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An example of a Cremona transformation is familiar to any mathematician
through the notion of the inversion transformation: a point x in Rn is mapped
to a point T (x) on the line R · x such that |T (x)| · |x| = r for a fixed r > 0. In the
case n = 2, the transformation was familiar to Apollonius of Perga in 200 BC. The
ancient notion of a stereographic projection that goes back to Ptolemy is a result of
applying the inversion transformation in R3 to a sphere. The distinguishing feature
of the inversion transformation is that it may transform spheres to planes and vice
versa, but, most importantly, it cannot be extended to an everywhere defined map.
To solve the latter problem is possible only in the case n = 2 by adding to R

2 = C

the point at infinity. The introduction of projective coordinates made it possible
to identify the extended plane with the complex projective line CP1. The inversion
transformation acquires an analytic formula (z0 : z1) �→ (z̄1 : rz̄0), and hence be-
comes a composition of a projective transformation and the conjugation. Another
way to obtain an analytic formula for the inversion transformation that works for
any n is to consider the real projective space RPn and define the transformation
by the formula T : (x0 : · · · : xn) �→ (x2

1 + · · · + x2
n : rx0x1 : · · · : rx0xn). In this

way we can define this transformation in the complex projective space CP
n. It is

given by homogeneous polynomials of the same degree (called the algebraic degree
of the transformation) in projective coordinates. Although it is still not defined on
the subset x0 = x2

1 + · · · + x2
n = 0, it is invertible on the complement of this set.

This leads to the definition of a Cremona transformation of CPn as a transforma-
tion given in projective coordinates by homogeneous polynomials of degree d that
may vanish simultaneously on a closed subvariety of codimension ≥ 2 and which is
invertible on a some subset complementary to a closed subvariety. Transformations
with d = 2 are called quadratic Cremona transformations. Until the fundamental
works of Luigi Cremona and Ernest de Jonquières in the second half of the 19th
century, it was widely believed that all Cremona transformations are quadratic.
In attempts to extend a Cremona transformation to an everywhere defined map,
many various constructions were introduced in the 19th century, all based on differ-
ent concepts of infinitely near points. This led to basic tools of modern birational
geometry of algebraic varieties, such as σ-processes, blowups and blowdowns, which
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are some examples of birational transformations of algebraic varieties. Nevertheless,
a general Cremona transformation of algebraic degree d > 1 cannot be extended to
an automorphism of any birationally equivalent complete algebraic variety, so the
indeterminacy of the transformation is unavoidable. This makes Cremona trans-
formations very different from automorphisms of other geometric structures, such
as homeomorphisms, diffeomorphisms, analytic automorphisms of manifolds.

Cremona transformations of CPn form a group, denoted by Cr(n), and the yet
unpopular concept of a group in the beginning of the 19th century was probably the
reason why Cremona transformations of higher algebraic degree were overlooked at
that time. The fundamental theorem of Max Noether asserts that any Cremona
transformation in the complex projective plane is a composition of projective trans-
formations and only one non-projective quadratic transformation that inverts the
affine coordinates. Although the theorem may give a false impression that the group
Cr(2) is quite simple, it is far from the truth. For example, until very recently, it
was unknown whether the group is simple as an abstract group. The first proof of
its simplicity by Serge Cantat and Stéphane Lamy [5] used very technical tools of
hyperbolic geometry of infinite-dimensional hyperbolic spaces. This fundamental
contribution to algebraic geometry came from experts in completely different fields
of mathematics—hyperbolic geometry and complex dynamics—demonstrating once
more the unity of mathematics. Incidentally, the author of the book under review
originates from that same group of brilliant young mathematicians.

An algebraic equivalent of the Cremona group Cr(n) is the group of automor-
phisms of the field C(t1, . . . , tn) of rational functions in n variables that are identical
on the coefficients. At this point, we can replace the field C of coefficients with any
field K and introduce the Cremona group CrK(n). The description of the group
CrK(1) is easy and, I believe, should be given in any undergraduate course of ab-
stract algebra: it consists of the fractional linear transformation t �→ at+b

ct+d with

ad − bc = 1. By assigning to this transformation the matrix
(
a b
c d

)
, we obtain an

isomorphism between CrK(1) and the projective linear group PGL(2,K). Over
the complex numbers, the transformations are known as Möbius transformations.
They come in three kinds: elliptic, parabolic, and loxodromic (or hyperbolic) ac-
cording to whether |a+ d| < 2, = 2, or > 2, respectively. A group containing only
elliptic transformations is a finite group. A group that contains elliptic or para-
bolic transformations is an extension of an infinite cyclic group by a finite group.
A group containing at least two non-commuting hyperbolic transformations is es-
sentially non-abelian infinite group. Among them we encounter discrete subgroups
of the Lie group PSL(2,C) like Kleinian groups, in particular, the modular group
PSL(2,Z) or its subgroups of finite index, the main objects of study in the modern
theory of modular forms and three-dimensional hyperbolic geometry.

The classification of finite subgroups of CrC(1) was first given in the work of Felix
Klein and Hermann Schwarz in the 1880s. The groups were known from antiquity
as symmetry groups of Platonic solids. The subgroups come in two infinite series of
cyclic and dihedral subgroups and three exceptional groups: the tetrahedral group
T isomorphic to the alternate group A4, the octahedral group O isomorphic to the
symmetric group S4, and the icosahedron group I isomorphic to the alternate group
A5. Some modern techniques allow us to classify all finite subgroups of CrK(1) for
an arbitrary field K [1].
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The extension of Klein–Schwarz classification to the rank 2 Cremona group
CrC(2) began at the end of the 19th century in the works of Seligmann Kantor
[15] and Anders Wiman [21]. A conceptual modern explanation of their work led
Yuri Manin to develop the theory of minimal models of rational G-surfaces (X,G),
projective algebraic surfaces X together with an action of a finite group G. It turns
out that any finite subgroup of CrC(2) can be realized as a finite group of auto-
morphisms of a G-minimal del Pezzo surface or a G-minimal conic bundle. The
complete classification of all possible groups G (up to conjugation) that arise in this
way was achieved in this century in the work Jéremy Blanc [2] (for abelian groups)
and in the work of the reviewer and Vassily Iskovskikh [11] for arbitrary finite
groups (with some gaps that have been later fixed by various mathematicians).

The classification of infinite subgroups of the Cremona groups is the subject
of modern research. The Cremona group CrC(n) can be made into a topological
group in different ways [4]. Although one can define its Lie algebra, which is a
simple infinite-dimensional Lie algebra, no structure of an infinite-dimensional Lie
or algebraic group can be put on it. However one may ask which algebraic groups
besides the obvious one, PGL(n+ 1,C) and its subgroups, it may contain.

The first known work on algebraic subgroups of CrC(n) is the 1893 work of Fed-
erigo Enriques [12] that classifies all maximal connected algebraic groups contained
in CrC(2). All such groups are of rank 2, i.e., they contain a two-dimensional torus,
and the classification of such subgroups is equivalent to Segre’s classification of min-
imal rational ruled surfaces. It was shown by Michele Demazure that any maximal
connected algebraic subgroup of CrC(n) is of rank ≤ n [8]. His work contains a
classification of such subgroups of maximal rank n by using the so-called Enriques
systems that led to the first time appearance of the concept of a torus embedding
[16]. In a joint paper with Gino Fano [13], Enriques extended his work to algebraic
subgroups of CrC(3), and they proved that any algebraic subgroup of CrC(3) ex-
tends to a group of automorphisms of a rational projective threefold. The complete
classification of algebraic subgroups of CrC(n), n > 2, is known only in the case
n = 3 [20].

It is natural to ask which discrete subgroups of Lie groups can be embedded in
CrC(n). Let Γ be a lattice (a discrete subgroup of finite covolume) in a connected
simple Lie group G of real rank r ≥ 2. Robert Zimmer and others conjectured that,
if Γ acts by diffeomorphisms on a compact n-manifold and the kernel of the action
is finite, then the rank of Γ is bounded by n. For example, according to a result of
Étienne Ghys (improved by the author of the book under review [9]), a subgroup
Γ of finite index of SL(n,Z) cannot be embedded in the group of diffeomorphisms
of the two-dimensional sphere S2 if n ≥ 4. In a striking analogy of this result, the
same is true for an embedding of Γ in CrC(2) [10].

Although the Cremona group CrC(2) is not a linear group in the sense that it
does not admit faithful finite-dimensional linear representations, it admits a natural
infinite-dimensional representation in an infinite-dimensional hyperbolic space H

∞

introduced for the first time by Yuri Manin. It is defined as a certain inductive
limit of the cohomology spaces of all blowups of CP2. The study of this action
is the main tool for proving many algebraic properties of the Cremona group of
rank 2. For example, one may ask whether the group is simple, perfect, Hopfian
(every surjective homomorphism is bijective), or obeys the Tits alternative (every
finitely generated subgroup either contains a solvable subgroup of finite index or
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contains a non-abelian free group). Note that examples of groups for which the
Tits alternative holds are linear groups, the mapping class groups, or hyperbolic
groups in the sense of Gromov. As we have already mentioned, the group CrC(2) is
not simple; if one takes a quadratic transformation at random, the smallest normal
subgroup that contains some power of it is a proper subgroup. The group is perfect,
Hopfian [7], and satisfies the Tits alternative [6].

Iterations of a Cremona transformation φ give examples of discrete complex
dynamical systems. For example, one can define the notion of the dynamical
degree λ(φ) = limn→∞ alg.deg(φn)1/n for a plane Cremona transformation φ. Like
Möbius transformations, Cremona transformations satisfy a trichotomy: λ(φ) =
0, 1, or larger than 1. The first category consists of transformations of finite order,
and the second one consists of transformations that preserve a pencil of rational or
elliptic curves. The last category is the most interesting and represents transforma-
tions of positive entropy log λ(φ). The number λ(φ) is a Pisot or Salem number; in
the latter case φ can be extended to a regular automorphism of a rational surface. It
is an interesting geometric problem of realizing Salem numbers by an automorphism
of a given rational algebraic surface [18].

As the reader has probably already noticed, most of the discussion so far con-
cerns the study of the complex plane Cremona groups CrC(2). The book contains
very little information about other cases. However, it is worth mentioning the
recent progress in other cases when K �= C or n > 2. For example, the real Cre-
mona group CrR(2) is very interesting since some of its subgroups may act without
indeterminacy points and hence define subgroups of diffeomorphisms of the real
projective space RPn. Over a finite field K = Fq, it acts on a finite set Pn(Fq) and
provides interesting subgroups of the symmetric groups. Susanna Zimmermann
proved that the real Cremona group CrR(2) is neither simple nor perfect [22], and
together with Stéphane Lamy [17], they proved that CrK(2) is not simple for any
field K that admits an algebraic extension of degree 8. Many different presenta-
tions of CrK(2) by generators and relations are known for all algebraically closed
fields K and, somewhat non-explicitly, for any perfect field K. The group CrK(n)
is still very mysterious for n ≥ 3. It was proven by Hilda Hudson (the author
gives a wrong reference to her book [14]) that CrC(3) cannot be generated by the
subgroup PGL(4,C) and a finite set of non-projective transformations. Recently, it
was proved that the group CrK(3) is not simple, and is not perfect for any subfield
K of C [3]. No analogues of the hyperbolic space H∞ where this group can be
represented are known, so no methods of hyperbolic geometry can be applied.

The classification of finite subgroups of Cremona groups CrC(n) of higher rank
n is still in a rudimentary state. Although there is a theory of minimal G-models of
Fano varieties, which are higher-dimensional analogues of del Pezzo surfaces, many
of them are not rational, and hence G is not a subgroup of the Cremona group.
However, in this way, one can classify, for example, finite simple groups contained
in CrC(3) [19].

An important subgroup of CrC(n) is the group of polynomial automorphisms of
the affine space Cn, or, equivalently, the group of automorphisms of the polyno-
mial algebra K[t1, . . . , tn]. We still have no ideas about possible sets of suitable
generators of this group for n ≥ 3.

Almost everything discussed here, and much more, is elaborated with more de-
tails and often with proofs in the book under review. I believe that mathematicians
working in almost any field of mathematics may find some of the material from this
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book relevant to their research. Although it must be warned that the book is not for
easy reading—it requires a broad mathematical culture to appreciate the beauty of
its subject. It will serve as a very good source of references to some exciting recent
progress in the study of the group of Cremona transformations.
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