The isospectral problem for flat tori from three perspectives
HTML articles powered by AMS MathViewer
- by Erik Nilsson, Julie Rowlett and Felix Rydell;
- Bull. Amer. Math. Soc. 60 (2023), 39-83
- DOI: https://doi.org/10.1090/bull/1770
- Published electronically: September 30, 2022
- HTML | PDF | Request permission
Abstract:
Flat tori are among the only types of Riemannian manifolds for which the Laplace eigenvalues can be explicitly computed. In 1964, Milnor used a construction of Witt to find an example of isospectral nonisometric Riemannian manifolds, a striking and concise result that occupied one page in the Proceedings of the National Academy of Science of the USA. Milnor’s example is a pair of 16-dimensional flat tori, whose set of Laplace eigenvalues are identical, in spite of the fact that these tori are not isometric. A natural question is, What is the lowest dimension in which such isospectral nonisometric pairs exist? This isospectral question for flat tori can be equivalently formulated in analytic, geometric, and number theoretic language. We explore this question from all three perspectives and describe its resolution by Schiemann in the 1990s. Moreover, we share a number of open problems.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 282313, DOI 10.1007/BFb0064643
- Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah, Julia: a fresh approach to numerical computing, SIAM Rev. 59 (2017), no. 1, 65–98. MR 3605826, DOI 10.1137/141000671
- Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Flat tori in three-dimensional space and convex integration, Proc. Natl. Acad. Sci. USA 109 (2012), no. 19, 7218–7223. MR 2935570, DOI 10.1073/pnas.1118478109
- Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Isometric embeddings of the square flat torus in ambient space, Ensaios Matemáticos [Mathematical Surveys], vol. 24, Sociedade Brasileira de Matemática, Rio de Janeiro, 2013. MR 3154503
- J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835
- J. W. S. Cassels, An introduction to the geometry of numbers, Springer Science & Business Media, 2012.
- J. Claes, Spectral rigidity on $\mathbf {T}^n$, http://www.math.uchicago.edu/\~may/VIGRE/VIGRE2011/REUPapers/Claes.pdf, 2021.
- Henry Cohn, Abhinav Kumar, Christian Reiher, and Achill Schürmann, Formal duality and generalizations of the Poisson summation formula, Discrete geometry and algebraic combinatorics, Contemp. Math., vol. 625, Amer. Math. Soc., Providence, RI, 2014, pp. 123–140. MR 3289409, DOI 10.1090/conm/625/12495
- John H. Conway, The sensual (quadratic) form, Carus Mathematical Monographs, vol. 26, Mathematical Association of America, Washington, DC, 1997. With the assistance of Francis Y. C. Fung. MR 1478672
- J. H. Conway and N. J. A. Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices 4 (1992), 93–96. MR 1159450, DOI 10.1155/S1073792892000102
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1013360
- L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. (2) 28 (1926/27), no. 1-4, 333–341. MR 1502786, DOI 10.2307/1968378
- A. G. Earnest and Gordon Nipp, On the theta series of positive quaternary quadratic forms, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 1, 33–38. MR 1097501
- Wolfgang Ebeling, Lattices and codes, 3rd ed., Advanced Lectures in Mathematics, Springer Spektrum, Wiesbaden, 2013. A course partially based on lectures by Friedrich Hirzebruch. MR 2977354, DOI 10.1007/978-3-658-00360-9
- Martin Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 27, Birkhäuser Verlag, Basel-Stuttgart, 1963 (German). MR 168561, DOI 10.1007/978-3-0348-6946-1
- P. Engel, L. Michel, and M. Senechal, Lattice geometry, Tech. report, 2004.
- Gerald B. Folland, Fourier analysis and its applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1145236
- Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. MR 1785292
- Carolyn Gordon, David L. Webb, and Scott Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 134–138. MR 1136137, DOI 10.1090/S0273-0979-1992-00289-6
- T. Gosset, On the regular and semi-regular figures in space of n dimensions, Messenger of Mathematics 29 (1900), 43–48.
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 226496
- Brian Hall, Lie groups, Lie algebras, and representations, 2nd ed., Graduate Texts in Mathematics, vol. 222, Springer, Cham, 2015. An elementary introduction. MR 3331229, DOI 10.1007/978-3-319-13467-3
- Erich Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959 (German). Herausgegeben im Auftrage der Akademie der Wissenschaften zu Göttingen. MR 104550
- Juan Marcos Cerviño and Georg Hein, The Conway-Sloane tetralattice pairs are non-isometric, Adv. Math. 228 (2011), no. 1, 153–166. MR 2822230, DOI 10.1016/j.aim.2011.05.016
- J. S. Hsia, Regular positive ternary quadratic forms, Mathematika 28 (1981), no. 2, 231–238 (1982). MR 645103, DOI 10.1112/S0025579300010287
- William C. Jagy, Irving Kaplansky, and Alexander Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332–341. MR 1600553, DOI 10.1112/S002557930001264X
- Michael Joswig and Thorsten Theobald, Polyhedral and algebraic methods in computational geometry, Universitext, Springer, London, 2013. Revised and updated translation of the 2008 German original. MR 2905853, DOI 10.1007/978-1-4471-4817-3
- Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), no. 4, 1–23. MR 201237, DOI 10.2307/2313748
- V. Kac, Lecture 16 - root systems and root lattices, https://math.mit.edu/classes/18.745/Notes/Lecture_16_Notes.pdf, 2021.
- Mingyu Kim and Byeong-Kweon Oh, Regular ternary triangular forms, J. Number Theory 214 (2020), 137–169. MR 4105706, DOI 10.1016/j.jnt.2020.04.016
- Yoshiyuki Kitaoka, Positive definite quadratic forms with the same representation numbers, Arch. Math. (Basel) 28 (1977), no. 5, 495–497. MR 441864, DOI 10.1007/BF01223956
- Martin Kneser, Zur Theorie der Kristallgitter, Math. Ann. 127 (1954), 105–106 (German). MR 61136, DOI 10.1007/BF01361112
- Martin Kneser, Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen, Math. Ann. 168 (1967), 31–39 (German). MR 205943, DOI 10.1007/BF01361543
- Neal Koblitz, Introduction to elliptic curves and modular forms, 2nd ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR 1216136, DOI 10.1007/978-1-4612-0909-6
- Nicolaas H. Kuiper, On $C^1$-isometric imbeddings. I, II, Indag. Math. 17 (1955), 545–556, 683–689. Nederl. Akad. Wetensch. Proc. Ser. A 58. MR 75640, DOI 10.1016/S1385-7258(55)50075-8
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 162204, DOI 10.1073/pnas.51.4.542
- Toshitsune Miyake, Modular forms, Reprint of the first 1989 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
- Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual codes and invariant theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Byeong-Kweon Oh, Regular positive ternary quadratic forms, Acta Arith. 147 (2011), no. 3, 233–243. MR 2773202, DOI 10.4064/aa147-3-3
- Ryoko Oishi-Tomiyasu, Positive-definite ternary quadratic forms with the same representations over $\Bbb {Z}$, Int. J. Number Theory 16 (2020), no. 7, 1493–1534. MR 4132036, DOI 10.1142/S1793042120500785
- O. T. O’Meara, On indecomposable quadratic forms, J. Reine Angew. Math. 317 (1980), 120–156. MR 581340, DOI 10.1515/crll.1980.317.120
- Ameya Pitale, Siegel modular forms, Lecture Notes in Mathematics, vol. 2240, Springer, Cham, 2019. A classical and representation-theoretic approach. MR 3931351, DOI 10.1007/978-3-030-15675-6
- Olav K. Richter and Martin Westerholt-Raum, Sturm bounds for Siegel modular forms, Res. Number Theory 1 (2015), Paper No. 5, 8. MR 3500989, DOI 10.1007/s40993-015-0008-4
- Alexander Schiemann, Ein Beispiel positiv definiter quadratischer Formen der Dimension $4$ mit gleichen Darstellungszahlen, Arch. Math. (Basel) 54 (1990), no. 4, 372–375 (German). MR 1042130, DOI 10.1007/BF01189584
- Alexander Schiemann, Ternäre positiv definite quadratische Formen mit gleichen Darstellungszahlen, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 268, Universität Bonn, Mathematisches Institut, Bonn, 1994 (German). Dissertation, Universität Bonn, Bonn, 1993. MR 1294141
- Alexander Schiemann, Ternary positive definite quadratic forms are determined by their theta series, Math. Ann. 308 (1997), no. 3, 507–517. MR 1457743, DOI 10.1007/s002080050086
- Achill Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Series, vol. 48, American Mathematical Society, Providence, RI, 2009. Polyhedral reduction theories, algorithms, and applications. MR 2466406, DOI 10.1090/ulect/048
- Denis Serre, Matrices, Graduate Texts in Mathematics, vol. 216, Springer-Verlag, New York, 2002. Theory and applications; Translated from the 2001 French original. MR 1923507
- Ken-ichi Shiota, On theta series and the splitting of $S_2(\Gamma _0(q))$, J. Math. Kyoto Univ. 31 (1991), no. 4, 909–930. MR 1141077, DOI 10.1215/kjm/1250519669
- Jacob Sturm, On the congruence of modular forms, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 275–280. MR 894516, DOI 10.1007/BFb0072985
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
- Y. Suwa-Bier, Positiv definite quadratische formen mit gleichen darstellungsanzahlen, na, 1984.
- P. P. Tammela, The Minkowski reduction domain for positive quadratic forms of seven variables, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 67 (1977), 108–143, 226 (Russian). Studies in number theory (LOMI), 4. MR 472718
- Audrey Terras, Harmonic analysis on symmetric spaces—Euclidean space, the sphere, and the Poincaré upper half-plane, 2nd ed., Springer, New York, 2013. MR 3100414, DOI 10.1007/978-1-4614-7972-7
- B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265–309 (German). MR 82513, DOI 10.1007/BF02392364
- G. L. Watson, Some problems in the theory of numbers, Ph.D. thesis, Univ. London, (1953).
- H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, (1911), 110–117.
- Ernst Witt, Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hansischen Univ. 14 (1941), 323–337 (German). MR 5508, DOI 10.1007/BF02940750
- Ernst Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31–44 (German). MR 1581519, DOI 10.1515/crll.1937.176.31
- Scott Wolpert, The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc. 244 (1978), 313–321. MR 514879, DOI 10.1090/S0002-9947-1978-0514879-9
Bibliographic Information
- Erik Nilsson
- Affiliation: Department of Mathematical Sciences, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
- Email: erikni6@kth.se
- Julie Rowlett
- Affiliation: Department of Mathematical Sciences, Chalmers University of Technology and The University of Gothenburg, SE-41296, Gothenburg, Sweden
- MR Author ID: 860217
- ORCID: 0000-0002-5724-3252
- Email: julie.rowlett@chalmers.se
- Felix Rydell
- Affiliation: Department of Mathematical Sciences, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
- ORCID: 0000-0003-0300-8115
- Email: felixry@kth.se
- Received by editor(s): October 18, 2021
- Published electronically: September 30, 2022
- Additional Notes: The second author was supported by Swedish Research Council Grant GAAME 2018-03873
The third author was partially supported by the Knut and Alice Wallenberg Foundation within their WASP (Wallenberg AI, Autonomous Systems and Software Program) AI/Math initiative. - © Copyright 2022 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 60 (2023), 39-83
- MSC (2020): Primary 58C40, 11H55, 11H06; Secondary 11H50, 11H71, 94B05, 11F11
- DOI: https://doi.org/10.1090/bull/1770
- MathSciNet review: 4520776