhyperlinear group. We refer the reader to [13]
for more information on sofic and hyperlinear groups.

The connection with CEP comes via an observation of Radulescu [53], who
showed that G is hyperlinear if and only if the group von Neumann algebra LpGq

of G (see Subsection 3.7) embeds into RU. In other words, if CEP is true just for
group von Neumann algebras, then every group is hyperlinear!

Interestingly enough, even though we now know that CEP is false, we still do
not know if its special case for group von Neumann algebras holds; that is, we still
do not know if every group is hyperlinear.
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2.3. Embeddability of general von Neumann algebras. The CEP is about
tracial von Neumann algebras. But there is a much wider class of von Neumann
algebras out there. Is there a reformulation of the CEP that addresses them? The
answer is yes, and it was established by Ando, Haagerup, and Winslow in [1]. There
is a so-called type III (in the sense of Subsection 3.5) version of R, called the Araki–
Woods factor R8, which is the unique hyperfinite type III1 factor. Moreover, there
is a generalization of the tracial ultraproduct construction, known as the Ocneanu
ultraproduct, that covers the much larger class of σ-finite von Neumann algebras,
of which R8 is one of them. The main result of [1] states that CEP is equivalent
to the assertion that every separably acting von Neumann algebra embeds with
expectation into the Ocneanu ultrapower RU

8. The notion of an embedding with
expectation is defined in Subsection 3.9. In the case of tracial von Neumann alge-
bras, the embedding is automatically with expectation, but in the general case, it
is a necessary nontriviality condition.

2.4. Existentially closed factors. The model-theoretic notion of an existentially
closed pe.c.q structure is the generalization of the notion of algebraically closed field
to an arbitrary structure (see Subsection 8.3 for a precise definition). In particular,
it makes sense to study e.c. groups, e.c. graphs, and, yes, even e.c. tracial von
Neumann algebras. One can prove many general facts about the class of e.c. tracial
von Neumann algebras, such as they must be II1 factors with McDuff’s property
and with only approximate inner automorphisms. There are a plethora of e.c.
tracial von Neumann algebras; in particular, every tracial von Neumann algebra
embeds in an e.c. one. However, can one actually name a concrete e.c. tracial von
Neumann algebra? It turns out that a positive solution to CEP is equivalent to the
statement that R is an e.c. tracial von Neumann algebra. A proof of this fact will
be given in Subsection 8.3.

2.5. Noncommutative real algebraic geometry. A Positivstellensatz is a theo-
rem that declares that certain elements that are positive in some way are so for some
good reason. Perhaps the best-known such result is the positive solution to Hilbert’s
17th Problem, due to Artin [2] (although this author is unabashedly fond of Abra-
ham Robinson’s model-theoretic solution [54]): if fpX1, . . . , Xnq P RpX1, . . . , Xnq

is a positive semidefinite rational function (that is, a rational function such that
fpx1, . . . , xnq ě 0 for all x1, . . . , xn P R), then f is a sum of squares of rational
functions, providing a good reason that f is positive semidefinite.

One can ponder noncommutative versions of Artin’s theorem. First, we set
RxX1, . . . , Xny to be the set of polynomials in n noncommuting variables. Con-
sider the positivity statement that fpA1, . . . , Anq ě 0 for all self-adjoint matrices
A1, . . . , An P MmpRq of operator norm at most 1, for all m P N. Then a theorem
of Helton and McCullough [36] tells us that there is a good reason for this kind
of positivity, namely that, for all ε P Rą0, f ` ε belongs to the quadratic module
generated by 1 ´ X2

i , i “ 1, . . . , n. Here, a quadratic module is a subset M of
RxX1, . . . , Xny containing 1, closed under addition and closed under the function
a ÞÑ g˚ag, where a P M and g P RxX1, . . . , Xny (and where g˚ is the result of
reversing the orders of the variables in each monomial of g). Note indeed that all
functions in the quadratic module generated by the 1´X2

i ’s must be positive in the
above sense, and the Helton–McCullough result says that this is (approximately)
the good reason that any such noncommutative polynomial might be positive.
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Now suppose instead that we assume that f is merely trace positive, that is,
trpfpA1, . . . , Anqq ě 0 for all such A1, . . . , An as in the previous paragraph. Clearly,
the operators in the Helton and McCullough result are trace positive. But now you
can also add finite sums of commutators rA,Bs :“ AB ´ BA since the trace of a
commutator vanishes. One can ask if this new class of noncommutative polynomials
gives a necessary and sufficient condition to be trace positive; that is, if f is tracially
positive, must it be the case that, for every ε ą 0, f ` ε differs from an element of
the quadratic module generated by the 1´X2

i ’s by a sum of commutators? It turns
out that this tracial version of the Positivstellensatz from the previous paragraph
is actually equivalent to the CEP, a result proven by Klep and Schweighofer in [45].

3. A crash course in operator algebras

In this long section, we explain all of the background material in operator al-
gebras one needs to know to understand the statements of both the CEP and the
QWEP problem as well as to understand how a positive solution to the former
implies a positive solution to the latter. Nearly everything discussed here can be
found in Pisier’s book [52]. Brown and Ozawa’s book [12] is another nice reference.

3.1. Introducing C˚-algebras. A ˚-algebra is an algebra A over C satisfying, for
all x, y P A and λ P C,

‚ px ` yq˚ “ x˚ ` y˚,
‚ pxyq˚ “ y˚x˚,
‚ px˚q˚ “ x,
‚ pλxq˚ “ λ̄x˚.

If A is actually a unital algebra over C with unit 1 for which 1˚ “ 1, we say that A
is a unital ˚-algebra. There are obvious notions of ˚-subalgebra of a ˚-algebra and
unital ˚-subalgebra of a unital ˚-algebra.

A ˚-homomorphism between ˚-algebras is an algebra homomorphism that also
preserves the ˚-operation. If φ : A Ñ B is a ˚-homomorphism between unital
˚-algebras, then we implicitly assume that φ maps the unit of A to the unit of B.

In this paper, the most relevant (unital) ˚-algebras are BpHq, the ˚-algebra of
bounded operators on the Hilbert space H, and its (unital) ˚-subalgebras. Recall
that for a Hilbert space H, a linear operator T : H Ñ H is bounded if its operator
norm }T } :“ supt}Tξ} : }ξ} ď 1u is finite. BpHq is a ˚-algebra with the algebra
operations being addition, composition, and scalar multiplication and with the ˚-
operation being given by the adjoint, where, for T P BpHq, we have that T˚ P BpHq

is the unique operator for which xTξ, ηy “ xξ, T˚ηy for all ξ, η P H. (In connection
with this formula, we follow the convention that inner products are linear in the
first argument and conjugate-linear in the second argument; this is the opposite
of the convention used in the physics literature.) BpHq is a unital ˚-algebra with
identity operator IH acting as the unit.

We now define our first class of operator algebras, namely the class of C˚-
algebras. For both classes of operator algebras, there are two approaches to their
definition, namely the concrete and the abstract. A concrete C˚-algebra is a
˚-subalgebra A of BpHq that is closed in the operator norm topology. If, moreover,
A contains the identity IH, then we say that A is a unital concrete C˚-algebra.
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We now present the abstract approach to C˚-algebras. Suppose that A is a
˚-algebra. A C˚-norm on A is a norm on A satisfying the following identities for
all x, y P A:

‚ }xy} ď }x}}y},
‚ }x˚} “ }x},
‚ }x˚x} “ }x}2.

The first two identities are the usual axioms for defining a normed ˚-algebra; the
last axiom, called the C˚-identity, is what makes a C˚-norm a C˚-norm. An abstract
C˚-algebra is a ˚-algebra equipped with a complete C˚-norm. If A is a ˚-algebra
equipped with a C˚-norm, then the ˚-algebra operations extend naturally to the
completion of the ˚-algebra, which is then an abstract C˚-algebra. An abstract
unital C˚-algebra is an abstract C˚-algebra that is a unital *-algebra; in this case,
we have }1} “ 1.

It is an important fact that a ˚-homomorphism between abstract C˚-algebras is
necessarily contractive; it is an isometric embedding if and only if it is injective. In
particular, given any ˚-algebra A, there is at most one norm on A which makes A
into a C˚-algebra.

It is an easy exercise to see that the operator norm on BpHq is a C˚-norm,
whence every concrete C˚-algebra is an abstract C˚-algebra. On the other hand,
the Gelfand–Naimark theorem states that every abstract C˚-algebra is isomorphic
(as abstract C˚-algebras) to a concrete C˚-algebra. This result can be reformulated
in terms of representations of C˚-algebras. Given a C˚-algebra A, a representation
of A is a ˚-homomorphism π : A Ñ BpHq for some Hilbert space H. Usually a
nondegeneracy condition is assumed on a representation, namely that tπpaqpξq : a P

A, ξ P Hu is dense in H; if A is unital, this is equivalent to assuming that πp1q “ IH.
The representation π is faithful if it is moreover injective (equivalently isometric).
Thus, the Gelfand–Naimark theorem states that every abstract C˚-algebra admits
a faithful representation.

From here on out, we no longer make a distinction between concrete and abstract
C˚-algebras and simply take either perspective whenever it is convenient.

Unless stated otherwise, in the rest of this paper, we restrict our
attention to unital C˚-algebras; we might often repeat this convention
for emphasis.

A C˚-algebra is commutative (or abelian) if its multiplication is commutative.
Given a compact Hausdorff space X, the set CpXq of continuous, complex-valued
functions is a unital commutative C˚-algebra under the pointwise operations of ad-
dition, multiplication, and scalar multiplication, with the ˚-operation being given
by f˚ :“ f̄ (complex conjugate), and with norm given by }f} :“ supxPX |fpxq|. In
fact, all unital commutative C˚-algebras are of this form, and there is a dual equiv-
alence of categories (known as Gelfand duality) between compact Hausdorff spaces
with continuous maps and unital commutative C˚-algebras with ˚-homomorphisms.
For this reason, C˚-algebra theory is often dubbed “noncommutative topology.”

There are special kinds of elements in C˚-algebras that will be important
throughout this paper. If A is a C˚-algebra, x P A is called

‚ self-adjoint if x˚ “ x,
‚ positive if x “ y˚y for some y P A,
‚ a projection if x is self-adjoint and x2 “ x,
‚ unitary if x˚x “ xx˚ “ 1.
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In the case that A “ BpHq, the self-adjoint (resp., positive) elements are those
with spectrum contained in the reals (resp., the positive reals) while the projec-
tions correspond to orthogonal projections onto closed subspaces. In the case that
A “ CpXq for X a compact space, the self-adjoint (resp., positive) elements corre-
spond to the real-valued (resp., positive real-valued) functions while the projections
correspond to those functions which take only the values 0 or 1.

3.2. Let’s be positive. An important role in this story is played by maps between
C˚-algebras which are not necessarily ˚-homomorphisms but which still preserve
some remnants of the C˚-algebra structure. It is hard to truly appreciate the
importance of these maps without getting into the details of the results to follow,
but we introduce the terminology in order to be able to follow the definitions and
theorems.

First, we say that a linear map φ : A Ñ B between C˚-algebras is positive if
it maps positive elements to positive elements. Note that a ˚-homomorphism is
positive: φpa˚aq “ φpaq˚φpaq.

For many purposes, a stronger version of positivity is needed. First, for any
C˚-algebra A and any n ě 1, we let MnpAq denote the set of n ˆ n matrices
with entries from A. We can view MnpAq as a ˚-subalgebra of Bp

Àn
i“1 Hq and it is

readily verified that, under this identification, MnpAq is closed in the operator norm
topology, that is, MnpAq is a C˚-algebra once again. Note also that a linear map
φ : A Ñ B induces a linear map φn : MnpAq Ñ MnpBq given by φnpaijq “ pφpaijqq.
We say that φ is completely positive (cp) if each φn is a positive map. If, in addition,
φp1q “ 1, we say that φ is unital, completely positive (ucp). A ˚-homomorphism
φ : A Ñ B is easily seen to induce ˚-homomorphisms φn : MnpAq Ñ MnpBq,
whence ˚-homomorphisms are ucp. It can be shown that if A is commutative, then
any positive map φ : A Ñ B is automatically completely positive.

In a similar vein, one says that φ as above is completely bounded (resp., completely
contractive) if each φn is bounded (resp., contractive).

A fundamental theorem of Stinespring says that ucp maps are not too far away
from being ˚-homomorphisms. More precisely, consider the following situation:
suppose that H and K are Hilbert spaces and V : H Ñ K is an isometry, that
is, a linear map for which V ˚V “ IH (or, in other words, xV ξ, V ξy “ xξ, ξy for
all ξ P H). Then for any representation π : A Ñ BpKq of A, we have a map
φ : A Ñ BpHq given by φpaqpξq :“ V ˚pπpaqpV ξqq which is readily verified to be
ucp. The Stinespring dilation theorem says that all ucp maps φ : A Ñ BpHq arise in
this way. A particular consequence of this theorem is that ucp maps are completely
contractive. The relevance of Stinespring’s theorem to our story is that certain
results that hold somewhat immediately for ˚-homomorphisms will also hold for
ucp maps (see Subsection 3.8).

We mention in passing that cp maps play an important role in quantum informa-
tion theory. Indeed, one perspective on a quantum state (say on a finite-dimensional
state space) is that of a positive matrix of trace 1, corresponding to the density
matrix of some mixed state. A quantum channel is a linear map that is to represent
some allowable physical transformation on quantum states. In particular, if it is to
map density matrices to density matrices, then it should be trace-preserving and
positive. However, often one needs to add ancilla bits to a given state and then
apply the correspondiing quantum channel. The desire to have the resulting matrix
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be a density matrix again is equivalent to the requirement that the quantum chan-
nel be completely positive instead of merely positive. The reader can find more
details in, for example, Vern Paulsen’s lecture notes [50].

3.3. Introducing von Neumann algebras. We now turn our attention to the
other kind of operator algebra, the von Neumann algebra. Once again, we have
a choice between a concrete definition and an abstract definition. A concrete von
Neumann algebra is a unital ˚-subalgebra of BpHq closed in the weak operator
topology (WOT), where a subbasic open neighborhood of T P BpHq in the WOT
has the form tS P BpHq : |xTξ, ηy ´ xSξ, ηy| ă εu for some ξ, η P H and some
ε ą 0. Said differently, the WOT is the smallest topology on BpHq making the
maps T ÞÑ xTξ, ηy : BpHq Ñ C continuous for all ξ, η P H. It is easy to check that
the WOT is a finer topology on BpHq than the operator norm topology, whence
every concrete von Neumann algebra is a (unital) concrete C˚-algebra. In general,
von Neumann algebras are much bigger than general C˚-algebras due to the, well,
weakness of the WOT.

A theorem of Sakai allows for an abstract reformulation: a (unital) abstract C˚-
algebra M is isomorphic (as an abstract C˚-algebra) to a concrete von Neumann
algebra if and only if M is isometrically isomorphic to a dual Banach space, that is,
if and only if there is a closed subspace X Ď M˚˚ such that M “ X˚ isometrically.
In this case, X is unique and is called the predual of M, denoted M˚.

Von Neumann’s bicommutant theorem allows for a purely algebraic reformulation
of being a von Neumann algebra that is incredibly important to the theory. First,
given a subset S Ď BpHq, set S1 :“ tT P BpHq : TS “ ST for all S P Su, the so-
called commutant of S. Note that for any set S, we have that S1 is a von Neumann
subalgebra of BpHq and that S Ď S2 :“ pS1q1. Von Neumann’s bicommutant theo-
rem states that for any unital ˚-subalgebra A of BpHq, A2 coincides with the WOT-
closure of A in BpHq; this common algebra is the von Neumann algebra generated
by A. In fact, the bicommutant theorem shows that both of these coincide with
the closure of A in the strong operator topology (SOT), where now a subbasic open
neighborhood of T P BpHq in the SOT has the form tS P BpHq : }pT ´ Sqξ} ă εu
for some ξ P H and some ε ą 0. A consequence of the bicommutant theorem is that
a unital ˚-subalgebra M of BpHq is a von Neumann algebra if and only if M “ M2.

A von Neumann algebra M is called separable if its bidual is a separable Banach
space. This is equivalent to having a concrete representation of M on a separable
Hilbert space, whence one sometimes calls such a von Neumann algebra separably
acting.

Just as in the case of C˚-algebras, we can completely characterize the commu-
tative von Neumann algebras. Given a σ-finite measure space pX,μq, we can view
L8pX,μq Ď BpL2pX,μqq by identifying f P L8pX,μq with Mf P BpL2pX,μqq given
by Mf pgq :“ fg. It is an exercise to check that L8pX,μq “ L8pX,μq1, whence
L8pX,μq is a commutative von Neumann algebra. Moreover, all commutative von
Neumann algebras have this form, whence von Neumann algebra theory is often
dubbed “noncommutative measure theory.”

While ˚-homomorphisms between von Neumann algebras are automatically con-
tractive with respect to the operator norm (as they are C˚-algebras), since the
relevant topology for defining von Neumann algebras is the WOT, the appropriate
continuity condition relates to this latter topology. More precisely, a positive linear
map Φ : M Ñ N between von Neumann algebras is normal if the restriction of Φ
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to the operator norm unit ball of M is continuous when M and N are equipped
with their WOT topologies. (The restriction to the operator norm unit ball may
seem slightly unsightly; this is equivalent to saying that Φ is continuous when both
M and N are equipped with their weak*-topologies when viewed as dual Banach
spaces.) One can reformulate normality in an intrinsic way that does not refer to
the particular realization of M and N: Φ : M Ñ N is normal if and only if it is
positive, linear, and ΦpsupiPI xiq “ supiPI Φpxiq for every bounded increasing net
pxiqiPI of positive elements in M.

3.4. States and traces. Fix a compact Hausdorff spaceX. Given a complex Borel
measure μ on X, we can consider the associated integration functional Iμ P CpXq˚

given by Iμpfq :“
ş

X
fdμ which satisfies }Iμ} “ }μ}, where }μ} denotes the total

variation norm of μ. Setting MpXq to be the Banach space of complex Borel
measures onX, the Riesz representation theorem implies that this association yields
an isomorphism CpXq˚ – MpXq. Moreover, the probability measures μ on X
correspond to those I P CpXq˚ for which I is a positive map satisfying Ip1q “ 1.

More generally, given a unital C˚-algebra A, a state on A is a positive linear
functional φ on A with φp1q “ 1. Thus, the states on a unital abelian C˚-algebra
CpXq correspond to the integration functionals associated to probability measures
on X, and one thinks of states on arbitrary C˚-algebras as the abstract analogue
of such an integral.

The states on A form a convex, closed subset SpAq of A˚. The extreme points
of SpAq are referred to as pure states. By the Krein–Milman theorem, finite convex
combinations of pure states are dense in the space of all states. The pure states
on BpHq are the vector states, that is, the states of the form T ÞÑ xTξ, ξy for some
ξ P H.

A consequence of the Hahn–Banach theorem is the fact that, for any C˚-algebra
A and any self-adjoint element a P A, we have }a} “ supφPSpAq |φpaq|. Another
consequence of the Hahn–Banach theorem is that whenever A is a subalgebra of B,
any state on A can be extended to a state on B.

When H is finite dimensional, every state on BpHq is of the form T ÞÑ TrpTρq for
a unique positive operator ρ of trace 1, where Tr denotes the trace of an operator.
The operator ρ is often called the density matrix for the state. When H is not
necessarily finite dimensional, the same result holds true for states on BpHq that
are continuous with respect to the weak*-topology on BpHq, except that ρ is now
stipulated to be a trace-class operator (see, for example, [35, Theorem 19.9]).

The term “state” comes from quantum mechanics. A first introduction to quan-
tum mechanics will introduce a state of a physical system as simply a unit vector
ξ in the Hilbert space H associated to the physical system. This usage of the word
state corresponds to the vector states described above. Later, one encounters the
notion of mixed state (to accomodate the fact that results of quantum measure-
ments are merely probabilistic ensembles of pure states), which is often defined
in terms of the density matrix as defined above. The role of a state in quantum
mechanics is simply to assign expected values of observables (see [35, Section 19]).

An important construction associated to a state is the Gelfand–Naimark–Segal
pGNS q construction, which associates a representation of the C˚-algebra to the
state. Suppose that φ is a state on A. We define a sesquilinear form x¨, ¨yφ on A by
xx, yyφ :“ φpy˚xq. It is straightforward to check that this is a so-called pre-inner
product on A in that it satisfies all of the properties of being an inner product except
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that xx, xyφ “ 0 need not necessarily imply that x “ 0; when x, yφ is actually an
inner product, we say that φ is faithful. Associated to x¨, ¨yφ is the seminorm } ¨ }φ

on A given by }x}φ :“
a

xx, xyφ. We obtain a Hilbert space, denoted L2pA, φq, by
quotienting out by the closed subspace of vectors with } ¨ }φ “ 0 and then taking
the completion. Given a P A, we let â denote its equivalence class in L2pA, φq.
It follows that there is a representation πφ : A Ñ L2pA, φq uniquely determined

by the condition πφpaqpb̂q :“ âb for all a, b P A. The representation πφ is cyclic,

meaning that there is a vector ξ P L2pA, φq for which tπφpaqξ : a P Au “ L2pA, φq,

namely ξ “ 1̂. Moreover, the vector state x¨1̂, 1̂yφ on L2pA, φq restricts to φ on the
image of A. Note that πφ is a faithful representation precisely when φ is faithful.

There is a converse to the above construction: if π : A Ñ BpHq is a cyclic
representation of A with cyclic vector ξ P H, then one obtains a state φπ on A

by φπpaq :“ xπpaqξ, ξy and the GNS representation associated to φπ is unitarily
equivalent to π.

Define Hu :“
À

φPSpAq
L2pA, φq and set πu “

À

φPSpAq
πφ : A Ñ Hu, which

we call the universal representation of A. Since }a} “ supφPSpAq |φpaq| for any
self-adjoint a P A, it follows that πu is a faithful representation of A. Since any
representation of A is a direct sum of cyclic representations and since every cyclic
representation of A is, up to unitary equivalence, of the form πφ for some φ P SpAq,
we see that every representation of A is unitarily equivalent to a subrepresentation
of πu, whence the name!

An important ingredient in this story is the von Neumann algebra πupAq2 gener-
ated by the image of A in BpHuq. It can be shown that this von Neumann algebra
is isometrically isomorphic to the Banach space A˚˚, whence it is this notation that
is usually used.

A state φ on A is called a tracial state if φpabq “ φpbaq for all a, b P A. For
example, the normalized trace tr on MnpCq given by trpaq :“ 1

n Trpaq is a tracial
state on MnpCq.

Since C is a von Neumann algebra, it makes sense to speak of normal states
on von Neumann algebras. A faithful normal tracial state on a von Neumann
algebra is simply referred to as a trace. A von Neumann algebra is called finite
if it admits a trace. (This terminology makes much more sense if you introduce
Murray–von Neumann equivalence of projections.) A tracial von Neumann algebra
is a pair pM, τ q, where M is a von Neumann algebra and τ is a trace on M. An
embedding of tracial von Neumann algebras is a normal, injective ˚-homomorphism
that preserves the trace. The normalized trace tr on MnpCq is a trace (in the von
Neumann algebra sense) on MnpCq. However, when H is infinite dimensional, there
is no trace on BpHq.

Suppose that τ is a trace on M. The corresponding representation πτ : M Ñ

BpL2pM, τ qq is normal and the image of πτ pMq is WOT-closed in BpL2pM, τ qq.
Also, M is separable if and only if it is separable with respect to the metric stemming
from the norm } ¨ }τ . When restricted to the unit ball of M, the topology induced
by } ¨ }τ coincides with the SOT on M it inherits from L2pM, τ q.

We end this section by showing how traces can be used to define the hyperfinite
II1 factor, the star of this paper!
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Given n ě 1, there is a natural embedding of tracial von Neumann algebras

M2npCq ãÑ M2n`1pCq given by A ÞÑ

ˆ

A 0
0 A

˙

. In this way, we obtain a directed

system of tracial von Neumann algebras whose union is a ˚-algebra we denote by
M :“

Ť

n M2npCq. The fact that the embeddings preserve the normalized traces on
the individual matrix algebras implies that M has a tracial state τ on it. We apply
the GNS construction to τ (which still works even though the original algebra is
not necessarily complete) and take the von Neumann algebra generated by πτ pMq

inside of BpL2pM, τ qq. This von Neumann algebra is called the hyperfinite II1 factor
R. We will see the reason for the “II1 factor” in the name in the next section but
the terminology “hyperfinite” can be explained now. A separable von Neumann
algebra is called hyperfinite if it contains an increasing union of finite-dimensional
subalgebras whose union is WOT-dense. Murray and von Neumann showed that
there is a unique separable hyperfinite II1 factor. Consequently, if we started the
above construction with any MnpCq instead of M2pCq, we would have arrived at
the same II1 factor, namely R.

3.5. More on von Neumann algebras. The center of a von Neumann algebra
M is ZpMq :“ MXM1 “ tx P M : xy “ yx for all y P Mu. A von Neumann algebra
M is called a factor when its center is trivial, that is when ZpMq “ C ¨1. It is quite
easy to see that BpHq is a factor; in particular, each MnpCq is a factor. This makes
it plausible that R is also a factor, given that it is the completion of an increasing
sequence of factors—one just needs to check that no elements snuck into the center
at the completion stage.

The interest in factors comes from the fact that they are the building blocks of all
von Neumann algebras in the sense that every von Neumann algebra can be written
as a direct integral (a generalization of direct sum) of factors, and thus the study
of arbitrary von Neumann algebras can usually be reduced to studying factors.

Murry and von Neumann divided the collection of factors into three types, (cre-
atively) called types I, II, and III. They further split the first two types into subtypes
as follows. First, for each n P N, there is a unique factor of type In, namely MnpCq.
The unique factor of type I8 is BpHq for H infinite dimensional. Next, a II1 factor
is an infinite-dimensional finite factor, that is, an infinite-dimensional factor that
admits a trace. Thus, the hyperfinite II1 factor is indeed a II1 factor. A II8 factor
is one that can be written as a proper increasing union of type II1 factors. Equiv-
alently, a II8 factor can be written in the form Mb̄BpHq for some II1 factor M

(see Subsection 3.8 for the definition of tensor products of von Neumann algebras).
There is also division of type III factors into subtypes IIIλ for λ P r0, 1s, but we
will not need to get into that here.

It is important to note that, while an arbitrary finite von Neumann algebra may
have many traces, the trace on a finite factor is unique. We also note the crucial
fact that R embeds into any II1 factor.

As alluded to above when defining finite von Neumann algebras, the above type
classification makes more sense in the context of Murray–von Neumann equivalence.
However, we can still see this division using traces. Given a von Neumann algebra
M, let PpMq denote the set of projections in M. If τ is a trace on M, set τ pPpMqq :“
tτ ppq : p P PpMqu. Note that, for the unique type In factor MnpCq, we have
τ pPpMnpCqqq “ t0, 1

n , . . . ,
n´1
n , 1u, one value for every dimension being projected

onto. On the other hand, for a II1 factor M, one can show that τ pPpMqq “ r0, 1s.
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Thus, we think of II1 factors being like matrix factors in that they admit traces,
but now we have a continuous dimension for projections.

One can explain the cases I8 and II8 using traces if one considers the unnor-
malized trace Tr on BpHq given by TrpT q :“

ř

iPIxTξi, ξiy, where pξiqiPI is any
orthonormal basis for H. Note that Tr can take the value 8. We then have that
the possible traces of projections for the I8 factor are t0, 1, 2, . . . , u Y t8u while in
the type II8 case they are r0,8s.

3.6. The tracial ultrapower construction and the official statement of
the CEP. In general, an ultraproduct of a collection of similar structures is a
structure of the same type that represents some sort of limit of these structures.
There are ways of making this precise using model theory, and we will discuss this
in Subsection 7.2. In this section, we show how to carry this construction out in
the case of tracial von Neumann algebras and see how this allows us to precisely
state the CEP.

First, one needs to introduce the notion of an ultrafilter. (For an entire book
devoted to ultrafilters and their applications, see the author’s [27]). Given an index
set I, an ultrafilter U on I is simply a t0, 1u-valued finitely additive probability
measure on I. One often identifies U with its set of measure 1 sets and writes
X P U instead of UpXq “ 1. From this perspective, one can alternatively view an
ultrafilter U on I as a division of the subsets of I into two categories—U-large and
U-small—satisfying the following requirements: I is U-large while H is U-small;
the intersection of two U-large sets is U-large; a superset of a U-large set is once
again U-large; for any subset J of I, exactly one of J or IzJ is U-large.

Following typical measure-theoretic terminology, given a property P that may
or may not hold of elements of I, we may write “for U-almost all i P I, P piq holds”
when ti P I : P piq holdsu belongs to U.

Given a bounded sequence pziqiPI of complex numbers, it is straightforward to
show that there is a unique complex number z such that, for every ε ą 0, we have
|z ´ zi| ă ε for U-almost all i P I. This unique complex number z is called the U-
ultralimit of the sequence pziqiPI , denoted limi,U zi or simply limU zi. The fact that
every bounded sequence has a limit (in this generalized sense) is but one indication
of the utility of ultrafilters.

Given j P I, the unique ultrafilter U on I for which Uptjuq “ 1 is called the prin-
cipal ultrafilter generated by j, and is denoted Uj . An ultrafilter U on I is called
nonprincipal if it is not principal. Equivalently, U is nonprincipal if UpXq “ 0 for
all finite X Ď I. It is easy to check that limUj

zi “ zj , whence ultralimits along
principal ultrafilters do not really capture a genuine notion of limit. It is a basic fact
that, for any infinite set I, there is a nonprincipal ultrafilter U on I (in fact there
are many!). However, any proof of the existence of such ultrafilters is necessar-
ily nonconstructive, and thus it is impossible to explicitly describe a nonprincipal
ultrafilter (see [27, Chapter 5] for more on these foundational matters concerning
ultrafilters). In what follows, the specific choice of nonprincipal ultrafilter will be
irrelevant for our purposes.

We now come to the tracial ultraproduct construction. Fix a family pMi, τiqiPI
of tracial von Neumann algebras and an ultrafilter U on I. We first set

�8
pMiq :“

!

x P

ź

iPI

Mi : sup
iPI

}xpiq} ă 8

)

,
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that is, �8pMiq collects all those sequences from the Cartesian product
ś

iPI Mi for
which the operator norms of the coordinates are uniformly bounded. It is readily
verified that �8pMiq is a C˚-algebra under the supremum norm. It is tempting to
try to define a tracial state τ on �8pMiq by declaring τ pxq :“ limU τipxpiqq, which
makes sense given that the sequence pτipxpiqqqiPI is a uniformly bounded sequence
of complex numbers (a consequence of the uniform bound on the operator norms
of the coordinates of x). Unfortunately, if each xpiq is a positive element of Mi,
whence x is a positive element of �8pMiq, with the property that limU τipxpiqq “ 0,
then we have that τ pxq “ 0 even though x may not be zero. In other words, this
definition leads to a tracial state on �8pMiq that is not faithful.

We fix the above problem by defining cU :“ tx P �8pMiq : limU τipxpiqq “ 0u.
While there are a lot of things to check, we have that:

‚ cU is a two-sided ideal in �8pMiq,
‚ �8pMiq{cU is a von Neumann algebra,
‚ the induced tracial state τ on �8pMiq{cU given by τ prxsUq :“ limU τipxpiqq

is a trace (that is, a faithful, normal tracial state) on �8pMiq{cU, where
rxsU denotes the coset of x modulo cU.

The resulting tracial von Neumann algebra is denoted p
ś

U Mi, limU τiq and is
called the tracial ultraproduct of the family pMi, τiq with respect to U. In a certain
sense, one should think of this ultraproduct as some sort of limit of the constitutent
tracial von Neumann algebras, an analogy that will become clearer as we proceed.
When each Mi is a finite factor, then the trace on each factor is unique and we
simplify the notation to

ś

U Mi. When each pMi, τiq “ pM, τ q, we simply write

pM, τ qU and speak of the ultrapower of pM, τ q with respect to U. Similarly, the
ultrapower of a finite factor is denoted MU. We view any tracial von Neumann
algebra pM, τ q as a subalgebra of pM, τ qU via the diagonal embedding which maps
an element a P M to the coset of the diagonal sequence pi ÞÑ aq modulo cU.

When U “ Uj is principal, one can verify that
ś

UpMi, τiq – pMj , τjq, whence
this is not a terribly interesting procedure. The true power of the ultraproduct con-
struction comes when one uses a nonprincipal ultrafilter, for then the ultraproduct
is sort of an average or limit of the constitutent tracial von Neumann algebras.

If limU dimpMjq ă 8, then
ś

UpMi, τiq is also finite dimensional. Otherwise,
ś

UpMi, τiq is quite large, in fact, nonseparable, even if each Mi is separable. It
is quite common to hear expressions such as “every II1 factor in this paper (or
talk) is separable unless it isn’t.” This tautology refers to the fact that often
researchers are only interested in separable tracial von Neumann algebras, and the
only nonseparable II1 factors that one might encounter are those obtained from
a nonprincipal ultraproduct of a family of separable II1 factors. (We are being a
bit sloppy—nonprincipality only guarantees nonseparability when the index set is
countable; otherwise, one needs the mild assumption of countable incompleteness.)

We can now officially state the CEP.

Connes embedding problem. Given any nonprincipal ultrafilter U on N, every
separable tracial von Neumann algebra embeds into RU; that is, it admits a trace-
preserving injective ˚-homomorphism into RU.
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Let us make several remarks on variations of the statement of the CEP:

‚ It can be shown using some basic model theory that the CEP is equivalent
to the statement that every separable tracial von Neumann algebra embeds
into RU for some nonprincipal ultrafilter U on N. This fact can also be
witnessed by using a simple ultrafilter-free equivalent reformulation of the
CEP known as the microstate conjecture, discussed below.

‚ The restriction to separable tracial von Neumann algebras is not necessary.
It can be shown that ultrapowers of R with respect to certain kinds of
ultrafilters on larger index sets, known as good ultrafilters, lead to larger
ultrapowers that can embed tracial von Neumann algebras of larger density
character. In other words, we can reformulate CEP by saying every tracial
von Neumann algebra embeds into some ultrapower of R.

‚ The validity of the CEP does not change if we restrict ourselves to embed-
ding II1 factors into an ultrapower of R. The reason for this is due to the
fact that every tracial von Neumann algebra pM, τ q embeds into a II1 fac-
tor, say pM˚LpZq, τ ˚ τLpZqq. Here LpZq is the group von Neumann algebra
of the group of integers (see Subsection 3.7) and ˚ denotes the free product
of tracial von Neumann algebras.

‚ One can replace RU with a nonprincipal ultraproduct of matrix algebras
without changing the validity of the CEP. More precisely, CEP is equivalent
to the statement that, for any nonprincipal ultrafilter U on N, every sepa-
rable tracial von Neumann algebra embeds into

ś

U MnpCq. This follows
from the fact that each MnpCq embeds in R, whence

ś

UMnpCq embeds

in RU, while there are conditional expectations Φn : R Ñ MnpCq, and
the ultralimit of these expectations yields an embedding limU Φn : RU ãÑ
ś

U MnpCq. (See Subsection 3.9 for the definition of conditional expecta-
tion.)

The last alternate reformulation makes the equivalence with the so-called mi-
crostate conjecture more apparent. The microstate conjecture states that for any
tracial von Neumann algebra pM, τ q, any finite collection p1pxq, . . . , pmpxq of ˚-
polynomials in the noncommuting variables x “ px1, . . . , xnq, any a1, . . . , an P M

in the operator norm unit ball of M, and any ε ą 0, there is k P N and b1, . . . ,
bn P MkpCq in the operator norm unit ball such that

max
1ďiďn

|τ ppipaqq ´ trppipbqq| ă ε.

In other words, any finite configuration that can be obtained in some tracial von
Neumann algebra can be approximately obtained in some matrix algebra. It is this
formulation of CEP that appeared in connection with free entropy as discussed in
Subsection 2.1.

3.7. Operator algebras coming from groups. A large source of operator alge-
bras arise from groups and these algebras play an important role in our story.

First, a unitary representation of a (discrete) group G is a group homomorphism
π : G Ñ UpAq, where A is a C˚-algebra and UpAq denotes the group of unitary
elements of A.

Suppose that G is a group. Let �2pGq be the Hilbert space formally generated
by an orthonormal basis ζh for all h P G. For any g P G, define ug to be the linear
operator on �2pGq determined by ugpζhq “ ζgh for all h P G. Notice that ug is
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unitary for all g P G (since u˚
g “ u´1

g “ ug´1q and so λ : G Ñ Up�2pGqq given by
λpgq :“ ug is a unitary representation of G, called the left regular representation of
G.

Recall that group algebra CrGs consists of formal linear combinations
ř

gPG cgg
with only finitely many nonzero coefficients. There is a natural ˚-algebra structure
on CrGs, the addition and multiplication being the obvious ones and the ˚-operation
being given by p

ř

gPG cggq˚ “
ř

gPG cgg
´1. CrGs is in fact a unital ˚-algebra with

unit e, where e denotes the identity of the group.
The left regular representation λ of G extends by linearity to a unital ˚-algebra

homomorphism π : CrGs Ñ Bp�2pGqq.
The reduced group C˚-algebra of G, denoted C˚

r pGq, is the closure of πpCrGsq in
the operator norm topology on Bp�2pGqq. The group von Neumann algebra of G,
denoted LpGq, is the closure of πpCrGsq in the WOT on Bp�2pGqq. Moreover, the
vector state on Bp�2pGqq corresponding to ξe yields a tracial state on C˚

r pGq and a
trace on LpGq.

When G is finite, C˚
r pGq “ LpGq “ CrGs and is generally considered uninterest-

ing (to operator algebraists). When G is infinite, LpGq is a II1 factor precisely when
G is an infinite conjugacy class pICC q group, that is, when all nontrivial conjugacy
classes of G are infinite.

The procedure of taking the group von Neumann algebra of a group can “forget”
a lot of the algebraic structure of the group. For example, it follows from Connes’
fundamental work [15] that all ICC amenable groups have group von Neumann
algebra isomorphic to R.

In what follows, the reduced group C˚-algebra of a group is not quite as im-
portant as a second C˚-algebra associated to a group, the so-called universal por
maximalq group C˚-algebra. To define this, we define a norm on CrGs by defining

›

›

›

›

›

ÿ

gPG

cgug

›

›

›

›

›

“ sup

#›

›

›

›

›

ÿ

gPG

cgπpgq

›

›

›

›

›

: π : G Ñ UpAq a unitary representation of G

+

.

It is readily verified that this is a well-defined (that is, finite) C˚-norm on CrGs.
The completion of CrGs with respect to this norm is thus a C˚-algebra, called
the universal C˚-algebra associated to G, denoted C˚pGq. Since the above norm is
easily seen to be the maximal C˚-norm on CrGs, it is sometimes called the maximal
norm on CrGs and the completion the maximal group C˚-algebra of G. It follows
immediately from the definition that any unitary representation π : G Ñ UpAq of
G extends uniquely to a ˚-homomorphism π : C˚pGq Ñ A.

A particular corollary of this universal property of the universal group C˚-algebra
is that C˚pF8q is surjectively universal, where F8 is the free group on a countably
infinite set of generators. More precisely, given any separable C˚-algebra A, there
is a surjective ˚-homomorphism C˚pF8q Ñ A. To see that this is the case, just
note that there is a countable set tui : i P Nu of unitaries that generates A (as a C˚-
algebra); now apply the universal property to the surjective unitary representation
F8 Ñ UpAq obtained by mapping the ith basis element of F8 onto ui.

Another consequence of the universal property is that if f : G Ñ H is a group ho-
momorphism, then we get an induced ˚-algebra homomorphism C˚pfq : C˚pGq Ñ

C˚pHq. A less obvious fact is that if H is a subgroup of G, then C˚pHq is nat-
urally a C˚-subalgebra of C˚pGq. This follows immediately from the definitions
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once one knows that any unitary representation of H can be extended to a unitary
representation of G (via a technique known as induction; see [22, Chapter 6]).

By considering the left-regular representation of G, we immediately see that
there is a canonical surjective ˚-homomorphism C˚pGq Ñ C˚

r pGq. In general, this
map is not an isomorphism; that is, it often has nontrivial kernel. In fact, the
canonical map C˚pGq Ñ C˚

r pGq is an isomorphism precisely when G is amenable.
One final fact will prove useful later: for any two groups G and H, we have

C˚pG ˚ Hq – C˚pGq ˚ C˚pHq, where G ˚ H denotes the free product of groups
and C˚pGq ˚C˚pHq denotes the unital free product of C˚-algebras, which is slightly
annoying to define but whose properties can be guessed from the terminology.

3.8. The problem with C˚-algebra tensor products. Before discussing the
issues associated with defining tensor products of C˚-algebras, we first recall the
tensor product construction for vector spaces. Let V and W be vector spaces over
the same field K. We let FpV ˆ W q be the free K-vector space on the set V ˆ W ,
that is, all formal linear combinations

ř

pv,wqPV ˆW cpv,wqpv, wq with only finitely

many nonzero coefficients. FpV ˆ W q carries an obvious K-vector space structure.
The tensor product of V and W , denoted V d W , is the quotient of FpV ˆ W q by
the subspace generated by elements of the following form, for v, v1 P V , w,w1 P W ,
and α P K:

‚ pv ` v1, wq ´ pv, wq ´ pv1, wq,
‚ pv, w ` w1q ´ pv, wq ´ pv, w1q,
‚ pαv,wq ´ αpv, wq,
‚ pv, αwq ´ αpv, wq.

While it is more common to write V b W instead of V d W , we will reserve b

for analytic tensor products (to be defined shortly) and will use d for the above
algebraic tensor product.

The equivalence class of pv, wq in V d W is denoted v b w. Thus, an arbitrary
element of V d W may be written as a formal linear combination

řn
i“1 αivi b wi,

but not necessarily uniquely.
If V and W are both finite dimensional, then so is V d W with dimpV d W q “

dimpV q ¨dimpW q; if tv1, . . . , vmu is a basis for V and tw1, . . . , wnu is a basis for W ,
then tvi b wj : 1 ď i ď m, 1 ď j ď nu is a basis for V d W .

It is clear from the construction that if S : V1 Ñ V2 and T : W1 Ñ W2 are
K-linear maps, then there is a K-linear map S d T : V1 d W1 Ñ V2 d W2 uniquely
determined by pS d T qpv b wq “ Spvq b T pwq.

If H and K are Hilbert spaces, then the algebraic tensor product H d K comes
naturally equipped with an inner product uniquely determined by

xξ1 b η1, ξ2 b η2y “ xξ1, ξ2y ¨ xη1, η2y.

The completion of H d K with respect to this inner product is then a Hilbert
space, denoted H b K and called the Hilbert space tensor product of H and K. If
tei : i P Iu and tfj : j P Ju are orthonormal bases for H and K, respectively, then
tei bfj : i P I, j P Ju is an orthonormal basis for HbK. Moreover, if S : H1 Ñ H2

and T : K1 Ñ K2 are bounded linear maps, then the algebraic tensor product map
S d T extends uniquely to a bounded linear map S b T : H1 b K1 Ñ H2 b K2.

We now come to the task of defining tensor products of operator algebras. We
first note that if A and B are two ˚-algebras, there is a natural ˚-algebra operation
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on their algebraic tensor product A d B determined by

‚ px1 b y1q ¨ px2 b y2q “ px1x2q b py1y2q,
‚ px b yq˚ “ x˚ b y˚.

If A and B are both unital, then so is A d B with unit 1 b 1.
The tensor product of von Neumann algebras is fairly uncontroversial. Consider

concretely represented von Neumann algebras M Ď BpHq and N Ď BpKq. It is
straightforward to check that the algebraic tensor product M d N is naturally a
subset of BpHbKq (using the tensor product of linear transformation construction
above) and that the ˚-algebra structure induced by this identification agrees with
the one placed on it in the previous paragraph. The von Neumann algebra tensor
product Mb̄N of M and N is then the WOT closure of MdN in BpHbKq. One can
verify that this construction is indeed independent of the choice of representations
of M and N.

The story for C˚-algebras, on the other hand, is far more complicated in general.
Fix C˚-algebras A and B. We seek C˚-norms on A d B, for then the completion
of AdB with respect to such a C˚-norm will be a C˚-algebra tensor product of A
and B.

One natural choice is to proceed as in the case of von Neumann algebras, that
is, fix concrete representations A Ď BpHq and B Ď BpKq, and to consider the
operator norm on A d B Ď BpH b Kq. One can verify that this norm on A d B is
a C˚-norm and is independent of the choice of representations. This norm is called
the minimal tensor norm, denoted } ¨ }min. The justification for the name comes
from a theorem of Takesaki showing that } ¨ }min is indeed the minimal C˚-norm on
A d B. The completion of A d B with respect to } ¨ }min is denoted A bmin B and
is called the minimal tensor product of A and B. One should be aware of the fact
that some authors simply write A b B instead of A bmin B.

A useful property of the minimal tensor product is the following result, which
follows from the independence of the choice of representation. If πA : A1 Ñ A2 and
πB : B1 Ñ B2 are ˚-homomorphisms, then the linear map πA d πB : A1 d B1 Ñ

A2dB2 extends uniquely to a ˚-homomorphism πAbπB : A1bminB1 Ñ A2bminB2.
Using the Stinespring dilation theorem, one can generalize the conclusion of the
previous sentence to ucp maps as follows. If ΦA : A Ñ BpHAq and ΦB : B Ñ

BpHBq are ucp maps, then there is a unique ucp map ΦA b ΦB : A bmin B Ñ

BpHA b HBq determined by pΦA b ΦBqpa b bq “ ΦApaq b ΦBpbq.
Another natural C˚-norm to consider on A d B is the so-called maximal norm

defined by

}x}max :“ supt}πpxq} : π : A d B Ñ BpHq a ˚ -homomorphismu.

In connection with this formula, it is useful to observe that a ˚-homomorphism
π : A d B Ñ BpHq restricts to ˚-homomorphisms πA : A Ñ BpHq and πB : B Ñ

BpHq with commuting ranges and, conversely, any two ˚-homomorphisms πA :
A Ñ BpHq and πB : B Ñ BpHq with commuting ranges yield a ˚-homomorphism
πA dπB : AdB Ñ BpHq uniquely determined by pπA dπBqpxbyq :“ πApxqπBpyq.
(The commutativity of the ranges of πA and πB ensure that this map is in fact a ˚-
homomorphism.) It is clear that }¨}max is a C

˚-norm onAdB; the completion ofAd

B with respect to } ¨ }max is called the maximal tensor product of A and B, denoted
A bmax B. Any pair of ˚-homomorphisms πA : A Ñ BpHq and πB : B Ñ BpHq

with commuting ranges yields a ˚-homomorphism πAbπB : AbmaxB Ñ BpHq that
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extends πA d πB. Consequently, } ¨ }max really is the largest C˚-norm on A d B.
Using a more complicated Stinespring argument than the one mentioned above,
one can show that any pair of ucp maps ΦA : A Ñ BpHq and ΦB : B Ñ BpHq

with commuting ranges yields a ucp map ΦA b ΦB : A bmax B Ñ BpHq uniquely
determined by pΦA b ΦBqpa b bq “ ΦpaqΦpbq.

Before moving forward, we notice the following two facts, which are readily
verified from the definitions. For any pair of groups G and H, we have

‚ C˚
r pG ˆ Hq – C˚

r pGq bmin C
˚
r pHq,

‚ C˚pG ˆ Hq – C˚pGq bmax C
˚pHq.

Returning to the general discussion, we have defined two extreme C˚-norms on
A d B. In general, they can be different. For example, it can be shown that the
maximal and minimal norms on C˚

r pF2q d C˚
r pF2q are distinct. The corresponding

question for C˚pF2q d C˚pF2q turns out to be equivalent to CEP, as we will soon
see! Another somewhat surprising result is that the maximal and minimal norms
on BpHq d BpHq (for H infinite dimensional) are also distinct, a result due to
Junge and Pisier [42]. In fact, Ozawa and Pisier [49] showed that there exist at
least continuum many different C˚-norms on BpHq d BpHq when H is infinite
dimensional.

We say that pA,Bq form a nuclear pair if there is a unique C˚-norm on A d B,
that is, if the minimal and maximal norms on A d B coincide. We also say that
A is nuclear if pA,Bq is a nuclear pair for every C˚-algebra B. There are many
interesting examples of nuclear C˚-algebras. For example, MnpCq is nuclear for all
n, the reason being that Mn d B – MnpBq, which is already a C˚-algebra with a
unique C˚-norm. A more interesting example coming from groups is that C˚pGq is
nuclear if and only if C˚

r pGq is nuclear if and only if G is amenable (in which case
C˚pGq “ C˚

r pGq).
The following theorem of Kirchberg [44] will be central moving forward.

Theorem 3.1. pC˚pF8q,BpHqq is a nuclear pair.

Note that neither of these algebras are nuclear. The importance of Kirchberg’s
theorem stems from the fact that C˚pF8q is surjectively universal while BpHq is
injectively universal.

We also note that if H is a subgroup of G and A is any C˚-algebra for which
pC˚pGq,Aq is a nuclear pair, then so is pC˚pHq,Aq. In particular, whether or not
pC˚pFkq, C˚pFkqq is a nuclear pair is independent of the choice of k P t2, 3, . . .u Y

t8u, a fact that will come up in our discussion of Kirchberg’s QWEP problem.
We will also need the fact that if p : G Ñ H is a surjective group morphism for
which the canonical surjection C˚ppq : C˚pGq Ñ C˚pHq has a ucp lift (meaning a
ucp map Φ : C˚pHq Ñ C˚pGq for which C˚ppqΦ is the identity on C˚pHq), then
pC˚pGq, C˚pGqq being a nuclear pair implies pC˚pHq, C˚pHqq is a nuclear pair.

3.9. Kirchberg’s QWEP problem. It follows from the definition of the minimal
tensor product that for any inclusion A Ď B of C˚-algebras, one has that AbminC Ď

B bmin C (isometrically) for any other C˚-algebra C. On the other hand, with the
same setup, while there will always be a ˚-homorphism Abmax C Ñ Bbmax C, this
homomorphism need not be injective, that is, isometric. One case, however, where
this does hold is the inclusion A Ď A˚˚. That is, it follows from the definitions
that A bmax C Ď A˚˚ bmax C isometrically for all C˚-algebras A and C.
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Suppose again that A Ď B and further suppose, for the sake of argument, that
there is a ucp map Φ : B Ñ A˚˚ with Φpaq “ a for all a P A. By a fact pointed
out in the the previous subsection, we obtain a ucp (and thus contractive) map
Φ b IC : B bmax C Ñ A˚˚ bmax C. By the observation made in the previous
paragraph, it follows that the canonical map Abmax C Ñ Bbmax C is an isometric
inclusion.

If A is a C˚-subalgebra of B and Φ : B Ñ A is a linear map for which Φpaq “ a
for all a P A, then a theorem of Tomiyama says that the following are equivalent:

‚ Φ is cp,
‚ Φ is contractive,
‚ Φ is a conditional expectation, that is, Φpaxbq “ aΦpxqb for all a, b P A and
x P B.

When such a map exists, we say that A is cp-complemented in B. The nomenclature
comes from Banach space theory, for a Banach space X is complemented in a
superspace Y if and only if there is a contractive linear map Φ : Y Ñ X that is
the identity on X. In the previous paragraph, we merely had to posit the existence
of a ucp map Φ : B Ñ A˚˚, whence we call Φ a weak conditional expecation and
say that A is weakly cp-complemented in B. Consequently, we proved that if A
is weakly complemented in B, then A bmax C Ď B bmax C isometrically for any
other C˚-algebra C. With more work, one can actually show that the converse of
this observation holds as well. In fact, by the surjective universality of C˚pF8q,
we see that A is weakly cp-complemented in B if and only if A bmax C˚pF8q Ď

B bmax C
˚pF8q isometrically.

There are two notable examples of cp-complemented inclusions worth pointing
out now.

‚ If M is a finite von Neumann algebra, then any von Neumann subalgebra
N of M is cp-complemented. To see this, fix a trace τ on M and note
that L2pN, τ q is a closed subspace of L2pM, τ q. One shows that the or-
thogonal projection L2pM, τ q Ñ L2pN, τ q actually restricts to a conditional
expectation M Ñ N .

‚ If H is a subgroup of G, then C˚pHq is cp-complemented in C˚pGq. To see
this, one shows that the map Φ : G Ñ CrHs, defined by setting Φpgq “ g
for all g P H while Φpgq “ 0 for all g P GzH, extends to a conditional
expectation C˚pGq Ñ C˚pHq.

Returning to the general situation, if A is weakly cp-complemented in every
superalgebra (or equivalently in BpHq), then we say that A has the weak expectation
property pWEPq. An insight of Kirchberg [44] was to use his theorem proving that
pC˚pF8q,BpHqq is a nuclear pair to provide an alternate test for having WEP:

Theorem 3.2. For a C˚-algebra A Ď BpHq, the following are equivalent:

(1) A has the WEP.
(2) For every C˚-algebra C, A bmax C Ď BpHq bmax C isometrically.
(3) pA, C˚pF8qq is a nuclear pair.

Proof. We already observed the equivalence of (1) and (2). Now suppose that A

has WEP. We then have

A bmax C
˚

pF8q Ď BpHq bmax C
˚

pF8q “ BpHq bmin C˚
pF8q Ě A bmin C˚

pF8q,
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that is, pA, C˚pF8qq is a nuclear pair. Conversely, suppose that pA, C˚pF8qq is
a nuclear pair. It suffices to show that A bmax C˚pF8q Ď BpHq bmax C˚pF8q.
However, this follows immediately from the assumption, Kirchberg’s theorem, and
the fact that bmin preserves inclusions. �

What are the ramifications of assuming that C˚pF8q itself has the WEP, that
is, pC˚pF8q, C˚pF8qq is a nuclear pair? First, as observed above, this is equivalent
to pC˚pFkq, C˚pFkqq being a nuclear pair for any fixed k ě 2. Next, if we define
the QWEP to be the property that a C˚-algebra is a quotient of a C˚-algebra with
WEP, then C˚pF8q having the WEP implies that all separable C˚-algebras have
the QWEP. We note that it is common to see both phrases, “A has the QWEP”
and “A is QWEP” (although the latter is of course grammatically incorrect).

Conversely, suppose that all separable C˚-algebras have the QWEP. Then cer-
tainly C˚pF8q has the QWEP. However, C˚pF8q has another property, the so-called
lifting property pLPq which, when combined with QWEP, actually implies the WEP.
A C˚-algebra A has the lifting property if, for any ucp map Φ : A Ñ B{J, where B

is a C˚-algebra and J is a closed, two-sided ideal in B, there is a ucp map Ψ : A Ñ B

for which π ˝ Ψ “ Φ, where π : B Ñ B{J is the canonical quotient map. Said more
casually, A has the LP if every ucp map into a quotient C˚-algebra has a ucp lift.
Now suppose that A has the LP and the QWEP as witnessed by the quotient map
q : B Ñ A with B having the WEP. Let Ψ : A Ñ B be a ucp lift of the identity
map A Ñ A, that is, q ˝ Ψ “ IA. Then by applying the ucp lift Ψ b IC˚pF8q of
q b IC˚pF8q, we see that A also has the WEP.

We have thus arrived at the following.

Theorem 3.3. The following assertions are equivalent:

(1) C˚pF8q has the WEP.
(2) For some (equivalently any) k P t2, 3, . . .u Y t8u, pC˚pFkq, C˚pFkqq is a

nuclear pair.
(3) Every separable C˚-algebra has the QWEP.

Any of the above equivalent statements are known as Kirchberg’s QWEP prob-
lem. (We might be tempted to follow the CEP’s lead and call this the QWEPP,
but that looks a bit silly.) As mentioned above, QWEP combined with LP implies
WEP. It turns out that it suffices to consider a local version of LP, aptly called
the local lifting property pLLPq and the same argument works; that is, QWEP to-
gether with LLP implies WEP. Thus, another equivalent formulation of the QWEP
problem is the statement that LLP implies WEP.

We mention one other equivalent formulation of the QWEP problem that is
not relevant for our particular story but is fascinating nonetheless: the QWEP
problem is equivalent to the statement that C˚pF8 ˆ F8q has a faithful tracial
state. What makes this interesting is that this is true for the reduced group C˚-
algebra C˚

r pF8 ˆF8q (simply because it is true for any reduced group C˚-algebra)
and it is true for C˚pF8q (a result due to Choi).

The classes of WEP and QWEP algebras enjoy a number of closure properties
relevant to the proofs that follow. Rather than enumerate them all now, we will
simply quote them when we need them later in the paper.

3.10. From CEP to QWEP. In this section, we show how a positive solution to
the CEP implies a positive solution to the QWEP problem. While these statements



526 ISAAC GOLDBRING

are indeed equivalent, we focus on the direction that we need in order to give a
negative solution to CEP.

So how does CEP get involved in a story about C˚-algebras? The first clue
is that, for von Neumann algebras, the WEP had already been well studied and
is referred to as injectivity. A not so trivial result is that any hyperfinite von
Neumann algebra is injective, whence R is injective. The extremely deep work of
Connes in [15], where the CEP originally comes from, proved the converse, namely
any separable injective II1 factor must be hyperfinite, and thus isomorphic to R.
Thankfully we do not need this result in our story, although the proof that R is
injective (and thus has WEP) is difficult enough.

Now that we know that R is injective, so is �8pRq as WEP is closed under the
formation of direct sums. Since RU is a C˚-algebra quotient of �8pRq, we see that
RU is QWEP! Okay, it smells like we are getting closer.

Now suppose that M is a tracial von Neumann algebra that embeds in RU in
a trace-preserving manner. Without loss of generality, let us assume that M is
simply a subalgebra of RU. By a fact pointed out above, this means that M is
cp-complemented in RU. Since QWEP is preserved by (weakly) cp-complemented
inclusions, we conclude that M is also QWEP.

We have thus arrived at the statement: a positive solution to CEP implies all
finite von Neumann algebras are QWEP!

But we are still talking about von Neumann algebras. How do we bridge the
gap into talking about C˚-algebras? Well, recall that every C˚-algebra A has a
canonically associated von Neumann algebra A˚˚. Since A is tautologically weakly
cp-complemented inA˚˚, in order to show thatA has QWEP, it suffices to show that
A˚˚ has QWEP (again using the closure of QWEP under weakly cp-complemented
subalgebras).

While A˚˚ is a separable von Neumann algebra, it may not be finite. How do
we get CEP to help us with nonfinite von Neumann algebras?

Given any von Neumann algebra M, there is an important one-parameter group
pσϕ

t q of automorphisms of M, known as the modular group. When M is finite,
the modular automorphism group is trivial and thus plays no role. But in the
general theory, it is an indispensible tool. (For all of the fancy type III material
discussed in this paragraph, Takesaki’s book [58] is the canonical reference.) Akin
to the semidirect product construction in group theory, there is a crossed product
construction that associates to any group acting on a von Neumann algebra a larger
von Neumann algebra where this action is implemented by unitaries. Thus, we are
entitled to consider the crossed product algebraM�σϕ

t
R corresponding to the action

of R on M via the modular automorphism group. A serious theorem of Takesaki
states that M �σϕ

t
R is semifinite. We came across semifinite factors above. For

a general von Neumann algebra, we can take semifinite to mean that the algebra
contains an increasing union of finite subalgebras whose union generates the von
Neumann algebra. Since QWEP is preserved under unions and a von Neumann
algebra is QWEP if it contains a WOT-dense ˚-subalgebra with QWEP, we see
that M �σt

ϕ
R has QWEP. An alternative approach is to use the fact that a von

Neumann algebra is QWEP if and only if all of the factors involved in its direct
integral decomposition are QWEP. Thus, to show that a semifinite von Neumann
algebra is QWEP, it suffices to consider the case of factors. But then a semifinite
factor is of the form Mb̄BpHq for a finite factor M, and one can use the fact that
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the von Neumann algebra tensor product of QWEP von Neumann algebras is again
QWEP. Either way, we now know that M�σϕ

t
R is QWEP.

Finally, it is a general fact that any von Neumanna algebra M is always cp-
complemented in any crossed product M �α G; since M �σϕ

t
R is QWEP for any

von Neumann algebra M, it follows that M itself is also QWEP. Applying this fact
to M “ A˚˚, we see that A˚˚, and thus A, are also QWEP for any C˚-algebra A.
This finishes the proof that a positive solution to CEP implies a positive solution
to the QWEP problem.

As mentioned before, a positive solution to the QWEP problem implies a positive
solution to the CEP. The proof involves the theory of amenable traces, which we
will not go into now, but which will be important in our alternate derivation of the
failure of CEP from MIP˚

“ RE given in Subsection 7.5.

4. A crash course in complexity theory

In this section, we introduce the basic notions from (classical) complexity theory
needed to understand the statement of the result MIP˚

“ RE. Essentially all of
this material (apart from the business about nonlocal games) was taken from the
book [3].

4.1. Turing machines. A Turing machine is one of the more popular mathe-
matical formulations of an idealized computing device. Formally, a Turing ma-
chine is a pair M “ pQ, δq, where Q is a finite set of states of the machine and
δ : Q ˆ t0, 1,l,�u3 Ñ Q ˆ t0, 1,l,�u2 ˆ tL, S,Ru3 is the transition function;
here l and � are two special symbols whose significance will be seen shortly. We
always assume that Q contains two special states, namely the start state qstart and
the halting state qhalt.

Throughout, for any n P N, t0, 1un denotes the set of binary strings of length
n while t0, 1u˚ :“

Ť

nPN
t0, 1un denotes the set of all finite binary strings. Given

z P t0, 1u˚, |z| denotes the length of the string z.
Here is how one should envision the computation performed by the Turing ma-

chine M upon some input z P t0, 1u˚. The machine contains three tapes, which are
one-way infinite strips containing boxes which, at any given moment in the com-
putation, contain exactly one symbol from t0, 1,l,�u. The first tape is the input
tape, the second tape is the work tape, and the last tape is the output tape. At the
beginning of the computation, the input tape has the start symbol � in the first
box, then the input string z in the next |z| boxes, and then the remainder of the
boxes contain the blank symbol l. Both the work tape and the output tape contain
the start symbol � in the first box and then blank symbols l in the remaining
boxes. One envisions each tape having a “tape head” which is placed over exactly
one box in the tape at any given moment during the computation; the tape head
for the input tape can read the symbol in that box while the tape head for the
other two tapes can both read the symbol in that box and potentially change it to
a new symbol.

The Turing machine begins the computation in the start state qstart with the
tape head above the leftmost box (which contains the start symbol�) for each tape.
In general, at any given moment during the computation, the Turing machine is
in some state q P Q with tape heads reading boxes k1, k2, k3 P N (representing
how far they are from the beginning of their respective tape) and with symbols
s1, s2, s3 P t0, 1,l,�u inside of each of the boxes being read. The Turing machine
then computes δpq, s1, s2, s3q, obtaining the tuple pq1, s1

2, s
1
3, I1, I2, I3q, which should
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be interpreted as follows:

‚ The box in the work tape (resp., output tape) that the tape head is reading
should have its contents replaced by s1

2 (resp., s1
3).

‚ The tape head for the input tape should move to the left if I1 “ L, to the
right if I1 “ R, and should stay in the same place if I1 “ S. Similar actions
should be taken corresponding to I2 for the work tape and I3 for the output
tape. If any tape head is at the leftmost box and the instruction is L, then
the tape head should also stay in the same place.

‚ After executing these acts, the Turing machine should now enter state q1.

The machine continues running in this fashion. If the machine ever enters the
state qhalt, then the machine stops running, that is, no further modification of the
three tapes will take place. In this case, the output of the computation upon input
z is the longest initial string on the output tape not containing any blank symbols.
(If all the symbols are blank, then the output is considered the empty string).

Every Turing machine M computes a partial function fM : t0, 1u˚ á t0, 1u˚

whose domain consists of those strings z P t0, 1u˚ for which M halts upon input
z; in this case, we define fMpzq to be the corresponding output. We sometimes
abuse notation and identify fM with M itself, that is, we may write Mpzq instead
of fMpzq. We say a partial function f : t0, 1u˚ á t0, 1u˚ is computable if f “ fM

for some Turing machine M.
Given a function T : N Ñ N, we say that the Turing machine M runs in T pnq-

time if, for any input z P t0, 1u˚, upon input z, M halts in at most T p|z|q steps.
Note that if M runs in T pnq-time for some function T , then fM is a total function.
We say that M is a polynomial time (resp., exponential time) Turing machine if M
runs in Cnc-time (resp., C2n

c

-time) for some constants C ą 0 and c ě 1.
A language is simply a subset L Ď t0, 1u˚. We identify a language L with its

characteristic function χL : t0, 1u˚ Ñ t0, 1u. Consequently, it makes sense to speak
of L being computable by a Turing machine. Usually, a language is described in
terms of some mathematical problem under consideration, e.g., the set of finite
graphs that can be 3-colored. The implict assumption is that there is some natural
(and effective) way of coding the set of such graphs as a set of finite binary strings.
In the following, for all languages introduced in this manner, we assume that the
reader can figure out how such a coding might be performed.

Turing machines are one of several mathematically precise models for computa-
tion; other alternatives include register machines and the class of recursive func-
tions. However, all known reasonable models of computation lead to precisely the
same class of computable functions. This is evidence for the Church–Turing the-
sis, which states that this common class of functions coincides with our heuristic
notion of what a computable function should be. (See [18, Chapter 3] for more on
this.) One can even formulate a stronger version of the thesis, which states that
even when taking into account the efficiency of computations, that is, how fast one
can compute a function, the choice of model is still irrelevant. (It is plausible that
quantum computers could pose a serious threat to the strong Church–Turing the-
sis.) The import of the strong Church–Turing thesis for us in these notes is that,
in what follows, when claiming that a certain problem can be solved in a certain
efficient manner, we never need to actually write down the Turing machine that
witnesses this fact. Instead, one can write down an argument using pseudo-code
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and the reader can (if they choose to) convert the pseudo-code into an actual Turing
machine program.

4.2. Some basic complexity classes. A complexity class is simply a collection of
languages. The most interesting complexity classes are those defined by some sort
of condition saying that the languages in the class represent efficiently computable
(or verifiable, as we shall shortly see) problems.

The complexity class P is defined to be the class of languages L such that mem-
bership in L can be decided by a Turing machine in polynomial time, that is, χL

can be computed by a polynomial time Turing machine. For example, the set of
connected graphs is a language that belongs to P (as witnessed by, say, the breadth
first search algorithm).

The complexity class EXP is defined in the same manner as P, replacing polyno-
mial time by exponential time. The time hierarchy theorem implies that P � EXP.

Sometimes it is too difficult to come up with an algorithm that efficiently decides
membership in a particular language while it is the case that if someone were to hand
you a proof that a certain string belonged to the language, then you could efficiently
verify that the proof was indeed correct. The complexity class NP captures this
idea. More precisely, the complexity class NP consists of those languages L for
which there is a polynomial time Turing machine M and a polynomial ppnq such
that:

‚ for all z P L, there is w P t0, 1upp|z|q for which Mpz, wq “ 1.
‚ for all z R L and for all w P t0, 1upp|z|q, Mpz, wq “ 0.

In the above definition, one thinks of w as the proof that z P L; other commonly
used terms for w are “witness” and “certificate.” One often envisions this situation
using two fictious players, a verifier and a prover. If z P L, the prover hands the
verifier a proof w that z indeed belongs to L; the prover has unlimited computation
power in this regard. In order for the verifier to be able to efficiently check that
the proof indeed works, the proof cannot be too long (or else the verifier will not
even be able to read the entire proof), hence the polynomial length requirement.
Moreover, if z R L, then there should be no proof that z belongs to L, whence the
second condition.

It is clear that P Ď NP. While intuitively it seems clear that this inclusion should
be proper (there ought to be problems that are impossible to efficiently decide,
yet there are always proofs that are efficiently verifiable), this fact has yet to be
established and remains one of the more famous open problems in mathematics.

We also note that NP Ď EXP, as one can check all of the exponentially many
possible certificates for a given string in exponential time.

An example of a language in NP is the set of codes for pairs pG, kq, where G is
a finite graph that contains an independent set of size k; a certificate for a given
pair is simply an independent set of size k. This language is unlikely to be in P.
Indeed, this is an example of a so-called NP-complete problem, meaning that it is
as difficult as any other problem in NP (in a precise sense), whence if it belongs to
P, then so do all languages in NP and P “ NP. Another example of a language in
NP is the set of codes for pairs pG1, G2q of finite graphs that are isomorphic; the
certificate here is the isomorphism between the graphs. This problem, however, is
unlikely to be NP-complete (see [3, Section 8.4]).



530 ISAAC GOLDBRING

An alternative way of defining the class NP is to use nondeterministic Turing
machines, which is actually the original definition and explains the terminology (NP
stands for nondeterministic polynomial time). A nondeterministic Turing machine
is defined exactly like a deterministic one except that it has two transition functions
rather than one. Consequently, rather than there being a single (determinstic)
sequence of steps during a computation upon a given input, there is an entire binary
tree of such computations, for at every step during a computation, one can apply
either of the two transition functions. One additional difference is that instead of a
single halting state qhalt, we now have two halting states called qaccept and qreject.
We say that the nondeterministic Turing machine M outputs 1 on input z if there is
some sequence of steps which causes the machine to reach qaccept. If every sequence
of steps causes the machine to reach qreject, then we say that M outputs 0. If every
sequence of computations results in either qaccept or qreject in time T p|z|q, then we
say that M runs in time T pnq. It thus makes sense to speak of polynomial time
(resp., exponential time) nondeterminstic Turing machines.

It can easily be verified that a language L belongs to NP if and only if there is
a polynomial time nondeterministic Turing machine M such that fM “ χL. More-
over, using exponential time nondeterministic Turing machines, we can also define
the complexity class NEXP. Of course, using nondeterministic Turing machines
that run in doubly exponential time, one can also define NEEXP (this will come
up later). A nondeterministic version of the time hierarchy theorem guarantees
NP � NEXP � NEEXP.

At this point, we have P Ď NP Ď EXP Ď NEXP with P � EXP and NP �

NEXP. One can also use a padding argument to show that if P “ NP, then
EXP “ NEXP.

So far we have only been concerned with time efficiency. One can instead con-
sider space efficiency. We will only consider the class PSPACE, which consists
of all languages L for which there is a Turing machine such that, upon input z,
it decides whether or not z P L using only a polynomial amount of work space.
It is clear that P Ď PSPACE. It is also fairly easy to see that NP Ď PSPACE,
for one can simply check all possible certificates, erasing one’s work after each
individual check, thus using only a polynomial amount of space. A slightly less
obvious inclusion is PSPACE Ď EXP; the proof uses the notion of a configura-
tion graph for a computation. So, to update our state of knowledge, we have
P Ď NP Ď PSPACE Ď EXP Ď NEXP. It is not known if either inclusion
NP Ď PSPACE or PSPACE Ď NEXP is proper (although one of them must be
as NP � NEXP); as with P Ď NP, it is believed that both of these inclusions are
proper.

We end this section with the definition of the class BPP. Although it will not
play a direct role in the story to follow, it will make a later pill easier to swallow. We
return to the setting of nondeterministic Turing machines, but this time we count
the proportion of computations that output Mpzq “ 1. We say that the language
L belongs to the class BPP if there is a nondeterministic Turing machine M such
that, upon z P t0, 1u˚, the probability that a random nondeterministic computation
agrees with χLpzq is at least 2

3 . Just as in the case of NP, there is a formulation
using deterministic Turing machines: L belongs to BPP if and only if there is a
Turing machine M and a polynomial ppnq such that, for every string z P t0, 1u˚,
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the probability that a random r P t0, 1upp|z|q is such that Mpz, rq “ χLpzq is at least
2
3 . We remark that the choice of 2

3 is fairly arbitrary; by repeating the computation
several (but still a reasonable number of) times and taking the majority result of
the computations, we can replace 2

3 with a probability as close to 1 as one desires.
The class BPP is contained in EXP as one can check all random bits and compute
the probability that a random choice yields 1 or 0.

If L is a language in BPP and one repeats the computation a sufficient number
of times to achieve a probability of, say, 0.99, then one can be fairly certain that
the result of the probabilistic computation is the truth, and thus BPP seems like
a fairly good substitute for P. In fact, there are complexity-theoretic reasons for
believing that BPP might coincide with P (see [3, Chapter 16]).

4.3. Interactive proofs. We now imagine the situation where rather than the
prover just handing the verifier a proof, the prover and the verifier are allowed to
interact. Given an input, the verifier can ask the prover a question, the prover can
answer that question, then (based on that answer) the verifier can ask the prover
another question to which the prover can reply, and so on, for a certain number
of rounds. Each time, the verifier’s question and the prover’s answer depend on
the entire sequence of questions and answers obtained up to that point (as well as
the input). After this discussion, the verifier can decide whether or not to accept.
Once again, the verifier uses a polynomial-time Turing machine to choose which
questions to ask and whether or not to accept at the end of the conversation while
the prover has no computational limitations.

It is not too difficult to verify that, with this description of interactive proof,
the corresponding complexity class would simply be NP in disguise. Indeed, one
can just use the conversation, or transcript as it is usually called, as the certificate.
However, combining this idea with a randomized process as discussed at the end of
the last subsection does lead to a class with more computational power (although,
interestingly enough, it is a class we have already seen before).

In order to define this class, we fix k P N (although one could actually work
with a polynomial-time computable k : N Ñ N instead) and a polynomial ppnq.
Assume that we also have a Turing machine V (now that we are really viewing
the machine as a verifier, we have replaced M with V) such that, for all z P

t0, 1u˚, all r P t0, 1upp|z|q, and all strings a1, . . . , a2k P t0, 1u˚, V halts upon input
pz, r, a1, . . . , a2iq in time polynomial in |z| for all i “ 0, . . . , k. We then imagine
a prover P : t0, 1u˚ Ñ t0, 1u˚ interacting with V as follows. First, the verifier
randomly selects r P t0, 1upp|z|q and computes a1 :“ Vpz, rq; this isV’s first question
to P . P then responds with the answer a2 :“ Ppz, a1q. (Note that P does not
have access to the random string r; one says that V is using private coins. It turns
out that for what we are going to define below, one can also use public coins that
the prover is aware of.) This constitutes the first round of their interaction. The
verifier then asks P their second question a3 :“ Vpz, r, a1, a2q and P responds with
a4 :“ P pz, a1, a2, a3q, completing the second round of interaction. This is repeated
for a total of k rounds. V then returns their decision Vpz, r, a1, . . . , a2kq P t0, 1u,
indicating whether or not they accept the prover’s answers as constituting evidence
that z indeed belongs to L.
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The complexity class IP is defined to be the collection of those languages L for
which there is a Turing machine V as above such that:

‚ If z P L, then there is a prover P such that the probability that a random
string r causes V to accept is at least 2

3 .

‚ If z R L, then no prover can cause V to accept more than 1
3 of the time.

The probabilities 2
3 and 1

3 above are called the completeness and soundness
parameters, respectively. As in the case of BPP, they are somewhat arbitrary;
any choice of completeness parameter strictly larger than one’s choice of soundness
parameter will define the same class. It turns out that one can even replace the
completeness parameter by 1 without changing the class; this property of IP is
called perfect completeness.

A nice example of a language in IP is the collection of pairs pG1, G2q of finite
graphs that are not isomorphic. Note that this class is not obviously in NP for
there are too many possible functions that could serve as an isomorphism. There
is however a simple interactive proof for this class. Indeed, the verifier randomly
selects i P t1, 2u and then randomly selects a permutation σ on the number of
vertices of Gi, obtaining a graph H isomorphic to Gi. The verifier then sends
the graph H to the prover as its question. The prover then responds with a bit
a P t1, 2u, which represents its guess as to which of the two graphs G1 or G2 the
verifier selected randomly. The verifier accepts if and only if the prover guessed
the chosen graph correctly. Note that if G1 � G2 (that is, if the pair pG1, G2q

belongs to the class), then the prover can always respond correctly, for the prover
can just figure out whether or not H is isomorphic to G1 or to G2. (Do not forget
that the prover is all-powerful!) However, if G1 – G2 (that is, pG1, G2q does not
belong to the class), then H is isomorphic to both G1 and G2, and thus the prover
(regardless of its unlimited power) can do no better than simply guessing which
graph was chosen by the verifier, thus only convincing the verifier at most half of
the time

Given a verifier V as in the definition of IP, one can compute in polyp|z|q-space
the optimal prover strategy. This shows that IP Ď PSPACE. A landmark theorem
in the subject shows that in fact we have equality:

Theorem 4.1 (Lund, Fortnow, Karloff, Nisan [23]; Shamir [55]). IP “ PSPACE.

Recall that randomization alone likely does not achieve anything new (earlier we
remarked that P “ BPP is likely), and, similarly, interaction alone does not achieve
anything too new (as we just recover NP). However, combining randomization with
interaction bumps us up to PSPACE (which is likely bigger than NP).

But why stop at one prover? One can consider interactions as above but allowing
for multiple provers to interact with the verifier. It should be emphasized that the
provers are not allowed to interact with each other during the interaction, but only
with the verifier. They can, however, have a meeting before the interaction starts
and decide upon a strategy that they will use while interacting with the verifier.
In other words, the provers are cooperating but noncommunicating. If the provers
use deterministic strategies as above, we arrive at the complexity class MIP. By
allowing different kinds of strategies (in particular, those that employ quantum
methods), we arrive at variations of MIP, such as the famous MIP˚ appearing in
the equation MIP˚

“ RE.
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It turns out that the complexity class MIP is unchanged if one restricts to just
two provers and one round of interaction. We thus make that default assumption
from now on. By ignoring one of the provers, we clearly have that IP Ď MIP. As
with IP, one can also achieve perfect completeness.

With two provers, one can now utilize “police-style” interrogation tactics. This
makes it possible for the verifier to read polynomially many random portions of
an exponentially long proof and come to a conclusion that with high probability
agrees with the truth. A formalization of this idea yields another major theorem
in the subject:

Theorem 4.2 (Babai, Fortnow, Lund [5]). MIP “ NEXP.

As mentioned before, it is believed that PSPACE � NEXP. If this inclusion is
indeed proper, then the jump from one to more than one prover does in fact lead
to a larger collection of languages.

4.4. Nonlocal games. It will be useful to recast our description of the class MIP
in terms of so-called nonlocal games, a certain collection of two-person games. (The
terminology “nonlocal” comes from the connection with Bell’s theorem on quantum
nonlocality, as we discuss later.)

Consider a language L in MIP as witnessed by the polynomial-time verifier V.
Given input z and a sequence of random bits r, by computing Vpz, rq, we are
really computing the two questions x and y (sequences of bits of length polynomial
in |z|) that are being sent to the two provers, whom we will call Alice and Bob,
following typical quantum information nomenclature. Alice and Bob, employing
their deterministic strategies A and B, then respond with their answers, say a :“
Apxq and b :“ Bpyq, and then the prover calculates Vpz, r, x, y, a, bq to decide
whether or not to accept their answers. Whether or not z belongs to L then
corresponds to the expected value over a randomly chosen r that the verifier returns
Vpz, r, x, y, a, bq “ 1. Note that the polynomial time requirement on V allows us to
assume that the set of possible answers only contains bits that are of size at most
some fixed polynomial in |z|.

This reformulation leads us to the following notion: A nonlocal game with k
questions and n answers is a pair G “ pπ,Dq, where π is a probability distribution
on rksˆrks andD : rksˆrksˆrnsˆrns Ñ t0, 1u is the decision predicate for the game.
Here, rks :“ t1, . . . , ku and similarly for rns. A strategy for the players consists of
a conditional probability ppa, b|x, yq expressing the probability that Alice and Bob
respond with answers a and b if they are asked questions x and y, respectively.

We view such a strategy p as an element of r0, 1sk
2n2

. Above, we only considered
deterministic strategies, namely those p for which there are functions A,B : rks Ñ

rns such that ppApxq, Bpyq|x, yq “ 1 for all x, y P rks. We let Cdetpk, nq Ď r0, 1sk
2n2

denote the set of such deterministic strategies. Later, we will consider several other
sets of strategies.

Given a strategy p, the value of the game G with respect to the strategy p is the
expected value the players will win G if they play according to p, that is,

valpG, pq :“
ÿ

px,yqPrksˆrks

πpx, yq

ÿ

pa,bqPrnsˆrns

Dpx, y, a, bqppa, b|x, yq.

We set valpGq :“ suppPCdetpk,nq valpG, pq and refer to this as the classical value of
the game G.
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We can now rephrase the definition of MIP in terms of nonlocal games: a lan-
guage L belongs to MIP if and only if there is an efficient mapping z ÞÑ Gz (in the
precise sense described earlier in this subsection) so that:

‚ If z P L, then valpGzq ě
2
3 .

‚ If z R L, then valpGzq ď
1
3 .

The class MIP˚ appearing in the result MIP˚
“ RE is defined in the analogous

way except that we replace classical strategies by quantum strategies. But first, an
interlude to explain all things quantum.

5. A quantum detour

In this section, we introduce the quantum prerequisites necessary to understand
the definition of the complexity class MIP˚. Our presentation of quantum mechan-
ics is fairly standard and can be found in any good textbook on quantum mechanics.
As mentioned above, we also found Paulsen’s lecture notes [50] very helpful as well.

5.1. Quantum measurements. In quantum mechanics, one associates to each
physical system a corresponding Hilbert space H. The state of the system at any
given time is given by a unit vector ξ P H. The state of the system evolves linearly
according to a certain partial differential equation (the Schrödinger equation) until
it is measured. A measurement should be thought of as an experiment on the
system which has a finite number, say n, possible outcomes. (There are also experi-
ments that can have a countably infinite set of outcomes, say the infinite discrete set
of energies of some particle, or even a continuum of outcomes, say when measuring
the position or momentum of a particle. For the purposes of this paper, it suffices
to focus on the case of finitely many outcomes.) Formally, a measurement with n
outcomes consists of n bounded operators M1, . . . , Mn P BpHq. The Born rule
states that, if the state of the system is ξ upon measurement, then the probability
that the ith outcome happens is given by }Miξ}2. Furthermore, in case the ith
outcome is measured, the collapse dynamics tells us that the state of the system
instantaneously (and discontinuously) changes to Mipξq{}Mipξq}. Since the sum of
the outcome probabilities must be 1, we see that

1 “

n
ÿ

i“1

}Miξ}
2

“

n
ÿ

i“1

xM˚
i Miξ, ξy.

Since this equality must hold true for all unit vectors ξ P H, it follows that
řn

i“1 M
˚
i Mi “ IH. Consequently, any sequence M1, . . . , Mn P BpHq satisfying

this latter property constitutes a measurement of the system.
If one is only interested in the probabilities of the outcomes rather than the

outcomes themselves (as we will be when we return to our discussion of nonlo-
cal games), then it simplifies matters by replacing a measurement as above by
a sequence P1, . . . , Pn consisting of positive operators which sum up to IH and
interpret the probability that the ith outcome is obtained when the system is in
state ξ to be given by xPiξ, ξy. Such a collection of positive operators is called
a positive operator-valued measure (POVM) on H (this terminology comes from
spectral theory). If one specializes even further to the case that each Pi is not only
a positive operator but in fact a projection, then one speaks of projection-valued
measures (PVMs) on H. Note then that the projections are automatically pairwise
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orthogonal, so a PVM on H with n outcomes corresponds to a decomposition of H
into n orthogonal subspaces.

Many introductions to quantum mechanics discuss the measurements of observ-
ables. An observable for the physical system is a self-adjoint operator O on H.
Supposing for simplicity that H is finite dimensional, the spectral theorem implies
that we can find a PVM P1, . . . , Pn on H such that the Pi’s correspond to the pro-
jections onto the various eigenspaces of H corresponding to O. The self-adjointness
assumption on O further implies that the corresponding eigenvalues are real num-
bers, whence we can interpret them as corresponding to actual possible physical
measurements. Conversely, given any PVM P1, . . . , Pn on H and real numbers λ1,
. . . , λn, one has an observable O :“

řn
i“1 λiPi.

A simple example of the content of the previous paragraph is given by the spin
of an electron. The spin of an electron along any choice of axis comes in one of
two flavors: up or down. (By the way, this is what is “quantum” about quantum
mechanics: many attributes of a physical system come in a discrete set of possibili-
ties.) For the sake of completeness, let us say that we are measuring spin along the
vertical axis. The state of the electron is given by a unit vector ψ in the Hilbert
space C2. We view the usual orthonormal basis te1, e2u for C2 as representing the
two possible spin values: so e1 corresponds to up while e2 corresponds to down.
Now a general unit vector ψ in C2 can be written in the form ψ “ α1e1 ` α2e2 for
unique complex numbers α1, α2 P C for which |α1|2 ` |α2|2 “ 1. What is strange
and new about quantum mechanics is that a given electron can be in a state that is
neither up nor down. More specifically, when neither α1 nor α2 are 0, the electron
is considered to be in a superposition of the two states and will only reveal one of
these two states upon a measurement of the spin, that is, using the PVM P1, P2 on
C2 consisting of the projections onto the coordinate axes. The state of the electron
merely gives us probabilistic information as to which of the two outcomes will hap-
pen upon such a measurement. Moreover, once the measurement has been made,
the new state of the electron instantaneously and discontinuously jumps to the unit
vector e1 or e2 corresponding to the outcome of the measurement just made. This
reflects the fact that if another measurement is made directly following the first
measurement, the same outcome will occur. It is important to make the distinc-
tion between superpositions and definite measurement outcome with probabilities
measuring ignorance of the actual value.

The above description of quantum mechanics is the standard or Copenhagen in-
terpretation, and it is a mighty big pill to swallow upon a first reading. (Technically
speaking, this is really the von Neumann–Dirac formulation of the theory; however,
it has become common parlance to refer to this interpretation as the Copenhagen in-
terpretation, even though Niels Bohr himself explicitly disagreed with this formula-
tion.) Perhaps the biggest point of contention are the questions, “What constitutes
a measurement?” together with the follow-up question “Why did the state of the
electron collapse to one of the two basis states?” This is the so-called measurement
problem and is a very popular topic of debate amongst philosophers and theoretical
physicists. It has lead to a plethora of alternate interpretations of quantum me-
chanics (often yielding mathematically equivalent predictions); a good introduction
to these foundational issues is Barrett’s recent book [6].
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To keep the strangeness coming, suppose that we want to measure spin in the
horizontal direction instead of the vertical direction. It turns out that the appropri-
ate basis to consider is now tv1, v2u, where v1 “

1?
2
e1`

1?
2
e2 and v2 “

1?
2
e1´

1?
2
e2.

In other words, the PVM Q1, Q2 consisting of the orthogonal projections onto the
lines spanned by v1 and v2, respectively, constitutes a measurement of the spin
of the electron in the horizontal direction. Suppose that an electron has a definite
spin, say up, in the vertical direction, whence its state is e1. In the eigenbasis for the
observable of spin in the horizontal direction, the state becomes e1 “

1?
2
v1 `

1?
2
v2.

Consequently, a measurement of an electron with an up spin in the vertical direc-
tion will yield a spin of either left or right in the horizontal direction with equal
probability. Even more strangely, suppose that the electron that had a definite
vertical spin that was up was then measured in the horizontal direction and the
outcome was spin left; that is, the measurement led to an outcome state of v1.
Suppose further that a subsequent measurement of the electron in the vertical di-
rection was performed. Since v1 “

1?
2
e1 `

1?
2
e2, we see that the outcome of the

measurement now yields up or down with equal probability. Thus, the measure-
ment in the horizontal direction destroyed the definite spin the electron had in the
vertical direction!

5.2. The spookiness of entanglement. The postulates of quantum mechanics
tell us that if HA and HB are the Hilbert spaces representing two physical systems,
then the appropriate Hilbert space for studying the composite system is the tensor
product space HA b HB. The fact that elements of the tensor product need not
be merely simple tensors leads to the fascinating concept of entanglement, which,
in some sense, is the essence of this entire story!

In order to get an idea of the utility of entanglement as a resource in, say,
quantum information theory, we present the example of superdense coding. We set
ψEPR :“ 1?

2
pe1 be1 `e2 be2q P C2 bC2 – C4. This quantum state is known as the

EPR state, named after Einstein, Podolsky, and Rosen. Shortly, we will have more
to say about this state and why Einstein, Podolsky, and Rosen were considering
it. Let us imagine that Alice and Bob each possess an electron and the joint state
of the vertical spins of the two electrons is ψEPR, that is, the electrons are in an
equal superposition of both spins being up or both spins being down. Furthermore,
imagine that Alice and Bob are really (really) far away from each other. We show
how Alice and Bob can utilize the fact that their electrons are in this entangled
state in order for Alice to send two classical bits of information to Bob by just
sending one qubit of information, that is, by Alice sending Bob her electron (after
she has first done some work on it).

Depending on what two bits of information Alice wishes to send to Bob, she
performs one of the following actions to her electron:

‚ ψ11 :“ pI b IqψEPR “
1?
2

pe1 b e1 ` e2 b e2q,

‚ ψ12 :“ pX b IqψEPR “
1?
2

pe2 b e1 ` e1 b e2q,

‚ ψ21 :“ pZ b IqψEPR “
1?
2

pe1 b e1 ´ e2 b e2q,

‚ ψ22 :“ pZX b IqψEPR “
1?
2

pe1 b e2 ´ e2 b e1q.

Here, X “

ˆ

0 1
1 0

˙

, the so-called bit-flip operator, and Z “

ˆ

1 0
0 ´1

˙

, the

so-called phase-flip operator.
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One can check that the four vectors ψ11, ψ12, ψ21, ψ22 form an orthonormal basis
for C2 b C2 – C4 known as the Bell basis. Consequently, any observable O on
C4 with distinct eigenvalues and with the Bell basis vectors as eigenvectors can be
used to distinguish these vectors, that is, when the state of the system is ψij , a
measurement of O will yield ψij with probability 1, whence Bob knows which of
the four actions above Alice took and thus knows which pair of bits she wished to
send to Bob. (One can be explicit about the observable O, namely O “ pHbIC2qC,
where H :“ 1?

2
pX ` Zq is the so-called Hadamard operator and C is the so-called

controlled not operator.)
Notice something peculiar about the EPR state? If the state of two electrons

is given by ψEPR, then they are in a superposition of either both electrons having
spin up or both electrons having spin down (with equal probability). However, if
Alice performs a measurement of the spin of her electron and sees a result of spin
up, she knows, with absolute certainty, that a subsequent measurement of the spin
of Bob’s electron will also be spin up. Thus, while Bob’s electron did not have
a determinate spin before Alice’s measurement, the result of Alice’s measurement
instantaneously gave a determinate value to the spin of Bob’s electron.

Einstein was worried by this phenomenon, which he called “spooky action at
a distance.” Together with Podolsky and Rosen [17], they used the EPR state
to present an argument for the incompleteness of quantum mechanics. The gist
of the argument is as follows: Suppose that Alice and Bob share a pair of elec-
trons in the EPR state ψEPR, and that Alice and Bob are again really (really)
far apart. Suppose that Alice measures her electron and sees the result spin up.
Then Alice knows with 100% certainty that if Bob were to measure his electron,
then it must also have a determinately up spin. The same holds for a measurement
result of spin down. Since Alice can predict with certainty the outcome of Bob’s
measurement, and since her measurement could not possibly have altered the spin
of Bob’s electron, Bob’s spin must have a definite value, independent of whether
or not Alice were to measure it. This definite value must represent some element
of physical reality and if quantum mechanics were to be complete, there must be
some counterpart of this physical reality in the theory. Since there is nothing in
the description of the EPR state which specifies a determinate value for Bob’s spin,
quantum mechanics must be incomplete.

It gets even worse, for if Alice were to decide to measure her spin along a dif-
ferent axis, say the horizontal axis, then once again the result of her measurement
would allow her to definitively conclude the value of Bob’s electron’s spin in the
horizontal axis. In this case, both the vertical and horizontal spins would have
definite, predetermined values, which is a contradiction of the fact that knowing,
say, the vertical spin of an electron forces us to be maximally uncertain about the
horizontal spin of the electron. So in some sense, the EPR argument even posits
that quantum mechanics is inconsistent!

The underlying philosophy that Einstein, Podolsky, and Rosen have in their
argument is usually dubbed local realism: the term “local” refers to the assumption
that Alice’s measurement could not have affected Bob’s electron since they are so
far away and communication cannot travel faster than the speed of light, while
the term “realism” refers to the statement that the fact that one can determine
the spin of Bob’s electron with certainty implies that there must be some real,
predetermined value to the spin. Einstein, Podolsky, and Rosen believed that there
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should be some hidden variable explaining this predetermined spin, allowing them
to preserve their classical, locally real intuitions.

John Bell [7] set up a thought experiment to determine whether there could in-
deed be a formulation of quantum mechanics that was complete and adhered to the
local realist philosophy. He showed that this is in fact impossible by showing that a
small set of local realist assumptions leads to an inequality on the expected outcome
of a certain experiment and that a particular quantum measurement could violate
that inequality. Moreover, it is actually experimentally testable whether or not
this inequality holds in nature. Spoiler alert: the inequality is violated by nature,
whence quantum mechanics comes out victorious! Thus, while seemingly strange,
quantum mechanics lies in contradistinction to the local realist assumptions.

Besides being an intellectually fascinating story, there turns out to be a direct link
between these Bell inequalities and the phenomena of having quantum strategies
for nonlocal games that exceed all possible classical values, which we now explain.
(The idea of treating the violation of Bell-type inequalities as quantum strategies
for nonlocal games that exceed the classical value of the game seems to have first
been seriously studied by Cleve, Hoyer, Toner, and Watrous [14]).

We have already discussed deterministic strategies for nonlocal games. One
may imagine incorporating a probabilistic component to these strategies by consi-
dering a probability space pΩ, μq and determinstic strategies Aω : rks Ñ rns and
Bω : rks Ñ rns, one for each ω P Ω. Consequently, the players can randomly
(according to pΩ, μq) select an ω and then play deterministically according to Aω

and Bω. In terms of the EPR experiment, one may think of ω as the hidden variable
for which we do not have perfect knowledge but that if we were to know it, then
things would behave deterministically. The probability space pΩ, μq represents our
epistemic (lack of) knowledge of the hidden variable. Consequently, we now have
probabilistic strategies

ppa, b|x, yq :“ μptω P Ω : Aωpxq “ a and Bωpyq “ buq,

which are called local strategies, the term “local” referring to the fact that each
player’s output still only depends on their local environment. The set of such
local strategies is denoted Clocpk, nq. It is straightforward to see that Clocpk, nq

is a compact, convex subset of r0, 1sk
2n2

whose extreme points are the elements
in Cdetpk, nq. Moreover, it is clear that every element of Clocpk, nq is a convex
combination of elements of Cdetpk, nq, whence valpGq “ suppPClocpk,nq valpG, pq for
any nonlocal game G with k questions and n answers.

On the other hand, we can consider quantum strategies for nonlocal games as
follows. We let Cqpk, nq consist of those strategies p for which

ppa, b|x, yq “ xpAx
a b By

b qψ, ψy,

where, for each x, y P rks, Ax “ pAx
aqaPrns and By “ pBy

b qbPrns are POVMs with n
outcomes on finite-dimensional Hilbert spaces HA and HB, respectively. We call
such a strategy p a quantum strategy. These stratgies correspond to Alice and Bob
sharing a (possibly entangled) state ψ of their composite system HA b HB and
performing measurements Ax and By on their portion of the state upon receiving
questions x and y, respectively. Using a technique known as Naimark dilation
(a special case of the Stinespring dilation theorem from above), one can replace
POVMs with the more convenient to use PVMs without altering the definition of
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Cqpk, nq. It is a straightforward argument to show that Cqpk, nq is a convex subset

of r0, 1sk
2n2

.
We have that Clocpk, nq Ď Cqpk, nq. Indeed, since every element of Clocpk, nq is

a convex combination of deterministic strategies and Cqpk, nq is convex, it suffices
to show that every determinstic strategy p is contained in Cqpk, nq. However, this
is quite easy: if A : rks Ñ rns is the function determining Alice’s strategy, let Ax be
the POVM on C for which Ax

Apxq
“ I and Ax

a “ 0 for all a ­“ Apxq. Bob’s POVM

Bb
y is defined in the analogous way. It follows that, for any state ξ P CbC, we have

that ppa, b|x, yq “ xpAx
a b By

b qξ, ξy.
Given a nonlocal game G, we define its entangled value to be

val˚pGq :“ sup
pPCqpk,nq

valpG, pq.

By the previous paragraph, we have that valpGq ď val˚pGq for any nonlocal game
G. The idea behind Bell’s theorem, recast in the setting of nonlocal games, is that
there are nonlocal games G for which valpGq ă val˚pGq.

For example, we consider the following game, known as the CHSH game. (The
acronym CHSH stands for Clauser, Horne, Shimony, and Holt, the researchers
responsible for the CHSH inequality, a Bell-type inequality that was one of the first
to be experimentally testable.) The CHSH game GCHSH is a game with k “ n “ 2.
The question distribution is the uniform distribution on r2s ˆ r2s and with decision
predicate D given by the following conditions.

‚ If x “ 1 or y “ 1, then Alice and Bob win if and only if their answers agree.
‚ If x “ y “ 2, then Alice and Bob win if and only if their answers disagree.

By inspecting all determinstic strategies, one finds that valpGCHSHq “
3
4 . How-

ever, the entangled value of the game satisfies val˚pGCHSHq “ cos2p
π
8 q « 0.85 ą

valpGCHSHq. The interested reader can find the details for this calculation in
[14, Section 3.1]. We merely point out that a quantum strategy for achieving
val˚pGq uses the EPR state ψEPR.

5.3. MIP*. Based on the nonlocal game definition of the complexity class MIP
and our recent discussion of quantum strategies for nonlocal games, it should be
clear how to define the complexity class MIP˚: the language L belongs to MIP˚

if there is an efficient mapping (in the precise sense from Subsection 4.4) z ÞÑ Gz

from strings to nonlocal games such that:

‚ If z P L, then val˚pGzq ě
2
3 .

‚ If z R L, then val˚pGzq ď
1
3 .

We remark that the definition of MIP˚ first appeared in the aforementioned
paper [14].

To be fair, we are really defining the complexity class MIP˚
p2, 1q, which only has

two provers and one round of interactions. There are ways to define similar classes
that allow more verifiers and rounds, but the eventual result MIP˚

“ RE will show
they yield the same class anyways, so we will not bother.

So how do the classes MIP and MIP˚ relate? The lesson from the previous
section was that provers that share entanglement can win some nonlocal games
more often than they rightfully should. In other words, it seems that it might be
the case that for a language L that belongs to MIP and for a string z that does
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not belong to L, the provers might have a strategy for the corresponding game Gz

whose value exceeds 1
3 .

Nevertheless (and perhaps somewhat surprisingly), Ito and Vidick [38] showed
that MIP Ď MIP˚. The rough idea behind this inclusion is that it suffices to show
that NEXP Ď MIP˚, and the games involved in the proof that MIP “ NEXP are
such that their classical and quantum values are approximately the same.

Later, Natarajan and Wright [46] showed that NEEXP Ď MIP˚. Recalling
that MIP “ NEXP � NEEXP, this shows that MIP � MIP˚, whence adding
entanglement does indeed strictly increase the computational power of the verifier.

So exactly how much extra power does entanglement give us? Besides the result
mentioned in the last paragraph, there was only an a priori seemingly silly upper
bound on MIP˚, namely MIP˚

Ď RE, where RE (which is short for recursively
enumerable) is the complexity class which consists of those languages L for which
there is a Turing machine M (with absolutely no efficiency requirements whatso-
ever) whose domain is L; that is, L consists of the set of inputs for which M halts.
An alternative formulation of RE is helpful: L belongs to RE if there is a total com-
putable function whose range is L (this is why modern computability theorists refer
to this as being computably enumerable or CE ). To see the inclusion MIP˚

Ď RE,
note first that, given any dimension d, one can effectively enumerate a countable set
of quantum strategies of dimension d that is dense in the set of such strategies and
for which one can effectively compute valpG, pq for any such quantum strategy p.
By letting d tend to 8, if one ever finds such a strategy p for which valpGz, pq ą

1
3 ,

one knows that z P L (and one is guaranteed that this will happen for some such
p if z P L). Note that if z R L, this procedure will never convince us that z R L
because maybe we did not wait long enough, and a higher-dimensional strategy
would indeed have convinced us if we were just a bit more patient.

The amazing fact proven in [39] is that this upper bound is actually tight! That
is, MIP˚

“ RE holds! More specifically, the authors prove that there is an effective
mapping M ÞÑ GM from (codes for) Turing machines to nonlocal games such that:

‚ If M halts on the empty tape, then val˚pGMq “ 1.
‚ If M does not halt on the empty tape, then val˚pGMq ď

1
2 .

The language consisting of codes for Turing machines that halt on the empty
tape is known as the halting problem HALT. Since the halting problem is complete
for the class RE, the inclusion RE Ď MIP˚ holds.

Regardless of your interest in CEP, the equality MIP˚
“ RE is an amazing

fact. The halting problem is an undecidable problem (this follows from a simple
diagonalization argument together with the fact that there is a so-called universal
Turing machine). Nevertheless, if two cooperating but noncommunicating provers
share some quantum entanglement, they can reliably convince a verifier whether or
not a given Turing machine halts! This is a landmark intellectual achievement.

The proof of MIP˚
“ RE is very complicated, and we will not discuss it here.

The introduction to [39] does a great job outlining the essence of the proof.
The story of MIP˚ is about allowing quantum resources but keeping the com-

putational model classical. Further, it is interesting to ask what happens if we
also replace the computational model we are using (i.e., the Turing machine) with
a quantum computational model (e.g., quantum circuits). It turns out that there
is nothing to be gained here: by prefixing the corresponding classical complexity
class with a “Q” to denote its counterpart defined using a quantum computational
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model, we have QIP “ IP, QMIP “ MIP, and QMIP˚
“ MIP˚

“ RE; see [62] for
the details.

6. From MIP˚
“ RE to the failure of CEP:

the traditional route

The derivation of the negative solution to the CEP from MIP˚
“ RE now pro-

ceeds in two steps: We first show how MIP˚
“ RE leads to a negative solution to

Tsirelson’s problem in quantum information theory; we show this in the first subsec-
tion. In the second subsection, we then show how a negative solution to Tsirelson’s
problem naturally leads to a negative solution to Kirchberg’s QWEP problem. As
we already observed in Subsection 3.10, this leads to a negative solution to the
CEP.

6.1. A negative solution to Tsirelson’s problem. In order to explain Tsirel-
son’s problem, we need to introduce some more collections of strategies. First,
we define Cqspk, nq exactly as in the definition of Cqpk, nq, except that we remove
the finite-dimensionality assumptions on Alice’s and Bob’s state spaces HA and
HB; a strategy in this larger class is called a quantum spatial strategy. Quantum
spatial strategies still correspond to the idea that Alice and Bob each have their
own physical system and the state of their composite system is given by the tensor
product. It can be checked that there is no loss of generality in restricting our
attention to separable Hilbert spaces in the definition of Cqspk, nq. Moreover, by
considering projections onto larger and larger finite-dimensional subspaces, we see
that Cqspk, nq Ď Cqpk, nq, the closure of Cqpk, nq in the usual topology it inherits

from being a subset of r0, 1sk
2n2

. Like Cqpk, nq, one can check that Cqspk, nq is
convex.

There is another model that is natural to consider which arises in quantum field
theory. In quantum field theory, one usually considers a large quantum system
(maybe the system describing the whole universe!) and then it may be difficult to
separate Alice and Bob’s systems as isolated subsystems of the larger system. The
state of the large system is now given by some unit vector ξ in a single Hilbert
space H, and Alice’s and Bob’s measurements are now given by families of POVMs
pAxqxPrks and pByqyPrks acting on this single Hilbert space H. Since we are still
assuming that Alice and Bob are far away and so they cannot interact with each
other, it is natural to assume that either of them can measure first without af-
fecting the value of the other’s measurements (or even that they can perform their
measurements simultaneously). According to von Neumann, the mathematical way
of modeling this situation is to assume that Alice’s and Bob’s measurements com-
mute with one another, that is, Ax

aB
y
b “ By

bA
x
a for all x, y P rks and all a, b P rns.

The corresponding strategy is given by ppa, b|x, yq “ xAx
aB

y
b ξ, ξy and is called a

quantum commuting strategy. (Commutativity ensures that this a priori complex
value lies in r0, 1s.) The set of quantum commuting strategies is denoted Cqcpk, nq.
Note that there is no requirement that H be finite dimensional (although one can
take it to be separable) and, in fact, requiring H to be finite dimensional yields
another description of the set Cqpk, nq (see [16]). Later, we will see that Cqcpk, nq

is a closed convex subset of r0, 1sk
2n2

and that, like Cqpk, nq, one can use PVMs
instead of POVMs without changing the definition.



542 ISAAC GOLDBRING

It is clear that Cqspk, nq Ď Cqcpk, nq. In [59], Boris Tsirelson claimed (without
proof) that equality holds for all pk, nq. After he was questioned about this, he
realized that he could not prove this claim. In fact, upon further reflection, he
could not even establish whether or not Cqspk, nq was closed nor whether or not

Cqapk, nq :“ Cqspk, nq “ Cqpk, nq coincided with Cqcpk, nq (see his note [60]). The
question of whether or not Cqapk, nq “ Cqcpk, nq for all pk, nq is known as Tsirelson’s
problem. (Incidentally, in [56] Slofstra showed that Tsirelson’s original claim was
false, that is, there is a pair pk, nq such that Cqspk, nq ­“ Cqcpk, nq, and he even
strengthened this result to show that Cqspk, nq need not be closed, that is, there is
pk, nq for which Cqspk, nq � Cqapk, nq.)

Fix a nonlocal game G with k questions and n answers. It is clear that

sup
pPCqapk,nq

valpG, pq “ sup
pPCqspk,nq

valpG, pq “ val˚pGq.

However, we can also use elements of Cqcpk, nq to define values of games; namely, we
define the commuting value of G to be valcopGq :“ suppPCqcpk,nq valpG, pq. It is clear

that val˚pGq ď valcopGq and that equality holds for all nonlocal games if Tsirelson’s
problem has an affirmative answer. In fact, it can be shown that an affirmative
answer to Tsirelson’s problem is equivalent to the statement val˚pGq “ valcopGq

for all nonlocal games G.
Recall that in our discussion of the inclusion MIP˚

Ď RE, we discussed how
val˚pGq can be effectively approximated from below. On the other hand, it turns
out that valcopGq can be effectively approximated from above. This result follows
from two facts:

‚ There is a finitely presented group GG (which in fact only depends on the
number of questions and answers in G) and an element ηG P C˚pGGq such
that valcopGq “ }ηG} (see Corollary 6.3).

‚ For any finitely presented group G, one can always find effective upper
bounds on the operator norm of C˚pGq (a result due to Fritz, Netzer, and
Thom [25, Corollary 2.2]).

In Subsection 7.8, we offer a simple model-theoretic proof of the fact that valcopGq

can be approximated from above, although, to be fair, we really establish a slightly
different version of this fact sufficient to derive the failure of Tsirelson’s problem
from MIP˚

“ RE. In any event, if val˚pGq “ valcopGq, that is, if Tsirelson’s
problem has an affirmative answer, then we can effectively approximate val˚pGq “

valcopGq both from below and above, which would then imply that all languages in
MIP˚ are decidable, contradicting MIP˚

“ RE!
By the way, the argument in the preceding paragraph shows that MIPco

Ď coRE,
where MIPco is defined exactly like MIP˚ but using the commuting value valco of
games instead of the entangled value val˚, and coRE denotes the class of languages
whose complement lies in RE. It is currently unknown if this upper bound is sharp.

6.2. A negative solution to Kirchberg’s QWEP problem. In this subsection,
we show how a negative solution to Tsirelson’s problem yields a negative solution
to Kirchberg’s QWEP problem. We follow Fritz’s presentation [24] closely.

We begin by considering the abelian C˚-algebra Cn. For each a “ 1, . . . , n,
we let ea denote the ath standard basis element of Cn. (We are using a as the
index since we are using the notation from nonlocal games.) For any k ě 1, we also
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consider the k-fold free product ˚k
x“1C

n and denote by exa the version of ea in the
xth copy of Cn.

Proposition 6.1.

(1) There is a 1-1 correspondence between n-outcome POVMs tA1, . . . , Anu in
BpHq and ucp maps Φ : Cn Ñ BpHq given by Φpeaq :“ Aa.

(2) There is a 1-1 correspondence between k-tuples tAx
1 , . . . , A

x
nukx“1 of n-out-

come POVMs in BpHq and ucp maps Φ : ˚k
x“1C

n Ñ BpHq given by
Φpexaq :“ Ax

a.

Proof. The proof of (1) is easy to check, using that a positive map with com-
mutative domain is automatically completely positive. Part (2) follows from (1)
and a theorem of Florin Boca [11], which implies that the individual ucp maps
Φx : Cn Ñ BpHq given by Φxpexaq :“ Ax

a can be jointly extended to a single ucp
map Φ : ˚k

x“1C
n Ñ BpHq. �

We now bring group C˚-algebras into the picture, getting us closer to the QWEP
problem. We first note that Cn – C˚pZnq, where Zn denotes the additive group
of integers modulo n. Indeed, let u be a generator of Zn and consider the element
z :“

řn
a“1 expp

2πia
n qea P Cn. It is readily verified that z is an element of UpCnq of

order n, whence the assignment u ÞÑ z yields a unitary representation Zn Ñ UpCnq,
extending to a ˚-homomorphism C˚pZnq Ñ Cn that can be checked to be an
isomorphism. (This identification usually goes under the name discrete Fourier
transform.)

Let Fpk, nq :“ ˚k
x“1Zn denote the group freely generated by k elements of order

n. We then have

C˚
pFpk, nqq “ C˚

p˚
k
x“1Znq – ˚

k
x“1C

˚
pZnq – ˚

k
x“1C

n.

We abuse notation slightly and let exa denote the element of C˚pFpk, nqq corre-
sponding to exa P ˚k

x“1C
n. (Another viewpoint is that pexaqna“1 denote the spectral

projections corresponding to the xth unitary element of C˚pFpk, nqq.)
Here is the main result connecting the QWEP problem and Tsirelson’s problem:

Theorem 6.2. Fix k, n ě 2 and a strategy p P r0, 1sk
2n2

. We then have:

(1) p P Cqapk, nq if and only if there is a state φ on C˚pFpn, kqqbminC
˚pFpn, kqq

for which ppa, b|x, yq “ φpexa b eyb q.
(2) p P Cqcpk, nq if and only if there is a state φ on C˚pFpn, kqqbmaxC

˚pFpn, kqq

for which ppa, b|x, yq “ φpexa b eyb q.

Proof. For the forward direction of (1), we may assume, without loss of gener-
ality, that p P Cqspk, nq, say ppa, b|x, yq “ xpAx

a b By
b qξ, ξy, where the POVMs

Ax and By act on the Hilbert spaces HA and HB, respectively. By Proposi-
tion 6.1 and the above identification C˚pFpk, nqq – ˚k

x“1C
n, we have ucp maps

ΦA : C˚pFpk, nqq Ñ BpHAq and ΦB : C˚pFpk, nqq Ñ BpHBq corresponding to
these POVMs. These two ucp maps combine to yield a ucp map Φ “ ΦA b ΦB :
C˚pFpk, nqq bminC

˚pFpk, nqq Ñ BpHA bHBq. Consequently, we can define a state
φ on C˚pFpk, nqqbminC

˚pFpk, nqq by setting φpwbzq :“ xpΦpwbzqξ, ξy. It is clear
that this state φ implements p as in the statement of (1).

Conversely, suppose that φ is a state on C˚pFpn, kqq bmin C˚pFpn, kqq for
which ppa, b|x, yq “ φpexa b eyb q. Concretely represent C˚pFpk, nqq Ď BpHq so that
C˚pFpk, nqqbminC

˚pFpk, nqq Ď BpHbHq. Extend φ to a state on BpHbHq, which
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we will continue to denote φ. Since convex combination of vector states are dense
in the state space of BpHbHq, given ε ą 0 there are vectors ξ1, . . . , ξn P HbH for
which |φpexa b eyb q ´

řn
i“1xpexa b eyb qξi, ξiy| ă ε for all x, y P rks and a, b P rns. This

shows that p can be approximated by convex combinations of elements of Cqspk, nq.
Since Cqapk, nq is closed and convex, we have that p P Cqapk, nq.

The proof of the forward direction of (2) is identical to the proof of the for-
ward direction of (1), using the fact that one can combine ucp maps with com-
muting ranges into a ucp map on the maximal tensor product. For the converse,
suppose that φ is a state on C˚pFpn, kqq bmax C

˚pFpn, kqq for which ppa, b|x, yq “

φpexa b eyb q. Let πφ : C˚pFpn, kqq bmax C
˚pFpn, kqq Ñ BpHq be the GNS represen-

tation corresponding to the state φ with cyclic vector ξ. Set Ax
a :“ πφpexa b Iq and

By
b :“ πφpI b eyb q. It is clear that Ax

a and By
b commute for all x, y, a, b and that

ppa, b|x, yq “ xAx
aB

y
b ξ, ξy, whence p P Cqcpk, nq. �

We note that the proof above fulfills a few promises made earlier, namely that
elements of Cqcpk, nq can always be taken to arise from PVMs (instead of just
POVMs) and that Cqcpk, nq is closed and convex (being the continuous image of
the compact convex set of states on C˚pFpk, nqq bmax C

˚pFpk, nqq.
Given a nonlocal game G “ pπ,Dq with k questions and n answers, set

ηG :“
ÿ

x,yPrks

πpx, yq
ÿ

a,bPrns

Dpx, y, a, bqpexa b eyb q P C˚
pFpk, nqq d C˚

pFpk, nqq.

Corollary 6.3. For any nonlocal game G, we have val˚pGq “ }ηG}min and
valcopGq “ }ηG}max.

We remind the reader that Corollary 6.3 is responsible for the negative solution to
Tsirelson’s problem from MIP˚

“ RE. Indeed, }ηG}max corresponds to the operator
norm of ηG when viewed as an element of C˚pFpk, nq ˆ Fpk, nqq; by [25, Corollary
2.2], one can effectively compute upper bounds of the operator norm of elements
of C˚pFpk, nq ˆ Fpk, nqq, whence one can effectively compute upper bounds for
valcopGq.

Corollary 6.4. For any k, n ě 2, if pC˚pFpk, nqq, C˚pFpk, nqq is a nuclear pair,
then Tsirelson’s problem has a positive solution for scenarios of dimension pk, nq;
that is, val˚pGq “ valcopGq for all nonlocal games G with k questions and n answers.

The quotient map Z Ñ Zn yields a quotient map Fk Ñ Fpk, nq, leading to a
surjective ˚-homomorphism C˚pFkq Ñ C˚pFpk, nqq. One can show that this map
has a ucp lift C˚pFpk, nqq Ñ C˚pFkq (see, for example, [24, Lemma D.3]), whence
pC˚pFpk, nqq, C˚pFpk, nqqq is a nuclear pair if pC˚pFkq, C˚pFkqq is a nuclear pair.
(It can be shown that Fpk, nq contains a copy of F2 if pk, nq ­“ p2, 2q, whence the
converse to the previous sentence also holds in this case.) Consequently, we have
the following.

Corollary 6.5. If Kirchberg’s QWEP problem has a positive answer, then Tsirel-
son’s problem has a positive answer.

In the last subsection, we saw that MIP˚
“ RE implies that Tsirelson’s problem

has a negative solution. Combined with Corollary 6.5, we now have that the QWEP
problem has a negative solution, and thus, coupled with the discussion in Subsection
3.10, we finally have the desired negative solution to the CEP!
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7. From MIP˚
“ RE to the failure of CEP:

a model-theoretic shortcut

In this section, we show how ideas from logic yield (in this author’s opinion) a
more elementary derivation of a negative solution of CEP from MIP˚

“ RE. Much
of the material presented in this section represents joint work of the author and
Bradd Hart [31] and [32].

7.1. A continuous logic for studying tracial von Neumann algebras. The
negative solution to CEP from MIP˚

“ RE presented in this section uses techniques
from logic. Consequently, we need to describe an appropriate first-order language in
a certain continuous logic for studying tracial von Neumann algebras. (We apologize
for the double use of the word “language” in this paper. The complexity-theoretic
languages have been denoted using bold letters L; we will use Roman letters L for
languages in the sense of logic.)

For a von Neumann algebra M, we let M1 denote the operator norm unit ball.
Recall that by a ˚-polynomial ppx1, . . . , xnq in the indeterminates x1, . . . , xn we
mean an expression built from the indeterminates using the ˚-algebra operations.
Let F denote the set of all ˚-polynomials ppx1, . . . , xnq (n ě 0) such that, for
any von Neumann algebra M, we have ppMn

1 q Ď M1. For example, the following
functions belong to F:

‚ the constant symbols 0 and 1 (thought of as 0-ary functions),
‚ x ÞÑ x˚,
‚ x ÞÑ λx (|λ| ď 1),
‚ px, yq ÞÑ xy,
‚ px, yq ÞÑ

x`y
2 .

We then work in the formal language LvNa :“ FYttrR, tr�, du, where tr� (resp.,
tr�) denotes the real (resp., imaginary) parts of the trace and d denotes the metric
on the operator norm unit ball given by dpx, yq :“ }x´y}τ . We can then formulate
certain properties of tracial von Neumann algebras using the language LvNa as
follows.

Basic LvNa-formulae will be formulae of the form tr�ppp�xqq or tr�ppp�xqq for
p P F. Quantifier-free LvNa-formulae are formulae of the form fpϕ1, . . . , ϕmq,
where f : Rm Ñ R is a continuous function and ϕ1, . . . , ϕm are basic LvNa-
formulae. Finally, an arbitrary LvNa-formula is of the form

Q1
xi1

¨ ¨ ¨ Qk
xik

ϕpx1, . . . , xnq,

where each ij P t1, . . . , nu, ϕpx1, . . . , xnq is a quantifier-free LvNa-formula, and each
Qi is either sup or inf. We think of these Qi’s as quantifiers over the unit ball of
the algebra.

For those keeping score at home, our setup here is a bit more specialized than the
general treatment of continuous logic in [8] (or even the version [20] presented for
operator algebraists), but a dense set of the formulae in [8] are logically equivalent
to formulae in the above form, so there is no loss of generality in our treatment
here.

Also, in order to keep the set of formulae separable and computable, when form-
ing the set of quantifier-free formulae, we really should restrict ourselves to a com-
putable dense subset of the set of all continuous functions Rm Ñ R as m ranges
over N. (See [31, Section 2].)
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Suppose that ϕp�xq is a formula, M is a tracial von Neumann algebra, and �a P Mn
1 ,

where n is the length of the tuple �x. We let ϕp�aqM denote the real number obtained
by replacing the variables �x with the tuple �a; we may think of ϕp�aqM as the truth
value of ϕp�xq in M when �x is replaced by �a. For example, if ϕpx1q is the formula
supx2

dpx1x2, x2x1q, then ϕpaqM “ 0 if and only if a is in the center of M.
If ϕ has no free variables (that is, all variables occurring in ϕ are bounded by

some quantifier), then we say that ϕ is a sentence, and we observe that ϕM is a
real number. Given a tracial von Neumann algebra, the theory of M is the function
ThpMq which maps the sentence ϕ to the real number ϕM. Sometimes authors
define ThpMq to consist of the set of sentences ϕ for which ϕM “ 0; since ThpMq,
as we have defined it, is determined by its zeroset, these two formulations are
equivalent.

If ϕp�xq is a formula, then there is a bounded interval rmϕ,Mϕs Ď R called the
range of ϕ such that, for any tracial von Neumann algebra M and any �a P M1, we
have ϕp�aqM P rmϕ,Mϕs.

At this point we need to mention an important if not seemingly pedantic point
(to a nonlogician). We have been focusing our attention on those structures in the
language LvNa that actually correspond to (unit balls of) tracial von Neumann
algebras. This is a perfectly legitimate thing to do because the class of tracial von
Neumann algebras form an elementary class. Perhaps a simpler example from clas-
sical logic will help illustrate the point. Let Lgrp “ t¨, eu consist of a single binary
function symbol ¨ and constant symbol e. Of course, the intended Lgrp-structures
are the ones that interpret these symbols as the multiplication and identity of a
group. However, there are perfectly reasonable, if not silly, Lgrp-structures, such
as, for example, one that interprets ¨ as a constant function. The key point is that
we can write down a collection of axioms, that is, a set of Lgrp-sentences Tgrp, that
single out the class of groups in the sense that an Lgrp-structure G is a group if and
only if every sentence in Tgrp is true in G. This is the definition of what it means
for the class of groups to be an elementary class in the language Lgrp.

A similar situation is true in our context, namely, there is a collection TvNa of
LvNa-sentences such that an LvNa-structure is the unit ball of a von Neumann
algebra if and only if each sentence in TvNa evaluates to 0 in the structure. In
fact, one can add to these axioms a couple of extra sentences in order to obtain the
theory TII1 whose models are all (unit balls of) II1 factors.

7.2. The model-theoretic reformulation of CEP. An LvNa-sentence σ of the
form

sup
x1

¨ ¨ ¨ sup
xn

ϕpx1, . . . , xnq

is called universal if ϕ is quantifier-free and the range of ϕ is nonnegative and
similarly existential if all the quantifiers are inf. This terminology is justified if one
thinks of the value 0 as true for then σM “ 0 if and only if ϕpa1, . . . , anq “ 0 for
all a1, . . . , an P M1. If we restrict the function ThpMq to the set of all universal
(resp., existential) sentences, the resulting function is defined to be the universal
(resp., existential) theory of M, denoted Th@pMq (resp., ThDpMq).

It is fairly easy to see that Th@pMq “ Th@pMUq for any tracial von Neumann
algebra M and any ultrafilter U. (The �Los theorem [20, Proposition 4.3] shows that
ThpMq “ ThpMUq, but we will not need this more general fact.) Consequently, if
N embeds into MU, then we have that Th@pNq ď Th@pMq (as a function). It turns
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out that the converse is also true. To see this, assume that Th@pNq ď Th@pMq.
To show that N embeds into an ultrapower of M, it suffices (by standard ultra-
power arguments) to show, given any finitely many a1, . . . , an P N1, any atomic
formula ϕpx1, . . . , xnq, and any ε ą 0, that there are b1, . . . , bn P M1 such that

|ϕp�aqN ´ ϕp�bqM| ă ε. Set r :“ ϕp�aqN and σ :“ inf
x |r ´ ϕp�xq|. It is clear that
σN “ 0. The assumption that Th@pNq ď Th@pMq implies that ThDpMq ď ThDpNq,

whence σM “ 0, which easily implies the existence of the desired tuple �b P M1.
(None of this is particular to the case of tracial von Neumann algebras and holds
for any pair of structures in the same language.)

We can thus reformulate the CEP as follows. For every tracial von Neumann
algebra M, we have that Th@pMq ď Th@pRq. Recalling that R embeds into every
II1 factor, we can further reformulate the CEP—there is a unique universal theory
of II1 factors, namely Th@pRq.

7.3. The completeness theorem for (continuous) first-order logic. Before
discussing the completeness theorem for II1 factors in the context of continuous
logic, we consider the simpler example of groups in classical logic.

Consider the following theorem in group theory: every group has a unique iden-
tity element. This theorem can be written as an Lgrp-sentence σe defined by
@xp@ypx ¨ y “ y ¨ x “ xq Ñ x “ eq. What exactly does it mean for σe to be a
theorem of group theory?

Syntactically, what this means is that in some formal proof system for first-order
logic, there is a formal proof of σe from Tgrp, denoted Tgrp $ σe. This formal proof
is simply a finite list of sentences, each of which is either an element of Tgrp or can
be obtained from earlier elements of the list using the rules of the proof system,
with σe being the last element of the list.

Semantically, we might say that in every model of Tgrp, that is, in every group,
the sentence σe is true. We denote this relationship by Tgrp |ù σe.

For any reasonable proof system, it is fairly easy to prove that $ implies |ù; this
is called the soundness theorem for first order logic. A much less obvious result is
that the converse also holds, namely that any time Tgrp |ù σ, then in fact Tgrp $ σ.
(There is obviously nothing special here about Tgrp and this works for any classical
first-order theory.) This is called the completeness theorem for first-order logic and
is due to Einstein’s pal Kurt Gödel. (See [18, Section 2.5] for a nice treatment.)

The relevance of the completeness theorem is that if we use some effective coding
of the symbols of Lgrp and the logical symbols, then we can start a computer
program running all proofs from Tgrp and outputting all theorems of Tgrp. In other
words, the language (in the sense of complexity theory) consisting of codes for
theorems of group theory belongs to RE. Note that all that was used about Tgrp is
that the set of codes for axioms in Tgrp itself belongs to RE.

There are corresponding soundness and completeness theorems for continuous
logic due to Ben Yaacov and Pedersen [10]. Due to the approximate nature of con-
tinuous logic, the completeness theorem takes a slightly different form. Restricted
to our case of interest, namely TII1 , it reads: for every LvNa-sentence σ, we have

suptσM : M a II1 factoru “ inftr P Qą0 : TII1 $ σ ´ ru.

Here, ´ is the function given by r´s :“ maxpr´s, 0q. Consequently, the complete-
ness theorem tells us that the largest truth value that σ could take in a II1 factor
is the smallest upper bound for σ that you could prove from the axioms TII1 .
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The proof system for continuous logic is still of the form that you can effectively
enumerate theorems from an effectively enumerated set of axioms. In particular,
since the set of axioms for TII1 (given in [20]) is easily checked to be effectively
enumerated, we see that the set of theorems of TII1 belongs to RE.

7.4. CEP and the computability of the universal theory of R. Given a
tracial von Neumann algebraM, we say that the universal theory ofM is computable
if there is an algorithm such that, upon input an LvNa-sentence σ and a rational
ε ą 0, returns a, b P Qą0 with a ă b and b ´ a ă ε and for which σM P pa, bq.

The ideas in Subsection 7.3 allow us to prove the following.

Theorem 7.1 (Goldbring and Hart [31]). If CEP has a positive answer, then the
universal theory of R is computable.

Proof. If CEP holds, then, recalling that R embeds into any II1 factor, we have,
for any universal sentence σ, that suptσM : M a II1 factoru “ σR. Consequently,
if we start enumerating all proofs from TII1 and record all instances of theorems
of the form σ ´ r, then we know that σR ď r and this allows us to effectively
enumerate better and better upper bounds for σR.

On the other hand, we can also effectively enumerate better lower bounds for σR.
There are two ways that one can go about this. One way is to write σ “ supx ϕpxq,
where ϕpxq “ fpτ pp1pxqq, . . . , τ ppnpxqqq, and each pi is a ˚-polynomial and f is
a computable continuous function, that is, generated from a computable set of
connectives. One can then approximately calculate ϕ on matrices of larger di-
mensions with rational coordinates. (Technically, x is restricted to range over
matrices of operator norm at most one, but one can efficiently verify this too.)
Another option is to consider the existential sentence σ0 :“ Mσ ´ σ, where Mσ

is an upper bound for σ (uniform over all II1 factors) that is effectively compu-
table from σ itself. Since R embeds in every II1 factor, we once again have
suptσM

0 : M a II1 factoru “ σR
0 (this does not use CEP), and thus we can enu-

merate all proofs from TII1 and every time we see that σ0 ´ r, we know that
σR ě Mσ ´ r.

We run both the upper and lower bound algorithms simultaneously and wait
until they output numbers within ε of each other. �

7.5. Synchronous strategies, definable sets, and finishing the proof. Based
on Theorem 7.1, in order to refute CEP, it suffices to prove Theorem 7.2:

Theorem 7.2 (Goldbring and Hart [32]). The universal theory of R is not com-
putable.

We will use MIP˚
“ RE to prove this result. But how? Given a nonlocal

game G, the definition of val˚pGq resembles a universal sentence in the language
LvNa except that it is not a priori clear how to view the set of correlations Cqa as
something that we can quantify over a II1 factor.

Thankfully, a specific subset of Cqa can be characterized by a formula that our
logic can handle. A strategy p is called synchronous if ppa, b|x, xq “ 0 for all
x P rks and distinct a, b P rns. That is, p is synchronous if, whenever both players
are asked the same question, they always answer with the same answer. We let
Cs

qapk, nq (resp., Cs
qcpk, nq) denote the synchronous elements of Cqapk, nq (resp.,

Cqcpk, nq). Given a nonlocal game G with k questions and n answers, we set its
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synchronous entangled value to be

sval˚pGq :“ sup
pPCs

qapk,nq

valpG, pq.

One defines the synchronous commuting value svalcopGq in the obvious way. In
general, we have that sval˚pGq ď val˚pGq and svalcopGq ď valcopGq.

Paulsen et al. [51, Corollary 5.6] showed that p P Cs
qcpk, nq if and only if there

is a tracial state τ on C˚pFpk, nqq such that ppa, b|x, yq “ τ pexae
y
b q. Contrast this

result with Theorem 6.2: gone is the maximal tensor product of C˚pFpk, nqq with
itself, but instead the state is required to be a tracial state. Later, Kim, Paulsen,
and Schaufhauser [43, Theorem 3.6] showed that p P Cs

qapk, nq if and only if there

is an amenable tracial state τ on C˚pFpk, nqq such that ppa, b|x, yq “ τ pexae
y
b q. One

definition of an amenable tracial state τ on a C˚-algebra A is that there is a ˚-
homomorphism θ : A Ñ RU with a ucp lift A Ñ �8pRq for which τ “ τUR ˝ θ, where
τR is the unique trace on R. There are many alternate characterizations of being an
amenable trace showing that this is indeed a robust condition. In fact, Kirchberg
used the notion of amenable trace in his proof that, for finite von Neumann algebras,
being QWEP is equivalent to being isomorphic to a ˚-subalgebra of RU.

In any event, the above characterization of Cs
qapk, nq can be used to show that

p P Cs
qapk, nq if and only if there are n-outcome PVMs pfxqxPrks in RU such that

ppa, b|x, yq “ τUR pfx
a f

y
b q. In what follows, we let Xn denote the set of PVMs in RU

of length n. By the previous paragraph, we have

sval˚pGq “ sup
f1,...,fkPXn

¨

˝

ÿ

x,yPrks

πpx, yq

ÿ

a,bPrns

Dpx, y, a, bqτ pfx
a f

y
b q

˛

‚

RU

.

We now note two very important facts:

(1) The value contained in the parentheses is a legitimate first-order formula
evaluated in the ultrapower RU of R.

(2) The proof of MIP˚
“ RE actually shows that the reduction M ÞÑ GM

from Turing machines to nonlocal games is such that if M halts, then
sval˚pGMq “ 1.

From these two facts, it seems like the proof of Theorem 7.2 is complete, for
if we could approximately compute the value of any universal sentence in R, then
we could approximate sval˚pGMq for any Turing machine M and thus be able to
decide the halting problem!

There is one (not so minor) issue: the supremum in the above display is still
not technically allowable in our logic! Indeed, we are taking the supremum over
elements from a certain set Xn rather than just tuples from the unit ball. However,
it turns out that the founders of continuous logic thought long and hard about such
suprema and their efforts will pay off tremendously.

To explain this, we return to classical logic for one moment and the case of
groups. Given any group G, its center ZpGq can be defined by the formula γpxq :“
@ypxy “ yxq, that is, ZpGq “ tg P G : γpgq is true in Gu. Consequently, given
any formula θpxq, the formula p@x P ZpGqqθpxq represents an actual sentence in
classical logic, being shorthand for the more cumbersome @xpγpxq Ñ θpxqq.
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We are faced with a similar situation in the above paragraph. The elements of
Xn are those that make the formula

max

˜

max
i“1,...,n

dppi, p
˚
i q, max

i“1,...,n
dppi, p

2
i q, d

˜

n
ÿ

i“1

pi, 1

¸¸

equal to 0. One would hope that we could thus take the supremum over this set of
elements as a shorthand for a more complicated legitimate formula. Unfortunately,
such a move is not always possible.

More generally, given LvNa-formulae θpxq and ψpxq, the expression

suptψpxq
R : θpxq

R
“ 0u

is only equivalent to σR for an actual LvNa-sentence σ if θpxq satisfies a certain
almost-near property; that is, for each ε ą 0, there is a δ ą 0 such that, for
all a P R1, if θpaqR ă δ, then there is b P R1 with θpbqR “ 0 and dpa, bq ă ε.
In the operator algebraic literature, this is usually referred to as a weak stability
phenomena. In the model theory literature, this is called being a definable set.
(See the author’s paper [28] for more on definability in continuous logic and its
connection to operator-algebraic matters.)

Now here is the fantastic (and fortuitious) part: the formula defining Xn above
does have this property! And here’s the kicker: Kim, Paulsen, and Schaufhauser
themselves proved it [43, Lemma 3.5] while establishing their above characterization
of Cs

qapk, nq. Thus, we are entitled to write the above formula for sval˚pGq as a
shorthand for a legitimate sentence in the language of continuous logic. There is a
little bit of fine print to check, namely that the resulting sentence is in fact universal
and that this transformation can be done effectively, but the details can indeed be
carried out. This completes the proof of Theorem 7.2 and thus the model-theoretic
proof of the negative solution to CEP.

7.6. A Gödelian refutation of the CEP. Gödel’s incompleteness theorem is
one of the landmark intellectual achievements of the 20th century. It addresses a
seemingly simple question: is there an algorithm such that, upon input a sentence
in the language of number theory, returns the truth value of the sentence in the
natural numbers? Surprisingly, Gödel proved that the answer is no [26]! (See also
[18, Section 3.5] for a more modern treatment.)

Gödel actually proved something much stronger, namely he proved that any
attempt to answer the previous question by giving an effective axiomatization of
number theory is doomed to fail. More specifically, there is a natural (and effective)
collection of axioms known as Peano arithmetic such that any effective extension
T of Peano arithmetic is destined to be incomplete, meaning there will be sentence
σ that is true in N but not provable from T . Since simply listing all true sentences
of N as axioms is obviously complete, it follows that the set of true sentences is not
effectively enumerable.

We can use the ideas in the previous subsection to give a Gödelian-style refutation
of CEP. Indeed, one can view CEP as the question of asking whether or not the
effective list of axioms for being a II1 factor is enough to axiomatize the universal
theory of R. The failure of CEP shows that the answer to this is no. But perhaps
there is a stronger, but still effective, list of axioms extending the axioms for being
a II1 factor so that any model of these axioms would then satisfy the conclusion of
CEP. Our proof from the previous subsection shows that the answer is still no:
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Theorem 7.3 (Goldbring and Hart [32]). There does not exist an effectively enu-
merable list T of axioms extending TII1 such that all models of T are embeddable
in RU.

In particular, this shows that the collection of axioms σ ´ r for which σR ď r is
not effectively enumerable.

Theorem 7.3 allows us to provide many counterexamples to CEP:

Corollary 7.4. There is a sequence M1, M2, . . . , of separable II1 factors, none
of which embed into an ultrapower of R, and such that, for all i ă j, Mi does not
embed into an ultrapower of Mj.

Proof. We construct the sequence inductively. SetM1 to be any separable II1 factor
that does not embed into an ultrapower of R. Suppose now that M1, . . . , Mn have
been constructed satisfying the conclusion of Corollary 7.4. For each i “ 1, . . . ,
n, let σi be a nonnegative sentence such that σR

i “ 0 but σMi
i ą 0. For each

i “ 1, . . . , n, fix a rational number δi P p0, σMi
i q. Let T be the theory of II1 factors

together with the single condition maxi“1,...,npσi ´ δiq “ 0. It is clear that T is an
effectively enumerable subset of the theory of R. Thus, by Theorem 7.3, there is
a separable model Mn`1 of T such that Mn`1 does not embed into an ultrapower

of R. Given i “ 1, . . . , n, since σMi
i ą δi while σ

Mn`1

i ď δi, it follows that Mi

does not embed into an ultrapower of Mn`1. This indicates how to continue the
recursive construction, completing the proof. �

7.7. The universal theory of R and the moment approximation problem.
In this subsection, we offer a purely operator-algebraic reformulation of the state-
ment that Th@pRq is not computable, first proven in [32].

Given positive integers n and d, we fix variables x1, . . . , xn and enumerate all
˚-monomials in the variables x1, . . . , xn of total degree at most d as m1, . . . ,
mL. (Of course, L “ Lpn, dq depends on both n and d.) We consider the map
μn,d : Rn

1 Ñ DL given by μn,dp�aq “ pτ pmip�aqq : i “ 1, . . . , Lq. (Here, D is the
complex unit disk.)

Let Xpn, dq denote the range of μn,d, and let Xpn, d, pq be the image of the unit
ball of MppCq under μn,d. Notice that

Ť

pPN
Xpn, d, pq is dense in Xpn, dq.

Theorem 7.5. The following statements are equivalent:

(1) The universal theory of R is computable.
(2) There is a computable function F : N3 Ñ N such that, for every n, d, k P N,

Xpn, d, F pn, d, kqq is 1
k -dense in Xpn, dq.

Proof. First suppose that the universal theory of R is computable. We produce a
computable function F as in (2). Fix n, d, and k, and set ε :“ 1

3k . Computably find

s1, . . . , st, an ε-net in DL. For each i “ 1, . . . , t, ask the universal theory of R to

compute intervals pai, biq with bi ´ ai ă ε and with pinf
x |μn,dp�xq ´ si|q
R

P pai, biq.
For each i “ 1, . . . , t such that bi ă 2ε, let pi P N be the minimal p such that when
you ask the universal theory of MppCq to compute intervals of shrinking radius

containing pinf
x |μn,dp�xq ´ si|q
MppCq, there is a computation that returns an interval

pci, diq with di ă 2ε. Let p be the maximum of these pi’s. We claim that setting
F pn, d, kq :“ p is as desired. Indeed, suppose that s P Xpn, dq and take i “ 1, . . . ,

t such that |s ´ si| ă ε. Then pinf
x |μn,dp�xq ´ si|q
R

ă ε, whence bi ă 2ε. It follows
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that there is an interval pci, diq as above with pinf
x |μn,dp�xq ´ si|q
MppCq

ă di ă 2ε.
Let a P MppCq realize the infimum. Then |μn,dp�aq ´ s| ă 3ε “

1
k , as desired.

Now suppose that F is as in (2). We show that that the universal theory of R is
computable. Toward this end, fix a universal sentence

σ “ sup

x

fpτ pm1q, . . . , τ pm�qq,

where �x “ x1, . . . , xn, m1, . . . , m� are *-monomials in �x of total degree at most d,
and f is a computable connective. Fix also rational ε ą 0. We show how to compute
the value of σR to within ε. Since f is computable, it has a computable modulus
of continuity δ, meaning that we can find k P N computably so that 1

k ď δpεq. Set
p “ F pn, d, 2kq. Computably construct a sequence �a1, . . . , �at P pMppCq1qn that is a
1
2k cover of pMppCq1qn (with respect to the �1 metric corresponding to the 2-norm).

Consequently, μn,dp�a1q, . . . , μn,dp�atq is a 1
2k -cover of Xpn, d, pq. Set

r :“ max
i“1,...,t

fpτ pm1p�aiqq, . . . , τ pmlp�aiqqq.

By assumption, Xpn, d, pq is 1
2k -dense in Xpn, dq. It follows that r ď σR ď r ` ε,

as desired. �
7.8. A negative solution to Tsirelson’s problem from MIP˚

“ RE. In this
subsection, we offer an alternative proof of the negative solution to Tsirelson’s
problem using MIP˚

“ RE and the completeness theorem; we follow closely the
treatment given in [32]. As in the definition of the synchronous entangled value
sval˚pGq of a nonlocal game G with k questions and n answers, we define its syn-
chronous commuting value to be svalcopGq :“ suppPCs

qcpk,nq valpG, pq.

Definition 7.6. Fix 0 ă r ď 1. We define MIPco,s
0,r to be the set of those languages

L for which there is an efficient mapping z ÞÑ Gz from strings to nonlocal games
such that z P L if and only if svalcopGzq ě r.

Theorem 7.7 (Goldbring and Hart [32]). For any 0 ă r ď 1, every language in
MIPco,s

0,r belongs to the complexity class coRE.

In other words, if L P MIPco,s
0,r , then there is an algorithm which enumerates the

complement of L.
For the remainder of this subsection, we work in the first-order language LτC˚

for tracial C˚-algebras, that is, C˚-algebras equipped with a distinguished tracial
state, which is defined in a manner analogous to the language LvNa used to study
tracial von Neumann algebras. Fix a nonlocal game G with k questions and n
answers. Let w “ pwx,aqxPrks,aPrns denote a tuple of variables, and let ψGpwq be the
LτC˚ -formula

ÿ

px,yqPrksˆrks

πpx, yq

ÿ

pa,bqPrnsˆrns

Dpx, y, a, bqτ pwx,awy,bq,

which informally calcualates the expected value of winning when playing according
to a strategy from Cs

qc (recalling the Paulsen et al. characterization of elements of
Cs

qc). We then let θG,r be the LτC˚ -sentence

inf
w

max

˜

max
x,a

p}w2
x,a ´ wx,a},max

x,a
}w˚

xa
´ wx,a},max

x
}

ÿ

i

wx,a ´ 1}, r ´ ψGpwq

¸

,

which informally calculates svalcopGq.
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Let TτC˚ be the LτC˚ -theory of tracial C*-algebras. The following is immediate.

Proposition 7.8. For any nonlocal game G, we have svalcopGq ě r if and only if
the theory TτC˚ Y tθG,r “ 0u is satisfiable, that is, has a model.

We will also need the following immediate consequence of the completeness the-
orem.

Lemma 7.9. Let U be a continuous theory. Then U is satisfiable if and only if
U � K.1

We can now prove Theorem 7.7. Let L belong to MIPco,s
0,r and consider a string

z R L, with corresponding game Gz. By Proposition 7.8 and Lemma 7.9, we have
that TτC˚ Y tθGz,r “ 0u $ K. Since this latter condition is recursively enumerable,
the proof of Theorem 7.7 is complete.

One can now deduce the failure of Tsirelson’s problem from MIP˚
“ RE as fol-

lows. Suppose, towards a contradiction, that Cs
qapk, nq “ Cs

qcpk, nq for every k and
n. Let M ÞÑ GM be the efficient mapping from Turing machines to nonlocal games
provided by MIP˚

“RE.Given a Turing machine M, one simultaneously starts com-
puting lower bounds on val˚pGMq while running proofs from TτC˚ Y tθGM,1 “ 0u.
Since we are assuming that Cs

qapk, nq “ Cs
qcpk, nq (where k and n are the number

of questions and answers of Gz), we have that either the first computation eventu-
ally yields the fact that val˚pGMq ą

1
2 , in which case M halts, or else the second

computation eventually yields the fact that TτC˚ Y tθGM,1 “ 0u $ K, in which
case sval˚pGMq ă 1, and M does not halt. In this way, we can decide the halting
problem, a contradiction. Note that we derived the a priori stronger statement that
Cs

qapk, nq ­“ Cs
qcpk, nq for some k and n.

8. The enforceable II1 factor (should it exist)

In this section, we describe a model-theoretic weakening of CEP, namely the
statement that the enforceable II1 factor exists. In order to explain this statement
and its connection to CEP, we first need to introduce a certain two-player game.

8.1. A different kind of game. We introduce a method for building tracial von
Neumann algebras first introduced in [29] for an arbitrary structure in continuous
logic (based on the discrete case presented in Hodges’ book [37]). This method
goes under many names, such as Henkin constructions, model-theoretic forcing, or
building models by games.

We fix a countably infinite set C of distinct symbols that are to represent gen-
erators of a separable tracial von Neumann algebra that two players (traditionally
named @ and D) are going to build together (albeit adversarially). The two players
take turns playing finite sets Σ of expressions of the form |}ppcq}τ ´ r| ă ε, where
c is a tuple of variables from C, ppxq is a ˚-polynomial, and each player’s move
is required to extend (that is, contain) the previous player’s move. These sets are
called (open) conditions. The game begins with @’s move. Moreover, these con-
ditions are required to be satisfiable, meaning that there should be some tracial
von Neumann algebra M and some tuple a from M1 such that |}ppaq}τ ´ r| ă ε
for each such expression in the condition. We play this game for countably many
rounds. At the end of this game, we have enumerated some countable, satisfiable

1K represents a contradiction, i.e., any continuous sentence which cannot evaluate to 0. For
instance, the constant function 1.



554 ISAAC GOLDBRING

set of expressions. Provided that the players address a dense set of moments infin-
itely often, they can ensure that the play is definitive, meaning that the final set of
expressions yields complete information about all ˚-polynomials over the variables
C (that is, for each ˚-polynomial ppxq and each tuple c from C, there should be
a unique r such that the play of the game implies that }ppcq}τ “ r) and that this
data describes a countable, dense ˚-subalgebra of a unique tracial von Neumann
algebra, which is called the compiled structure. In what follows, we assume all plays
of the game are definitive.

8.2. Enforceable properties of tracial von Neumann algebras. Crucial to
the connection between the above games and the CEP is the notion of an enforceable
property:

Definition 8.1. Given a property P of tracial von Neumann algebras, we say that
P is an enforceable property if there a strategy for D so that, regardless of player
@’s moves, if D follows the strategy, then the compiled structure will have property
P .

Perhaps being an enforceable property seems so severe that there are in fact no
enforceable properties. We will soon see that many interesting properties are in
fact enforceable. First, we mention the conjunction lemma [29, Lemma 2.4]: if Pn

is an enforceable property for each n P N, then so is the conjunction
Ź

n Pn.
As a first example of an enforceable property of tracial von Neumann algebras,

we show that being a factor is enforceable. To see this, let θpxq be the LvNa-formula
a

}x}2τ ´ τ pxq2, and let ηpxq be the LvNa-formula supy }xy ´ yx}τ . Finally, let σ
be the LvNa-sentence supxpθpxq ´ ηpxqq. It was shown in [20] that a von Neumann
algebra M is a factor if and only if σM “ 0. To see that being a factor is enforceable,
by the conjunction lemma, it suffices to show that, given any n P N and rational
ε ą 0, the expression pθpcnq ´ηpcnqq ă ε is enforceable. To see that this is the case,
suppose that player @ opened the game with the open condition Σ. Without loss
of generality, we may suppose that cn appears in Σ. Since Σ is satisfiable in some
tracial von Neumann algebra, it is also satisfiable in some II1 factor M (as every
tracial von Neumann algebra embeds in a II1 factor). Consequently, since σM “ 0,
we see that M also witnesses that Σ Y tθpcnq ´ ηpcnq ă εu is a condition, whence D

can respond with this condition, as desired.
We next show that being a II1 factor is enforceable. Since being a factor is en-

forceable, it suffices to show that it is enforceable that, in the compiled structure,
there is a projection of irrational trace (say 1

π ). By the conjunction lemma again,
it suffices to show that, for any rational ε ą 0, there is some n P N for which
maxpdpcn, c

˚
nq, dpcn, c

2
nq, |τ pcnq ´

1
π |q ă ε is enforceable. Indeed, if this is enforce-

able, then since almost projections are near actual projections, there will be actual
projections in the compiled structure whose trace approaches 1

π , whence there will

be an actual projection of trace 1
π , as desired. However, this condition is clearly

enforceable by the exact same argument used in the previous paragraph, this time,
using a fresh constant, that is, some cn which did not appear in player @’s opening
play Σ.

One can go even further and show that being a McDuff II1 factor is enforceable.
A II1 M factor is McDuff if Mb̄R – M. For example, R is McDuff. An alternate
formulation for being McDuff will prove useful: M is McDuff if and only if there is
a copy of M2pCq inside of M1 X MU. This amounts to showing that for any finite
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F Ď M and any rational ε ą 0, there are matrix units peijqi,j“1,2 for M2pCq for
which }rx, eijs}τ ă ε for all x P F and all i, j “ 1, 2. Hopefully by now the strategy
is apparent: given any open play Σ for player @, we realize Σ in some tracial von
Neumann algebra M. We then note that Σ is also realized in Mb̄M2pCq and then
choose fresh constants cn1

, . . . , cn4
and say that they are almost matrix units for

M2pCq which almost commute with c1, . . . , cn. As we let n increase and ε decrease
and using the fact that almost matrix units are near actual matrix units, the result
follows using the conjunction lemma.

8.3. Existentially closed tracial von Neumann algebras (and yet another
reformulation of CEP). One can push the line of reasoning in the previous sub-
section much further. First, it is helpful to introduce the notion of an existentially
closed pe.c.q tracial von Neumann algebra. A tracial von Neumann algebra M is
e.c. if: whenever M Ď N, there is an embedding N ãÑ MU into some ultrapower
of M that restricts to the diagonal embedding of M into its ultrapower. If N is
separable (whence so is M), then this is equivalent to Definition 8.1 where we can
use any nonprincipal ultrapower of M. This version of the definition is the semantic
version. Syntactically, M is e.c. if for any existential formula ϕpxq (where x is a
finite tuple of variables), any a P M1, and any tracial von Neumann algebra N

containing M, we have ϕpaqM “ ϕpaqN. In other words, any phenomena that could
happen in an extension of M approximately also happens in M. It is for this reason
that one should think of an e.c. tracial von Neumann algebra as being an analogue
of an algebraically closed field.

Existentially closed tracial von Neumann algebras appear in abundance. Indeed,
any tracial von Neumann algebra embeds into an e.c. one of the same density char-
acter. Moreover, we know many properties of an e.c. tracial von Neumann algebra:
they must be McDuff II1 factors, all of their automorphisms must be approximately
inner, etc. . . . The reader interested in learning more about e.c. tracial von Neumann
algebras can consult [19], [28], and [33].

But can we name a concrete e.c. tracial von Neumann algebra? Well:

Theorem 8.2 (Farah, Goldbring, Hart, and Sherman [19]). R is an e.c. tracial
von Neumann algebra if and only if CEP has a positive solution.

Proof. We first note that if R is e.c., then CEP holds: given a II1 factor M, we have
that R Ď M, whence, since R is e.c., we have that M embeds into RU. Conversely,
suppose that CEP holds; we show that R is e.c. To see this, suppose that R Ď M

with M separable. By CEP, M embeds into RU. At the moment, this does not
imply that R is e.c. as the composed embedding R ãÑ RU need not be the diagonal
embedding. However, a nontrivial result of Kenley Jung [40] implies that every
embedding π : R ãÑ RU is unitarily conjugate to the diagonal embedding, meaning
that there is a unitary element u P RU such that πpaq “ uau˚ for all a P R (viewing
R as literally a subalgebra of RU via the diagonal embedding). It is straightforward
to check that this finishes the job. �

Following [21], we call a tracial von Neumann algebra M locally universal if every
tracial von Neumann algebra embeds into an ultrapower of M. In this terminology,
CEP asks if R is locally universal. The proof of Theorem 8.2 shows the following.

Theorem 8.3. Every e.c. tracial von Neumann algebra is locally universal. In
particular, locally universal tracial von Neumann algebras exist.
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The latter conclusion was first reached (using a different argument) in [21, Ex-
ample 6.4] and was referred to as a resolution to the Poor Man’s resolution to the
Connes embedding problem. Note also that CEP holds if and only if any locally
universal tracial von Neumann algebra embeds in RU.

Another important fact for us is the following (see [29, Proposition 2.10] for a
proof)):

Theorem 8.4. Being an e.c. tracial von Neumann algebra is an enforceable prop-
erty.

The proof of Theorem 8.4 is a more elaborate version of the arguments given in
the last section.

One might ask: is there some first-order way of axiomatizing the e.c. tracial
von Neumann algebras? The answer is no, a result first proven by Hart, Sinclair,
and the author in [33] although we now know of some more elementary proofs (see
[28, Corollary 5.19] for example).

8.4. CEP and enforceability. As we have seen in the previous subsections, while
enforceability of a property seemed like it should rarely happen, we actually know
of many interesting properties that are in fact enforceable. We now consider a real
extreme version of this:

Definition 8.5. A tracial von Neumann algebra M is said to be enforceable if the
property of being isomorphic to M is an enforceable property.

Clearly, if an enforceable tracial von Neumann algebra exists, then it is unique.
Enforceable structures do exist in many other contexts. For example, the enforce-
able graph is the random or Rado graph and the enforceable field of a particular
characteristic is the algebraic closure of the prime field. (Note, however, that the
enforceable group does not exist; while somewhat implicit in [37], this is made ex-
plicit in [34].) On the analytic side, we have that the enforceable metric space is
the Urysohn space [61], the unique Hilbert space of dimension ℵ0 is the enforce-
able Hilbert space [8, Section 15], and the enforceable Banach space is the Gurarij
Banach space [9].

So what about the enforceable tracial von Neumann algebra? Here is the con-
nection to CEP:

Theorem 8.6 (Goldbring [29]). The following statements are equivalent:

(1) CEP has a positive solution.
(2) The property of being hyperfinite is enforceable.
(3) R is the enforceable tracial von Neumann algebra.
(4) The property of being embeddable in RU is enforceable.

Proof. (1) implies (2): By CEP, every open condition is satisfied in RU and hence
in R. Thus, given any n and rational ε ą 0, if player @ opens with Σ, then Σ
is satisfied in R and thus c1, . . . , cn are all within ε in } ¨ }τ of some finite linear
combination of approximate matrix units for some sufficiently large matrix algebra.
Thus, player D can respond with this extension of Σ. Now apply the conjunction
lemma.

(2) implies (3): If being hyperfinite is enforceable, then since being a II1 factor
is also enforceable, we see by the conjunction lemma that being a hyperfinite II1
factor is enforceable, whence R itself is enforceable.
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(3) implies (4) is trivial: For (4) implies (1), if being embeddable in RU is enforce-
able, then since being e.c. is also enforceable, we see that there is an e.c. tracial von
Neumann algebra that embeds in RU. Since this e.c. tracial von Neumann algebra
is necessarily locally universal, by the observation made in the previous subsection,
we have that CEP has a positive solution. �

Now that we know that CEP has a negative solution, we see that no e.c. tracial
von Neumann algebra embeds in RU. Since being e.c. is enforceable, we see that
the situation is pretty dire: it is enforceable that the compiled structure does not
embed in RU, which should be seen as a generic negative solution to the CEP.

8.5. Properties of the enforceable II1 factor (again, should it exist). Now
that we know that CEP has a negative solution, we know that R is not enforceable.
But there is still the possibility that the enforceable tracial von Neumann algebra
E (which must necessarily be a II1 factor) exists. It is this author’s humble opinion
that the existence of the enforceable II1 factor is one of the most interesting open
problems in the model theory of operator algebras. Indeed, if E exists, then it rivals
R for being the most canonical II1 factor. On the other hand, if E does not exist,
then this can be seen as a strong negative solution to the CEP.

We first mention a theorem that might help us figure out whether or not it exists
(see [29] for a proof):

Theorem 8.7 (Dichotomy theorem). Exactly one of the following two conditions
holds:

(1) For every enforceable property P of tracial von Neumann algebras, there ex-
ist continuum many nonisomorphic separable tracial von Neumann algebras
with property P .

(2) The enforceable II1 factor E exists.

Consequently, one strategy for showing that E does exist is to find some en-
forceable property P such that fewer than continuum many tracial von Neumann
algebras have property P.

On the other hand, in order to prove that E does not exist, it might prove useful
to analyze some of its properties (should it exist). As mentioned above, being
e.c. is an enforceable property, and thus E, if it exists, has all of the properties
common to e.c. factors, such as being McDuff and having only approximate inner
automorphisms. Moreover, as shown in [29, Section 6], E would embed into every
e.c. factor, which is reminiscent of the situation that R embeds into every II1 factor.

Recalling that R has the McDuff property, we see that Rb̄R – R. However, one
can show that if E exists, then Eb̄E � E. Indeed, it is possible to show that if the
property of being isomorphic to Mb̄M for some II1 factor M is enforceable, then
CEP holds (see [29, Remark 5.8]). Thus, E � Mb̄M for any tracial von Neumann
algebra M.

The theorem of Jung [40] (mentioned in the proof of Theorem 8.2) states that
every embedding of R into RU is unitarily conjugate to the diagonal embedding.
We say that a II1 factor M has the Jung property if every embedding of M into
its ultrapower MU is unitarily conjugate to the diagonal embedding. Atkinson and
Kunnawalkam Elayavalli [4] showed that R is the only RU-embeddable factor with
the Jung property. However, in [30], we showed that E, if it exists, also has the
Jung property. One can use this fact to show that E, should it exist, cannot even be
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elementarily equivalent to Eb̄E, meaning that there must be some LvNa-sentence
σ such that σE ­“ σEb̄E!
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