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MR0109315 (22 #201) 52.00

Birch, B. J.

On 3N points in a plane.

Proceedings of the Cambridge Philosophical Society 55 (1959), 289–293.

The following theorem is proved in this note. Theorem 1: Given 3N points in a
plane, we can divide them into N triads such that, when we form a triangle with
the points of each triad the N triangles will all have a common point.

The proof is given on the basis of three lemmas and two corollaries. The first
two lemmas are the fixed-point theorem for n-space and Caratheodory’s (n + 1)-
point theorem. Lemma 3 is as follows, where En is the unit n-ball: Let a mass
distribution in En be defined by an integrable density function ρ(x); then we can
find a point r inside En so that every closed half-space with r on its boundary will
contain at least 1/(n+ 1) of the total mass. The first corollary states that Lemma
3 holds if the mass-distribution is not continuous, and the second corollary is as
follows: Let Y be a finite set consisting of M points in n-space, and suppose that
M > (n + 1)R. Then there is a point common to all the closed half-spaces which
contain at least (M −R) points of Y .

{The author states that he believes Lemma 3 is new. Actually the most im-
portant new feature concerns the number and dispositions of closed half-spaces
containing an “optimal” portion of the mass stated in the proof. For the Lemma 3
itself, it may be interpreted as a corollary of the finite point-mass problem which
is a straight-forward generalization to n-space of a theorem stated and proved in
Jaglom and Boltjanski [Konvexe Figuren, VEB Deutscher Verlag, Berlin, 1955;
MR0079789; p. 16], where they also observe that the continuous case is special.
To prove Theorem 1, then, the author could have applied his proof directly to the
theorem stated by Jaglom and Boltjanski. However, the procedure used and the
application of the method to other problems of optimization are of further interest.}

P. C. Hammer

From MathSciNet, August 2022

MR0458437 (56 #16640) 57C15; 13H10, 52A25

Stanley, Richard P.

The upper bound conjecture and Cohen-Macaulay rings.

Studies in Applied Mathematics 54 (1975), no. 2, 135–142.

Let Δ be a triangulation of the (d − 1)-sphere. If Δ has fj j-dimensional

faces (j = −1, 0, · · · , d − 1; f−1 = 1), write hi =
∑i−1

j=−1(−1)i−j−1

(
d− j − 1
d− i

)
fj

(i = 0, 1, · · · , d). Further, if h and i are positive integers, h can be written uniquely

in the form h =

(
ni

i

)
+

(
ni−1

i− 1

)
+ · · ·+

(
nj

j

)
, where ni > ni−1 > · · · > nj ≥ j. Let
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h〈i〉 =

(
ni + 1
i+ 1

)
+

(
ni−1 + 1

i

)
+ · · ·+

(
nj + 1
j + 1

)
, and 0〈i〉 = 0. The author’s main

result is then: 0 ≤ hi+1 ≤ hi
〈i〉, for each i = 0, 1, · · · , d−1. This is proved by using a

characterization of Cohen-Macaulay rings of G. A. Reisner [“Cohen-Macaulay quo-
tients of polynomial rings,” Ph.D. Thesis, Univ. Minnesota, Minneapolis, 1974],
and showing that AΔR/I is a Cohen-Macaulay ring, when R = Q[v1, · · · , vn],
(v1, · · · , vn being the vertices of Δ), and I is the homogeneous ideal generated by
the square-free monomials vi(1) · · · vi(s), where {vi(1), · · · , vi(s)} ∈ Δ. The theorem
has a similar form to and is probably a useful step towards a conjecture of the re-
viewer [Israel J. Math. 9 (1971), 559–570; MR0278183], which would characterize
all possible f -vectors (f0, f1, · · · , fd−1) of simplicial d-polytopes, and, conceivably,
also of all triangulations of (d− 1)-spheres.

P. McMullen

From MathSciNet, August 2022

MR0676720 (84c:52014) 52A35

Bárány, Imre

A generalization of Carathéodory’s theorem.

Discrete Mathematics 40 (1982), no. 2–3, 141–152.

A well-known theorem of Carathéodory states that, given a set V ⊆ Rn with
p ∈ convV , there is subset A of V consisting of n+1 or fewer points with p ∈ convA.
Applications and generalizations appear in Helly’s theorem and its relatives [L. W.
Danzer et al., Proceedings of Symposia in Pure Mathematics, VII, 101–180, Amer.
Math. Soc., Providence, R.I., 1963; MR0157289]].

In this paper, the author presents the following interesting generalization of
Carathéodory’s theorem: If V1, · · · , Vn+1 ⊆ Rn and p ∈

⋂
{convVi : 1 ≤ i ≤ n+1},

then there exist elements vi ∈ Vi, 1 ≤ i ≤ n+ 1, such that p ∈ conv{v1, · · · , vn+1}.
Furthermore, the author gives several related results, including this Helly-type theo-
rem: Let C1, · · · , Cm, m > 1, be nonempty families of nonempty sets in Rn. Assume
that the sets in C1 and C2 are compact. If for every choice Ci ∈ Ci, 1 ≤ i ≤ m,
the union

⋃
{Ci : 1 ≤ i ≤ m} is convex, then for some i the intersection

⋂
Ci is

nonempty. Finally, applications are made to many areas, including trees, simple
polytopes, and convex functions.

Marilyn Breen

From MathSciNet, August 2022

MR1234493 52A01; 05C12, 06A06, 52-02, 54H12

van de Vel, M. L. J.

Theory of convex structures. (English)

North-Holland Mathematical Library, 50.
North-Holland Publishing Co., Amsterdam, 1993, xvi+540 pp., $157.25,
ISBN 0-444-81505-8

The author has done a wonderful job. He shows how pervasive the idea of
convexity is, by collecting notions and results from a large set of mathematical
disciplines and by putting all of these in a common perspective. We find here
an introduction to convexity aspects of fundamental structures such as median
algebras, convexity spaces, ordered sets, normed vector spaces, superextensions,
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semilattices, matroids, metric spaces, trees, and more. A huge number of results are
given together with a rich bibliography, some of them being sketched in paragraphs
entitled “Further topics”.

Chapter 1 introduces the general concept of a convex structure, i.e. a set provided
with a collection of subsets stable for intersections and nested unions. The resulting
hull operator is considered, as well as the notion of segment. Although all of these
concepts are fairly general, the findings described are very interesting because they
show the specificity of the various examples to which they apply and also the
interrelationships among these examples.

Investigation of convex structures can be purely combinatorial or have a topolog-
ical flavour. The central part of the book is accordingly divided into two chapters.
Chapter 2 is mainly devoted to invariants inspired from classical theorems (asso-
ciated with the names of Radon, Helly, Tverberg, . . .), but also has a section on
infinite combinatorics. It ends with a report on the famous Eckhoff conjecture.

Topological convex structures are obtained by building, or simply assuming, a
topology as an additional ingredient. In this framework, continuity of the hull
operator or further separation theorems can be studied. Again in this Chapter 3,
a wealth of applications in specific fields is given.

Miscellaneous topics are collected in the final chapter, e.g., affine representa-
tion of convexity spaces, selection theorems, dimension theory in connection with
invariants, fixed point theorems.

My appreciation of this dense handbook is very high. Many of the accomplish-
ments presented are due to the author and/or his close collaborators. Moreover, the
book will serve as a road map to (mostly recent) developments in various branches
of mathematics.

Jean-Paul Doignon

From MathSciNet, August 2022

MR1921545 (2003g:52004) 52A35; 05D15

Alon, Noga; Kalai, Gil

Transversal numbers for hypergraphs arising in geometry.

Advances in Applied Mathematics 29 (2002), no. 1, 79–101.

A set system (hypergraph) F has the (p, q) property if among any p sets of F
some q have a common point. The (p, q) theorem conjectured by Hadwiger and
Debrunner and proved by N. Alon and D. J. Kleitman [Adv. Math. 96 (1992),
no. 1, 103–112; MR1185788] extends Helly’s theorem on convex sets as follows: For
p ≥ q ≥ d + 1, if F is a finite family of convex sets in Rd and F has the (p, q)
property, then its transversal number is bounded by a function of p, q, and d.

The authors consider analogues and relatives of the (p, q) theorem for other
topological and abstract hypergraph classes. The basic tools of the original proof
of the (p, q) theorem are the fractional Helly theorem, the fractional transversal
number, and weak epsilon-nets for convex sets. The main result of the paper shows
that an appropriate fractional Helly property implies the validity of an abstract
(p, q) theorem. Consequences of the general result include a topological (p, d + 1)
theorem involving d-Leray complexes, and a (p, 2d) theorem for convex lattice sets
in Zd.

The present work can be regarded as a contribution towards understanding of the
following questions: For which classes of hypergraphs is the fractional transversal
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number, τ∗(F), bounded by some (p, q) property of F uniformly for all hypergraphs
F in the class; and for which classes F is the transversal number, τ (F), bounded
by some function of τ∗(F) uniformly for all F ∈ F?

Jenő Lehel

From MathSciNet, August 2022

MR3974609 52A35; 57M99, 90C25, 91A80, 91B32

De Loera, Jesús A.; Goaoc, Xavier; Meunier, Frédéric

The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner,
Tucker, and Tverberg.

American Mathematical Society. Bulletin. New Series 56 (2019), no. 3, 415–511.

This paper surveys the theory and applications of the five fundamental theorems
of discrete geometry mentioned in the title. In the first part, the authors present
some of the many reformulations and variations of these theorems and explore how
these results fit together. The second part of the paper is devoted to the multiple
applications of the five theorems. The authors work on wide areas and examine
examples from game theory and fair division, from graph theory, from optimiza-
tion, and from geometric data analysis. Some of the examples given are classical
(e.g., Nash equilibria, von Neumann’s min-max theorem, linear programming), and
others are more specialized (e.g., Dol’nikov’s colorability defect or the polynomial
partitioning technique), but for all these, the five theorems provide elegant and sim-
ple proofs. For other examples (for instance for Meshulam’s lemma, or for the ham
sandwich theorem) the authors present new proofs. The paper is well written, sup-
plying ample background information, and interesting open problems accompany
the presentation.

Mircea Balaj

From MathSciNet, August 2022

MR4287348 52A35; 52A40, 52C07

Dillon, Travis; Soberón, Pablo

A mélange of diameter Helly-type theorems.

SIAM Journal on Discrete Mathematics 35 (2021), no. 3, 1615–1627.

The first theorem is a combined fractional and colorful version, actually a re-
laxation, of a long standing quantitative Helly-type conjecture for diameter due to
I. Bárány, M. Katchalski and J. Pach [Proc. Amer. Math. Soc. 86 (1982), no. 1,
109–114; MR0663877].

It is proved that there exists a decreasing function γ (0,
√
2) → (0, 1] such that

γ(c) → 1 as c → 0 and the following holds for every c ∈ (0,
√
2), α ∈ (0, 1], and

d ≥ 2: Let β = 1 − (1 − α · γ(c))1/2d; assume that F1, . . . ,F2d are finite families

of convex sets in R
d and set N =

∏2d
i=1 |Fi|; if

⋂2d
i=1 Fi has diameter greater than

or equal to 1 for at least αN different 2d-tuples (F1, . . . , F2d), where Fi ∈ Fi,
i = 1, . . . , 2d, then for some k ∈ {1, . . . , 2d}, there exists a subfamily G ⊂ Fk,
|G| ≥ β|Fk|, such that the diameter of the set

⋂
F∈G F is greater than or equal to

cd−1/2.
A convex set has large ‘discrete diameter’ if it contains many colinear integer

points. As an extension of the Doignon-Bell-Scarf theorem [J.-P. Doignon, J. Geom.
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3 (1973), 71–85; MR0387090] an exact Helly-type theorem for discrete diameter is
proved here as follows. Let k be a positive integer and let F be a finite family of
convex sets in R

d; if the intersection of every 4d or fewer elements of F contains k
colinear integer points, then the set

⋂
F∈F F contains k colinear integer points.

Further quantitative Helly-type results are obtained when particular Minkowski
norms measure the diameter. Three proofs are presented for the next theorem, one
of which implies a colorful version as well. Let ρ be a norm in R

d whose unit ball
is a polytope with k facets, and let F be a finite family of convex sets in R

d; if the
intersection of every kd or fewer members of F has ρ-diameter greater than or equal
to 1, then the set

⋂
F∈F F has ρ-diameter greater than or equal to 1; moreover,

this statement is not true if kd is replaced by kd− 1.
Jenő Lehel
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