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THE ALGEBRO-GEOMETRIC METHOD:

SOLVING ALGEBRAIC DIFFERENTIAL EQUATIONS

BY PARAMETRIZATIONS

SEBASTIAN FALKENSTEINER, JOHANN J. MITTERAMSKOGLER,
J. RAFAEL SENDRA, AND FRANZ WINKLER

Abstract. We present a survey of the algebro-geometric method for solving

algebraic ordinary differential equations by means of parametrizations of the
associated algebraic sets. In particular, we deal with equations of order one,
and also systems of algebro-geometric dimension one. Various classes of so-
lutions are treated symbolically, such as rational, algebraic, and power series
solutions. We also consider classes of algebraic transformations of the associ-
ated algebraic sets preserving the solutions of the differential equations. Two
Maple packages, implementing some of these solution methods, are presented.
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1. Introduction

A differential equation is a relation between a function, finitely many of its
derivatives, and possibly the variable of differentiation. If the function depends on
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more than one variable, the derivatives will be partial. Correspondingly, we speak of
ordinary differential equations (ODEs) or partial differential equations (PDEs). In a
system of differential equations we simultaneously consider more than one equation.
The study and analysis of differential equations is a well-established branch in
mathematics. One may distinguish, among others, some main directions of study
in this field: the existence of solutions, the analysis of properties of solutions,
the actual computation of solutions, and the applications. Moreover, approximate
solutions can be computed by means of numerical methods, or exact expressions
for solutions can be derived by symbolic computer algebra methods.

In this paper, we describe several methods for the exact computation of solu-
tions of some classes of algebraic ordinary differential equations (AODEs), that is,
equations where the relationships between the functions and their derivatives are
given by polynomials. This approach we call the algebro-geometric method. The
key idea will be to use information derived from the geometric object defined by
these polynomials. In order to give a more precise motivation for the ideas and
methods presented in this survey, we conduct this introduction with the help of
some examples.

Let us consider the differential equation (see Example 2.6 for further details)

(1) 20 y3 + y2 + 20 yy′ − 25 y′ 2 + y′ = 0,

where ′ = d
dx denotes the usual derivative with respect to the independent variable

x. This differential equation is algebraic, since it is defined as F (y, y′) = 0, where
F (u, v) is the polynomial 20u3 + u2 + 20uv − 25 v 2 + v. The idea now is to use
the algebraic curve CF defined by the polynomial F (u, v); that is, CF := {(a, b) ∈
C2 |F (a, b) = 0} is the zero-locus of F in C2 (see Figure 1 for a plot of the real
part of the cubic curve CF ). The irreducible curve CF has genus zero and admits
the rational parametrization

P = (p1(x), p2(x)) :=

(
(1 + 6x)x

(x+ 1)2
,− (1 + 11x)x2

(x+ 1)3

)
.

We look for a rational function T (x) such that the reparametrization P(T (x))
takes into account the differential aspect of the given equation, i.e., such that
d
dx (p1(T (x))) = p2(T (x)). This is the case exactly for T (x) = 1/x. Since P(T (x))
is also a rational parametrization of CF , we have that

F

(
p1(T (x)),

d

dx
(p1(T (x))

)
= 0

and p1(T (x)) = (x + 6)/(x + 1)2 is a rational solution of the differential equation
F (y, y′) = 0. In Section 2.1 we explain that the general solution p1(T (x+c)) covers
all rational solutions of F (y, y′) = 0.

Let us now consider the AODE

(2) 20y3 + 2y2 − 25y′2 + y′ = 0.

Note that (1) and (2) only differ in one term, namely 20yy′. Since the algebraic
curve CF corresponding to the polynomial F (u, v) = 20u3 + 2u2 − 25v2 + v has
genus one, there is no rational parametrization of CF . It will be shown that this
also means F (y, y′) = 0 does not have nonconstant rational solutions. Instead we
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can work with local parametrizations. A Puiseux expansion of F (u, v) at u = 0 is

v(u) =
1

25
+ u2 + 20u3 − 25u4 − 1000u5 +O(u6).

The corresponding local parametrization P = (p1(x), p2(x)) = (x, v(x)) describes
the curve CF around the curve-point (0, 1/25). Again we look for a reparametriza-
tion such that d

dx (p1(T (x))) = p2(T (x)). Setting T (0) = 0, this is exactly the case
for

T (x) =
x

25
+

x3

1875
+

x4

3125
+O(x5).

Then p1(T (x)) = T (x) defines a formal power series solution of the differential
equation (2).

When trying to solve (2) by using the local parametrization

(q1(x), q2(x)) = (x,−x2 − 20x3 + 25x4 + 1000x5 +O(x6)),

one obtains that the above strategy cannot be followed. The reason is that the
corresponding solution is a formal power series expanded around infinity. For this
type of solution, and for formal power series with fractional exponents, some ad-
ditional transformations have to be performed, as will be explained in the second
part of Section 2.1.

Let us also remark that if, instead of having one autonomous first-order algebraic
ODE, we have a system of autonomous AODEs of maximum order m, we can
associate to it a system of algebraic equations that will define a zero-set in Cm+1.
Now, if this zero-set is a space curve, the previous ideas can be extended; this is
explained in Section 3.

In examples (1) and (2), the differential equations were autonomous and of or-
der one. This allowed us to associate a planar curve to them. When working with
nonautonomous first-order AODEs F (x, y, y′) = 0, we can either try to parametrize
the surface SF := {(a, b, c) ∈ C3 |F (a, b, c) = 0} or consider F (x, u, v) as a poly-
nomial in the variables {u, v}, and take the zero-set of F in the algebraic closure

of the field C(x), i.e., using the curve {(a, b) ∈ C(x)
2 |F (x, a, b) = 0}. Although

these associated geometric objects are more complicated, it is possible to develop a
theory on the existence of rational general solutions of F (x, y, y′) = 0 as we explain
in Section 2.2.

Sometimes one can transform a given nonautonomous AODE into an autono-
mous AODE. Following the general idea of working with the algebraic sets associ-
ated to the AODEs, in Section 4 we describe the class of transformations that can
be used for this purpose.

Historical Background. The problem of finding exact solutions of ODEs and also
PDEs has been extensively studied in the literature. The huge majority of these
methods, however, make implicit assumptions on the structure of the equations,
such as that the system is in normal form where the well-known Cauchy–Kovalev-
skaya theorem can be applied. We focus here on methods where these assumptions
are dropped and note that there are a lot of famous examples which are not of nor-
mal form, such as Navier–Stokes equations, Maxwell equations, and many others.

In Zwillinger [Zwi98, Section II.B] several different exact methods are proposed.
In Hubert [Hub96] one can find a method for computing the implicit general and
singular solutions of AODEs by means of Gröbner bases. Eremenko [Ere98] provides
a degree bound for rational solutions of AODEs and hence a method for determining
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them. In Ince [Inc26], linear differential equations and generic solutions of first-order
AODEs are considered.

The treatment considered in this paper is the so-called algebro-geometric ap-
proach, which relies on the combination of three fields: differential algebra (see
[Rit50] and [Kol73]), computer algebra (see [Win96] and [vzGG13]), and algebraic
geometry (see [CLO05]). The main idea, introduced in [FG04] for autonomous
first-order AODEs, is as follows: we associate to the given AODE, or the system
of AODEs, an algebraic set. Now we have two problem levels: the differential level
corresponding to the input AODEs, and the purely algebraic geometric level corre-
sponding to the algebraic set. In this situation, the underling strategy is to analyze
whether, and how, the properties and computations on the algebraic geometric level
can be translated to the input differential equations. For a wide panoramic vision,
we refer to the PhD theses [Ngô11], [Gra15], [Vo16], and [Fal20].

In this paper we focus on AODEs and some special systems of this type of
equation. For the case of algebraic partial differential equations we refer, e.g., to
Robertz [Rob14] or Grasegger et al. [GLSW18].

Structure. Section 2 is devoted to first-order AODEs. The stage is prepared with
some basic definitions. Then we first focus on the autonomous case, dealing with
the existence and actual computation of rational general solutions, algebraic general
solutions, and finally formal power series solutions. Afterward the nonautonomous
case is treated. Here we take two different approaches: the given AODE may be
considered geometrically as a surface over the ground field, or it may be considered
as a curve with coefficients in the field of rational functions in the independent
variable. In a comparison of these approaches, we find that they essentially deter-
mine the same rational general solutions. Additionally, algebraic general solutions
of nonautonomous AODEs are also treated. In Section 3 systems of autonomous
AODEs of dimension one are studied. We distinguish first the case of rational so-
lutions and later the case of formal power series solutions. In Section 4 we treat
the problem of detecting those rational transformations, on the algebraic level,
that preserve the differential information of the given AODE. This analysis is first
performed for linear transformations and later for birational transformations. In
Section 5 we briefly describe two Maple packages for dealing with some of the al-
gorithmic ideas introduced in this paper. Finally, in Section 6, we summarize the
algebro-geometric approach and we give an outlook to some future research topics.
In the appendices, basic notions and results on formal power series (Appendix A)
and local parametrizations (Appendix B) are recalled.

Notation. We finish this section by introducing the notation and terminology that
will be used throughout this paper.

For every set A containing a zero-element, we use the notation A∗ = A \ {0}. In
particular, N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}.

Let R be an integral domain, and let ′ : R → R be a map which is additive, i.e.,
(a+ b)′ = a′+ b′, and satisfies the product rule or Leibniz rule, i.e., (ab)′ = a′b+ab′

for a, b ∈ R. Then R is called a differential ring, and in the case where it is a
field, we speak of a differential field. We will work with differential rings and fields
of characteristic zero. When we extend a differential ring or field algebraically by
some α, the derivation extends uniquely according to the minimal polynomial. In
a transcendental extension by t we are free to define the derivation of t.
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The ring of differential polynomials in the variable y over the differential ring
R, written R{y}, consists of the polynomials in R[y, y1, y2, . . .] in infinitely many
variables, where y1 = y′, y2 = y′′, etc. For yi we also write y(i).

We consider K as a field of constants (i.e., a′ = 0 for a ∈ K) and we extend the
derivation to K[x] by letting x′ = 1. An AODE over K is an equation of the form

F (x, y, y′, . . . , y(n)) = 0,

where F ∈ K[x]{y}\K[x]. By abuse of notation we often do not distinguish between
the polynomial F and the associated differential equation F = 0. Additionally, in
Section 3, we will deal with some particular systems of AODEs. We use the notation
ŷ to represent a solution of the differential equation.

When working with the geometric counterpart of the differential problem, we
will denote by An(K) the n-dimensional affine space over K, the algebraic closure
of K. Sometimes, for a set of polynomials F , we will use the notation V(F) to
represent the algebraic set defined by F .

Let K be a field of characteristic zero, and let R be a differential ring. In Table 1
we introduce the basic algebraic structures with coefficients in K or R, respectively,
an independent variable x and indeterminates y1, . . . , y�. For more detail on formal
power series we refer to Appendix A.

Table 1. Notation for basic algebraic structures.

K algebraic closure of K
K[x] ring of polynomials
K(x) field of rational functions
K[[x]] ring of formal power series with exponents in N

K((x)) field of formal Laurent series
K{{x}} field of algebraic Puiseux series
K〈〈x〉〉 field of formal Puiseux series
R{y1, . . . , y�} ring of differential polynomials

2. AODEs of order one

Let K be a differential field of characteristic zero. We assume that K is equipped
with a derivation, written as ′, such that ′ maps all elements of K to 0, i.e., K is its
own field of constants. Over K we can consider various types of functions, such as
rational or algebraic functions, and the derivation ′ can be extended to such classes
of functions.

Definition 2.1. Let F (x, y, y′, . . . , y(n)) be a differential polynomial in K[x]{y} \
K[x]. This polynomial generates an AODE over K of the form

(3) F (x, y, y′, . . . , y(n)) = 0.

If F does not explicitly depend on x, we have an autonomous AODE of the form

F (y, y′, . . . , y(n)) = 0.

This differential equation is called the AODE defined by F , and F is called the
defining polynomial of the differential equation (3). If the degree of F in y(n) is
positive, we call n the order of the AODE. If F is a differential polynomial of
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positive order n, then the separant of F , denoted by SF , is the partial derivative
of F with respect to (w.r.t.) y(n).

Observe that an algebraic equation is simply an AODE of order zero. When
we substitute η for the variable y in F , we often simply write F (η) instead of
F (x, η, η′, . . . , η(n)).

Definition 2.2. We extend the differential field (K,′ ) to (K(x),′ ), so that x′ = 1.
Let L be a differential extension field of K(x). An element ŷ ∈ L is a zero of F iff
F (ŷ) = 0. We call a zero of F also a solution of the AODE (3) defined by F .

If F can be factored as

F = F1 · . . . · Fk

over K, then the set of solutions of F is simply the union of the sets of solutions of
the factors Fi. So let us assume that the defining polynomial F is irreducible over
K.

By {F} we denote the radical differential ideal generated by F . According to
Ritt [Rit50, Chapter II], this ideal can be decomposed as the intersection of two
divisor ideals, namely the ideal of all differential polynomials G, with the property
that SFG ∈ {F}, and the radical differential ideal generated by F and SF . In
terms of the solutions this means that a solution is either a solution for which the
separant does not vanish, or a solution for which the separant does vanish.

Definition 2.3. Let F be an irreducible differential polynomial in K[x]{y}. Then

{F} = ({F} : SF )︸ ︷︷ ︸
general component

∩ {F, SF}.︸ ︷︷ ︸
singular component

So {F} can be decomposed into a so-called general component and a singular com-
ponent. By {F} : SF we mean the quotient of the radical generated by F and the
ideal generated by SF .

According to Ritt, the general component is a prime differential ideal. So it has
a generic zero ŷ in some differential extension field, such that (s.t.) a differential
polynomial G is in {F} : SF if and only if G(ŷ) = 0.

Definition 2.4. Let F and SF be as above. A generic zero of the prime differential
ideal {F} : SF is called a general solution of the AODE F = 0.

Ritt proves in [Rit50, Chapter II, Section 13] that a differential polynomial G is
in the general component of {F} if and only if G can be pseudo-reduced to 0 modulo
F . So SF cannot be in the general component, because the pseudo-remainder of
SF modulo F is SF itself, which is not 0. In other words, if η is a general solution
of F = 0, then SF (η) �= 0.

From the point of view of analysis (compare [Inc26]) we know that the family of
solutions of a differential equation of order one depends on an arbitrary constant c.
So a general solution of (3) must be an element of a transcendental extension field
of K(x), expressible in terms of a transcendental element c, s.t. c′ = 0. Such a c is
called an arbitrary constant. For the case of rational general solutions of AODEs
of order one, this is stated in [NW10, Lemma 3.12].
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Example 2.5. Consider the AODE

F (x, y, y′) = y′2 + 3y′ − 2y − 3x = 0.

A general solution of this AODE is y = 1
2 ((x + c)2 + 3c), where c is an arbitrary

constant. The separant of F is SF = 2y′ + 3 and the singular solution of F is
ŷ = − 3

2x− 9
8 .

So how can we determine a general solution of an AODE (3)? We can implicitly
describe a generic zero of the prime differential ideal {F} : SF by the congruence
class of y in the quotient ring K(x){y} / ({F} : SF ), which is actually an integral
domain. Or we could describe the solution by computing a Gröbner basis for
{F} : SF , as Hubert does in her paper [Hub96] for the case that F = 0 is of order
one. But this is an implicit description of the general solution. In this section we
want to describe ways for determining explicit solutions of first-order AODEs.

2.1. Autonomous AODEs of order one. We consider an autonomous AODE
over Q of order one, i.e., a differential equation of the form

(4) F (y, y′) = 0,

where F ∈ Q[y, y′]\Q[y] is absolutely irreducible. Once we fix a class of functions in
which we want to find solutions, there may or may not be an algorithm for deciding
the existence of solutions, and, in the positive case, determining the solutions. The
starting point is the work of Feng and Gao [FG04, FG06] and generalizes either
to a bigger class of differential equations or to more general functions where the
solutions are sought.

Rational general solutions. This case is considered by R. Feng and X.-S. Gao
in [FG04,FG06], where an algorithm is given for deciding the existence of a ratio-
nal general solution and, in the positive case, for determining the rational general
solution. We describe their approach to this situation.

If equation (4) has a nonconstant rational solution ŷ ∈ Q(x), then F (ŷ, ŷ′) =
0, and therefore P = (ŷ, ŷ′) is a rational parametrization1 of the corresponding
algebraic curve CF defined by F (u, v) = 0. For the theory of parametric curves
we refer to [SWPD08]. Feng and Gao prove that Q(ŷ, ŷ′) = Q(x) (see [FG06,
Theorem 3.7]), which implies (for instance by [SWPD08, Theorem 4.14]) that the
parametrization (ŷ, ŷ′) is proper, i.e., it induces a birational map from A1(Q) onto

the curve CF . And this implies that every other proper parametrization P̃ can
be expressed as P̃ = P(T ), where T is a Möbius transformation, i.e., a linear
birational map of the form (ax+ b)/(cx+ d) with ad− bc �= 0. Moreover, if (4) has
a rational solution, then such a solution can be found with coefficients in Q (see
[FG04, Theorem 6]).

So we have an algorithm for deciding whether (4) has a rational solution:

(a) Compute a proper rational parametrization P = (p1(x), p2(x)) of CF over
Q, e.g., by the algorithm in [SW97]. If such a parametrization cannot be
found, then there is no rational solution of the differential equation (4).

(b) Compute the coefficients of a Möbius transformation T s.t. p1(T ) solves (4).
The existence of such a transformation can be decided by a Gröbner basis

1A pair of rational functions P is a rational parametrization of the irreducible curve C iff P
induces a rational mapping from A1(Q) onto C. P is proper iff the mapping is birational.
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computation. If such a transformation cannot be found, then there is no
rational solution of the differential equation (4).

(c) ŷ = p1(T ) is a rational solution.

In fact, the existence of such a Möbius transformation as in (b) can be decided
by very basic means. Let r(x) = p2(x)/p

′
1(x). If r is a constant in Q\{0}, then the

desired transformation is T : x �→ rx. If r(x) = a(x − b)2 for a, b ∈ Q and a �= 0,
then the desired transformation is T : x �→ (abx−1)/ax. Otherwise, such a Möbius
transformation does not exist.

Once we have found a particular rational solution ŷ(x), then ŷ(x+c) is a rational
general solution (see [FG06, Lemma 3.1]). So we have a decision algorithm for the
existence of a rational general solution of an autonomous AODE over Q of order
one.2

Example 2.6. We consider the differential equation F (y, y′) = 0, where

F (y, y′) = 20 y3 + y2 + 20 yy′ − 25 y′ 2 + y′.

F defines a cubic curve in Q
2
of genus zero (see Figure 1), which can be properly

parametrized as

P = (p1(x), p2(x)) :=

(
(1 + 6x)x

(x+ 1)
2 ,− (1 + 11x)x2

(x+ 1)
3

)
.

Since

r(x) :=
p2(x)

p′1(x)
= −x2,

we know that F = 0 has a rational solution, and the required Möbius transformation
is

T =
1

x
.

Applying T , we get

P(T ) =

(
x+ 6

(x+ 1)
2 ,

−x− 11

(x+ 1)
3

)
.

Therefore, ŷ = (x+ 6)/(x+ 1)2 is a rational solution of F , and

ŷ(x+ c) =
x+ c+ 6

(x+ c+ 1)2

is a rational general solution of F (y, y′) = 0.

Algebraic general solutions. The work of Feng and Gao on rational solutions was
extended to algebraic solutions in [ACFG05] and further examined in [Fal20]. In
particular, in [ACFG05] an algorithm for deciding the existence of an algebraic
general solution and, in the positive case, for computing its minimal polynomial is
presented. It is worth mentioning that rational functions are particular instances
of algebraic functions.

Definition 2.7. Let ŷ ∈ Q〈〈x〉〉 be a solution of a differential equation F (y, y′) = 0,
and let Q ∈ Q[x, y] be an irreducible polynomial with Q(x, ŷ) = 0. Then ŷ is called
an algebraic solution (over Q).

2As stated here, the algorithm does not detect the rational general solution ŷ = c for the family
of AODEs ky′ = 0, where k ∈ Q \ {0}. This is due to the fact that AODEs of this form do not
have nontrivial rational solutions. However, this is the only case that requires special treatment.
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Figure 1. The real part of the cubic curve CF defined by the
AODE of Example 2.6. Note that the point at (−0.1,−0.02) is an
isolated singularity of the curve.

If equation (4) has a nonconstant algebraic solution ŷ with minimal polynomial
Q(x, y) ∈ Q[x, y], then every conjugate root ofQ(x, y) is a solution of (4). Moreover,
all algebraic solutions of (4) are found by a shift of the independent variable. Let
us summarize this in the following theorem (see [Fal20, Theorem 4.1.22]).

Theorem 2.8. Let F ∈ Q[y, y′] be as in (4), and let ŷ ∈ Q〈〈x〉〉 be an algebraic
solution of F = 0 with minimal polynomial Q(x, y) ∈ Q[x, y]. Then all formal
Puiseux series solutions of F = 0 are algebraic and are given by Q(x+ c, y), where
c ∈ Q.

Since, by Theorem 2.8, it is equivalent to find any algebraic solution or all of
them, we simplify the problem by additionally considering an initial value (y0, y1) ∈
CF with y1 �= 0 and SF (y0, y1) �= 0. There exists a unique formal power series
solution ŷ ∈ Q[[x]] of (4) fulfilling the initial values ŷ(0) = y0, ŷ′(0) = y1. This
solution can be easily computed term by term (see [Fal20, Proposition 2.1.7]).

By using elementary properties on places of the algebraic curve CF and the
Riemann–Hurwitz formula, a degree bound on the minimal polynomial Q can be
derived [ACFG05, Theorems 3.4 and 3.8]:

Theorem 2.9. Let F ∈ Q[y, y′] be as in (4), and let Q ∈ Q[x, y] be the minimal
polynomial of an algebraic solution of F = 0. Then

degx(Q) = degy′(F ) and degy(Q) ≤ degy(F ) + degy′(F ).
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The above theorems lead to the following algorithm for computing all algebraic
solutions of a given differential equation (4):

(a) Compute sufficiently many terms of a formal power series solution ŷ ∈ Q[[x]]
of F = 0.

(b) Make an ansatz of unknown coefficients for Q(x, y) ∈ Q[x, y] fulfilling the
degree bound from above, and perform coefficient comparison for Q(x, ŷ) =
0 in order to determine a set of candidates.

(c) Check whether there is an irreducible polynomial implicitly defining a so-
lution of F = 0 in the set of candidates.

(d) In the negative case, no algebraic solution exists; in the affirmative case,
all solutions are given by Q(x+ c, y).

Example 2.10. Let us consider the differential equation

F (y, y′) = y4 + 3y′ = 0.

For the initial value (1,− 1
3 ) ∈ CF , we obtain the formal power series solution

ϕ = 1− x

3
+

2x2

9
− 14x3

81
+O(x4)

(see Figure 2). Let Q(x, y) =
∑

0≤i≤4,0≤j≤1 ai,j x
i yj . Then Q(x, ϕ) = 0 leads to

the possible choice Q(x, y) = x y3 − 1 and the solutions, namely ŷ = ζ
3
√
x+c

for

ζ3 = 1, are determined by Q(x+ c, y).

Figure 2. The real part of the curve CF defined by the AODE
of Example 2.10. The highlighted point at (1,−1/3) denotes the
initial value of the used formal power series solution.

Power series solutions. In [FS20] formal power series solutions with nonnegative
integer exponents of equations of the type (4) are studied. It is shown that every
formal power series solution of F (y, y′) = 0 is convergent. This result is generalized
in [CFS20] to formal Puiseux series, i.e., formal power series with rational exponents
(see Appendix A). The proof is constructive and provides an algorithm to describe
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all Puiseux series solutions. Let us outline it here in a similar manner as shown
above for rational and algebraic solutions. Additionally, let us note that algebraic
functions can always be expanded as formal Puiseux series. Hence, these results
generalize [ACFG05] and the previous two sections.

If equation (4) has a nonconstant formal Puiseux series solution ŷ with rami-
fication index equal to n, then F (ŷ, ŷ′) = 0, and therefore P = (p1(t), p2(t)) =
(ŷ(tn), ŷ′(tn)) is a local parametrization of the corresponding algebraic curve CF
defined by F (u, v) = 0, called a solution parametrization. For the theory of local
parametrizations we refer to [Duv89,Wal50]. By performing order comparison in
d p1(t)

dt = ntn−1 ŷ′(tn) = ntn−1 p2(t), the necessary condition

(5) ordt(p
′
1(t)) + 1 = ordt(p1(t)− p1(0)) = n+ ordt(p2(t))

follows. Since reparametrizations are of the same order, a necessary condition on a
place is found such that it can contain a solution parametrization. If the place [P]
indeed contains a solution parametrization, we may speak about a solution place.

It turns out that condition (5) is already a sufficient condition [CFS20, Theorem

10]. This can be seen by expanding the reparametrization d p1(T (t))
dt = p2(T (t)) in

order to obtain the equation

(6) p′1(T (t))T
′(t) = ntn−1 p2(T (t)),

which can be solved for formal power series T (t) ∈ Q[[t]] of order one, for example by
the Newton polygon method for differential equations [Can93]. For positive n there
exist exactly n solutions, and after computing the first coefficient of T (t), the next
coefficients are uniquely determined. The solutions of F (y, y′) = 0 corresponding
to P are now given by ŷ = p1(T (x

1/n)).

Theorem 2.11. Let F ∈ Q[y, y′] be as in (4), and let P ∈ Q((t))2 be an irreducible
local parametrization of CF centered at (y0, p0). Then [P] is a solution place if and
only if equation (5) holds for an n ∈ N∗. In the affirmative case, there are n many
solutions of F = 0 corresponding to P and all of them have ramification index equal
to n.

The above observations address power series solutions expanded around 0. Since
the given differential equation is autonomous, the independent variable can be
shifted and solutions expanded around any x0 ∈ C can be found. Formal power
series expanded around infinity are obtained in a similar way as described above,
coming from the solutions of the associated differential equation

(7) p′1(T (t))T
′(t) = nt−n−1 p2(T (t)).

Equation (7) has either no solution or infinitely many. More precisely, solutions
of (7) and, therefore, solutions of F = 0 expanded around infinity involve an un-
specified parameter.

Using results on the convergence of Puiseux expansions (see [Duv89]), we can
show convergence of the solutions. The components of local parametrizations
(p1(t), p2(t)) arising from such Puiseux expansions are convergent. Then, also the
solutions T (t) of (6) and (7) have a positive radius of convergence. This property
remains valid for the composition leading to the following result [CFS20, Theorem
11].

Theorem 2.12. Let F ∈ Q[y, y′]. Then all formal Puiseux series solutions of
F = 0, expanded around any finite point or around infinity, are convergent.
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The algorithm for computing all local solutions of (4) with given initial data
y(0) = y0 ∈ C follows from the proof of Theorem (2.11) and is given by the
following:

(a) Compute for every curve branch of CF centered above y0 a local parame-
trization P = (p1(t), p2(t)), e.g., by the algorithm in [Duv89].

(b) Check whether the necessary condition (5) is fulfilled for positive n.
(c) In the affirmative case, compute all reparametrizations P(T (t)) by solv-

ing (6).
(d) ŷ = p1(T (x

1/n)) are the Puiseux series solutions.

Let us emphasize that in [Duv89] computational bounds are presented such that
all local parametrizations centered above a given y0 ∈ C are in one-to-one corre-
spondence to a set of truncations. This enables us to represent the Puiseux series
solutions ŷ as truncated Puiseux series where existence and uniqueness are ensured.

For almost every y0 ∈ C, there exist degv(F (u, v)) many values y1 ∈ C such
that (y0, y1) ∈ CF corresponds to a formal power series solution ŷ with ramification
index equal to 1 and (ŷ(0), ŷ′(0)) = (y0, y1). Curve points where this may not
happen are as follows:

• Singular curve points and points of ramification with respect to the projec-
tion onto the v-axis computed by F (y0, y1) =

∂ F
∂v (y0, y1) = 0.

• Curve points lying on the v-axis computed by F (y0, 0) = 0.
• Curve points with second component equal to infinity computed with
lcv(F )(y0) = 0, where lcv is the leading coefficient of F (u, v) considered
as polynomial in v.

Such points are called critical curve points. Curve points with first component
equal to infinity correspond to solutions ŷ of negative order. They can be found by
considering the numerator of F (1/u,−u/v2) and the initial value ŷ(0) = 0.

The above reasonings enable the representation of all local solutions of (4) as
follows:

(a) Compute the critical curve points of CF . For every other value (y0, y1) ∈ CF
the solution is represented by y0 + y1 x.

(b) Compute for every critical curve point the solution truncations with y(0) =
y0 as initial value by the preceding algorithm.

(c) Compute the solutions with negative order by considering the numerator
of F (1/u,−u/v2) and ŷ(0) = 0 as initial value.

(d) Compute the solutions expanded around infinity.

Example 2.13. Let us continue Example 2.10. For the differential equation
F (y, y′) = y4 + 3y′, we obtain a generic solution represented by the truncation

yg = y0 − y4
0

3 x + O(x2), where y(0) = y0 is an arbitrary initial value, and the
particular solutions are represented as

ŷ1 = 0, ŷ2 =
ζ

x1/3
, ŷ =

ζ

x1/3
+

c

x4/3
+O(

1

x5/3
),

where ζ3 = 1. The solution ŷ corresponds to the expansion of yg at infinity, where

c y30 = 1, and also to the expansion of the general solution ŷ = ζ
3
√
x+c

. The solution

ŷ2 corresponds to the particular choice c = 0, y0 = ∞.
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Figure 3. The real part of the Devil’s curve from Example 2.14.
The highlighted points denote the critical curve points.

Example 2.14. Let us consider

F (y, y′) = y′4 − y′2 − y4 +
4

9
y2 = 0.

The corresponding algebraic set given by F (u, v) = 0 is called the Devil’s curve
(see Figure 3) and has the critical curve points {(0, 0), (± 2

3 , 0), (α, β)}, where

36α4 − 16α2 + 9 = 0 and 2β2 − 1 = 0.
The local parametrizations centered at (0, 0) are (t,± 2

3 t+O(t2)), which do not
provide any solution (see equation (5)) and the constant 0 is the only solution with
(0, 0) as an initial tuple.

A local parametrization at ( 23 , 0) is, for example,

(p1(t), p2(t)) = ( 23 − 16
27 t

2,− 16
27 t+

11·25·31
39 t3 +O(t5)),

and (5) is fulfilled with n = 1 > 0. Then equation (6) corresponding to (p1(t), p2(t))
is T ′(t) = p2(T (t)) and has the unique solution

T (t) = 2
3 t−

11·31
22·37 t3 +O(t5).

Therefore,

p1(T (x)) =
2
3 − 4

27 x
2 + 22·11·31

310 x4 +O(x5)

is a solution truncation of F = 0. Similarly, we can find solution truncations coming
from the other local parametrizations, such as

(q1(t), q2(t)) = (α+ (2α3 − 4α
9 ) t2, β + (2α3 − 4α

9 ) t+O(t2)),

centered at (α, β). Equation (5) is fulfilled with n = 2 and leads to the Puiseux
series solutions

ŷ = α+ β x+ γ(36α3−8α)
27 x3/2,

where γ are the roots of 65γ2 = 98αβ − 144α3β.
For the numerator of F (1/y,−y′/y2), the local parametrizations at the origin,

given by (t,± 13i
36 t

2 +O(t3)), do not fulfill (5) and no solutions with negative order
exist.
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2.2. Nonautonomous AODEs of order one. Now let us consider AODEs of
order one in which the variable x might appear explicitly. In particular, we consider
an algebraic differential equation over Q of the form

(8) F (x, y, y′) = 0.

If we apply the same approach as for autonomous equations, we might take two
paths. First, we could associate to the differential equation (8) the surface SF in
A3(Q) defined by F (x, u, v) = 0. Every rational solution ŷ of the AODE gives rise
to a rational curve on SF parametrized by (x, ŷ(x), ŷ′(x)). Alternatively, we might

associate to the AODE (8) the curve CF ⊆ A2(Q(x)) defined by F (x, u, v) = 0,
where we consider this as an equation in u and v with coefficients in Q(x). In this
case, a rational solution ŷ of the AODE corresponds to a point on CF . If we can
parametrize either the surface SF or the curve CF by suitable rational functions,
then it is possible to find a rational general solution of the differential equation (8)
by a reparametrization of these rational functions, provided such a solution exists.

In what follows we investigate both approaches and compare them w.r.t. their
applicability.

Rational general solutions via surface parametrization. This approach has been
pursued by Ngô and Winkler in [NW10,NW11b]. Consider the surface SF ⊆ A3(Q)
defined by F (x, u, v) = 0. Assume that SF is parametrizable by rational functions,
and let

P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) ∈ Q(s, t)3

be a proper rational parametrization.3 We call AODEs whose surface SF is parame-
trizable in this way surface parametrizable. Observe that by Castelnuovo’s theorem
(see, e.g., [Zar58]), any unirational algebraic surface over Q is rational. In other
words, if SF has a rational parametrization, then we can find a proper rational
parametrization as well. Any rational solution ŷ = f(x) of the AODE (8) gives rise
to a rational solution curve parametrizable by P if and only if the space curve Cf =

{(x, u, v) | x ∈ Q, u = f(x), v = f ′(x)} is almost contained in im(P) ∩ dom(P−1),
viz. except for finitely many points of Cf . By [NW10, Proposition 3.4 and the
subsequent remark], we can turn the search for a rational solution of (8), and in
particular for a rational general solution, into the search for a rational solution of a
planar rational system. Namely, a surface parametrizable AODE (8) has a rational
solution whose solution curve is parametrizable by P if and only if the autonomous
system

(9)

⎧⎪⎪⎨
⎪⎪⎩
s′ =

f1(s, t)

g(s, t)

t′ =
f2(s, t)

g(s, t)

3Similarly to the case of algebraic curves, a triple of rational functions P is a rational
parametrization of the irreducible surface S iff P induces a rational mapping from A2(Q) onto S
such that the Jacobian has rank two. P is proper iff the mapping is birational.
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has a rational solution, where f1(s, t), f2(s, t), g(s, t) ∈ Q(s, t) are given by

f1(s, t) =
∂p2(s, t)

∂t
− p3(s, t)

∂p1(s, t)

∂t
,

f2(s, t) = p3(s, t)
∂p1(s, t)

∂s
− ∂p2(s, t)

∂s
,

g(s, t) =
∂p1(s, t)

∂s

∂p2(s, t)

∂t
− ∂p1(s, t)

∂t

∂p2(s, t)

∂s
.

We call the system (9) the associated system of the differential equation (8) w.r.t.
the parametrization P. By construction, the associated system is an autonomous
system of quasi-linear differential equations of order one. Solution methods for sys-
tems of this particular shape have been studied in [NW11b], for example. Assume
that we have a method for finding rational general solutions of system (9). In this
case, [NW10, Theorem 3.15] asserts that we can construct a solution of the differen-
tial equation (8) via a reparametrization of P. In particular, if (ŝ, t̂) is a rational gen-
eral solution of the associated system (9) w.r.t. P(s, t) = (p1(s, t), p2(s, t), p3(s, t)),
then

ŷ = p2(ŝ(x+ k), t̂(x+ k))

is a rational general solution of the AODE (8), where

k = x− p1(ŝ, t̂)

is a constant. In other words, we translate the solution (ŝ, t̂) of the associated
system by a constant and substitute this quantity into the parametrization P.
By construction, P(ŝ(x + k), t̂(x + k)) = (x, f(x), f ′(x)) for some rational func-
tion f(x), cf. [NW10, Proposition 3.4]. Every parametrization of SF annihilates
the polynomial F (x, u, v) and so does the reparametrization (x, f(x), f ′(x)), i.e.,
F (x, f(x), f ′(x)) = 0, which means that f(x) is a rational solution of the differen-
tial equation (8). Furthermore, if f(x) = p2(ŝ(x+ k), t̂(x+ k)) is constructed from
a general solution of the associated system, then it is a rational general solution of
the original AODE.

Note that proper rational parametrizations of algebraic surfaces are far from be-
ing unique, and system (9) depends on the parametrization being used. However,
the existence of a rational general solution is an invariant among the systems ob-
tained in this way. In particular, the success of the method described above does
not depend on the proper rational parametrization being used. Furthermore, in
the case of rational general solutions, we can assume without loss of generality that
the corresponding solution curve is parametrizable by P, cf. [NW11a, the remarks
preceding Theorem 2.1]. Consequently, if the differential equation (8) is surface
parametrizable, then it has a rational general solution if and only if its associated
system w.r.t. any proper rational parametrization of SF has such a solution.

We summarize these ideas in the subsequent algorithm for computing rational
general solutions of surface parametrizable first-order AODEs:

(a) Given F (x, y, y′) = 0, a surface parametrizable AODE of order one. Com-
pute a proper rational parametrization

P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) ∈ Q(s, t)3

of the associated surface SF , e.g., by using the algorithm in [Sch98].
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(b) Construct the associated system (9) w.r.t. P and compute a rational general
solution (ŝ, t̂) of this system. An algorithm for finding such solutions is given
in [NW11b]. If no such solution exists, then the input AODE does not have
a rational general solution.

(c) Compute the constant k = x− p1(ŝ, t̂) and return

ŷ = p2(ŝ(x+ k), t̂(x+ k)),

a rational general solution of the input AODE.

Example 2.15. Let us consider a first-order AODE F (x, y, y′) = 0, where

F (x, y, y′) = x6y′ − 2x5y + x3y′
3 − 3x2yy′

2
+ 3xy2y′ − y3.

The zero-locus of F (x, u, v) defines a rational surface in A3(Q) (see Figure 4) which
has the proper rational parametrization

P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) =

(
t− s3

2s
,
t2 − s6

4s
, t

)
.

Figure 4. The real part of the surface SF defined by the AODE of
Example 2.15. The highlighted curves on the surface correspond to
the space curves generated by particular rational solutions. These
particular solutions are obtained from the general solution ŷ =
cx(4x+ c2)/8 by setting the arbitrary constant to values from the
real interval [−3, 3].
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With the aid of this parametization, we are able to reduce the differential equa-
tion to the following associated system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
s′ =

f1(s, t)

g(s, t)
=

∂p2(s,t)
∂t − p3(s, t)

∂p1(s,t)
∂t

∂p1(s,t)
∂s

∂p2(s,t)
∂t − ∂p1(s,t)

∂t
∂p2(s,t)

∂s

= 0

t′ =
f2(s, t)

g(s, t)
=

p3(s, t)
∂p1(s,t)

∂s − ∂p2(s,t)
∂s

∂p1(s,t)
∂s

∂p2(s,t)
∂t − ∂p1(s,t)

∂t
∂p2(s,t)

∂s

= 2s.

Due to the simplicity of this system, it is clear that a rational general solution
is of the form (s̄, t̄) = (c1/2, c1x + c2), where c1 and c2 are arbitrary constants.
Since the system is autonomous, we can eliminate one of these constants by a
suitable translation4 and use the simpler solution (ŝ, t̂) = (c/2, cx) with arbitrary
constant c. Finally, we compute the constant k = x − p1(ŝ, t̂) = c2/8 and obtain
(ŝ(x + k), t̂(x + k)) = (c/2, cx + c3/8). This translated solution of the associated
system yields the following rational general solution of the differential equation
F (x, y, y′) = 0:

ŷ = p2(ŝ(x+ k), t̂(x+ k)) =
cx(4x+ c2)

8
.

Rational general solutions via curve parametrization. Another approach for com-
puting rational general solutions of first-order AODEs has been investigated by
Vo, Grasegger, and Winkler in [VGW18]. Instead of viewing F (x, u, v) = 0 as the
defining equation of a surface in three-dimensional affine space over Q, we consider
the curve CF ⊆ A2(Q(x)) defined by the zero-locus of F (x, u, v), where the latter is
considered as a polynomial in u and v with coefficients from the rational function
field Q(x). We assume that the curve CF is parametrizable by rational functions,
analogous to the previous approach, but with coefficients from this rational function
field. Let

P = (p1(t), p2(t)) ∈ Q(x)(t)2

be a proper rational parametrization of CF . A first-order AODE is called curve
parametrizable if its curve CF has a parametrization of the antecedent form. Notice
the requirement on the coefficients of the parametrization: If we would allow coeffi-
cients in an algebraic extension of Q(x)—as is typically required for parametrizing
curves defined over a nonalgebraically closed field—then we might not get a rational
solution after a reparametrization of P. The requirements on the parametrization,
however, do not impose restrictions in addition to the unirationality of CF . By
Lüroth’s theorem and [VGW18, Theorem 4.3], unirationality of CF implies the
existence of a proper rational parametrization of this particular form.

Given a rational solution ŷ of the differential equation (8), we see that the pair
(ŷ, ŷ′) describes a point on the curve CF . Since P is a rational parametrization,
at most finitely many points of CF cannot be covered by P, i.e., CF \ im(P) is
finite. However, we cannot miss a rational general solution as such can be seen
as an infinite family of rational solutions. By [VGW18, Lemma 5.2], the search
for a rational general solution of (8) can be reduced to the search for a rational

4The class of solutions of an autonomous system of differential equations is invariant under
translation by a constant. In the present case, the shift (s̄(x − c2/c1), t̄(x − c2/c1)) is used to
eliminate the second arbitrary constant from the solution.
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general solution of a single quasi-linear ODE of order one. Namely, the curve
parametrizable AODE (8) has a rational general solution if and only if

(10) t′ =
p2(t)− ∂p1(t)

x
∂p1(t)

t

has a rational general solution. We call the quasi-linear ODE (10) the associated
differential equation of the AODE (8) w.r.t. the parametrization P. Any rational
general solution t̂ of the associated differential equation gives rise to

ŷ = p1(t̂),

a rational general solution of the AODE (8) by [VGW18, Theorem 5.3].
We see that the computation of a rational general solution is reduced to a repara-

metrization of P. By construction, P(t̂) = (f(x), f ′(x)) for some rational function
f(x) and, by a similar reasoning as in the preceding section, f(x) = p1(t̂) yields a
rational general solution of the differential equation (8). Notice that the associated
differential equation depends again on the chosen parametrization—which is not
unique.

It is known that equation (10) cannot have a rational general solution if it is
neither a linear differential equation nor a Riccati equation. Computing rational
general solutions of linear differential equations is easily done via integration. For
Riccati equations, Kovacic [Kov86] describes an algorithm for finding all rational
solutions of such an equation. Chen and Ma [CM05] later modified this method
to look for rational general solutions only. Therefore, the existence of a rational
general solution of the associated differential equation (10) can be decided, and
such solutions are computable.

We summarize these steps in the subsequent algorithm for computing rational
general solutions of curve parametrizable AODEs:

(a) Given F (x, y, y′) = 0, a curve parametrizable AODE of order one, compute
a proper rational parametrization

P = (p1(t), p2(t)) ∈ Q(x)(t)2

of the associated curve CF , e.g., by using [VGW18, Algorithm 1].
(b) Construct the associated differential equation (10) w.r.t. P. If this is neither

a linear differential equation nor a Riccati equation, then the input AODE
does not have a rational general solution.

(c) Find a rational general solution t̂ of the associated differential equation.
If no such solution exists, then the input AODE does not have a rational
general solution.

(d) Return ŷ = p1(t̂), a rational general solution of the input AODE.

Example 2.16. Consider again the first-order AODE from Example 2.15. The
curve CF defined by the zero-locus of F (x, u, v), considered as a polynomial in u
and v with coefficients in Q(x), has the proper rational parametrization

P(p1(t), p2(t))

=

(
(x− t)(x5t2 + t2 − 2tx+ x2)

x5t3
,
(x− t)(2x5t2 + t2 − 2tx+ x2)

x6t3

)
.
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By utilizing this parametrization, the differential equation can be reduced to the
following associated differential equation:

t′ =
p2(t)− ∂p1(t)

x
∂p1(t)

t

=
2

x2
t2 − 1

x
t.

This associated differential equation is a Riccati equation and has the rational
general solution t̂ = x/(cx2 + 1), where c is an arbitrary constant. From the
solution t̂ we obtain that

ŷ = p1(t̂) = cx(x+ c2)

is a rational general solution of the differential equation F (x, y, y′) = 0. Substitu-
tion of c by c/2 in ŷ results in the same solution as in Example 2.15.

Comparison of the previous approaches. In the case of autonomous first-order
AODEs, a rational general solution is constructed by translating a nontrivial ratio-
nal solution by an arbitrary constant; cf. Section 2.1. As it turns out, adjoining a
single arbitrary constant to the coefficient field is the only extension needed for con-
structing a rational general solution of an autonomous first-order AODEs, granted
that such a quantity exists. Solutions of this particularly simple form are of major
interest in the rest of this section and warrant a special name. Let ŷ be a general
solution of a (not necessarily autonomous) first-order AODE. If ŷ ∈ Q(x, c) \Q(x),
where c is an arbitrary constant, then we call ŷ a strong rational general solution
[VGW18].

A simple extension by an arbitrary constant is, in general, no longer sufficient
in the general (nonautonomous) case: there exist first-order AODEs which have a
rational general solution, but not a strong rational general solution.

Example 2.17. The subsequent AODE can be found in [MW22, Example 4.4]:

x2y′2 − 2xyy′ − y′3 + y2 − 2 = 0.

A rational general solution is given by ŷ = cx+
√
c3 + 2, which is not strong since

the arbitrary constant does not appear purely rationally. Furthermore, it can be
shown that there does not exist a strong rational general solution of the above
AODE.

The previously introduced algorithms for computing rational general solutions of
AODEs of order one require that the associated curve and surface are parametriz-
able. However, not all first-order AODEs are parametrizable as a curve or as a
surface. The antecedent example describes such an AODE which is not solvable by
either approach since it cannot be parametrized. Naturally, this leads to the ques-
tion of whether there is a specific class of AODEs which can be solved by either of the

algorithms introduced. For this we introduce the following notation: Let AODE(1)

denote the class of all first-order AODEs, and let AODE(1)
CP and AODE(1)

SP be the
subclass of curve parametrizable and surface parametrizable AODEs, respectively.

By AODE(1)
RGS we denote the class of AODEs of order one which have a ratio-

nal general solution and AODE(1)
SRGS stands for the subclass which have a strong

rational general solution.
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It is known that every first-order AODE which has a strong rational general
solution is curve parametrizable. Conversely, if an AODE of order one has a ra-
tional general solution and is curve parametrizable, then it has a strong ratio-
nal general solution [VGW18, Theorem 5.4(i) and Corollary 5.5]. In other words,

AODE(1)
SRGS = AODE(1)

CP ∩ AODE(1)
RGS .

Every curve parametrizable first-order AODE is surface parametrizable in a natu-
ral way: Let P = (p1(x, t), p2(x, t)) ∈ Q(x)(t)2 be a proper rational parametrization
of the associated curve, where we indicate the dependency on the independent vari-
able x in the components of P. By interpreting x as an additional parameter, P can
be turned into the surface parametrization P̃(s, t) = (s, p1(s, t), p2(s, t)) ∈ Q(s, t)3.

Furthermore, properness of P implies that P̃ is proper as a surface parametrization
[MW22, Theorem 4.1(I)]. On the other hand, there exist surface parametrizable
AODEs which cannot be parametrized as a curve.

Example 2.18. The first-order AODE y′2 − y3 − x = 0 can be parametrized as
a surface by P(s, t) = (t2 − s3, s, t). However, the associated curve of this AODE
is not rational and cannot be parametrized. This AODE does not have a rational
general solution; cf. [MW22, Example 4.1].

Recall that the algorithm via curve parametrization cannot solve AODEs outside

the class AODE(1)
SRGS . One might expect that, given that AODE(1)

SP is a strict su-

perclass of AODE(1)
CP , the algorithm via surface parametrization can solve AODEs

beyond those that possess a strong rational general solution. As it turns out, this is
not the case. If an AODE is surface parametrizable and has a rational general solu-
tion, then it has a strong rational general solution [MW22, Theorem 4.3(II)]. There-

fore, AODE(1)
SRGS = AODE(1)

SP ∩ AODE(1)
RGS , and we see that first-order AODEs

which are surface parametrizable but not curve parametrizable cannot have a ra-
tional general solution.

Finally, let P be a proper rational parametrization of the associated curve of a
first-order AODE, and let P̃ be the corresponding surface parametrization. In this
case, it can be shown that the associated system w.r.t. P̃ actually reduces to the
associated differential equation w.r.t. P; cf. [MW22, Section 4.2]. In other words,
for a common rational parametrization the methods via curve parametrization and
surface parametrization actually have to solve the same associated equation(s). We
illustrate this by an example.

Example 2.19. Consider the subsequent AODE:

(11) xy′2 − 2yy′ − x = 0.

Its associated curve is rational and has the proper parametrization P =
((xt2 − x)/(2t), t). The associated differential equation w.r.t. P is

(12) t′ =
t

x

and has the rational general solution t̂ = cx. From this we obtain the rational
general solution ŷ = (c2x2 − 1)/(2c) of the AODE (11). Alternatively, from P
we obtain the proper rational parametrization P̃(s, t) = (s, (st2 − s)/(2t), t) of the

associated surface. The associated system w.r.t. P̃ is{
s′ = 1

t′ = t
s .
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The first equation has the trivial solution ŝ = x, and substituting this into the
second equation shows that the associated system reduces to the associated differ-
ential equation (12). A rational general solution of the associated system is given
by (ŝ, t̂) = (x, cx) which yields the solution ŷ = (c2x2 − 1)/(2c) of the AODE (11).

Since both methods compute solutions in the same solution class, it is natural
to ask if one approach is to be preferred over the other. In general, the method via
curve parametrization provides a complete decision algorithm, while the surface
parametization method can do so only in the generic case. If the corresponding
surface of the differential equation is of a special geometric shape, however, then it
is worthwhile to follow the method via surface parametrization. In this case, the
parametrization can be deduced easily and some results on the solvability of the
associated planar system exist; cf. Ngô, Sendra, and Winkler [NSW12b, Sections 4
and 5].

Algebraic general solutions. Aroca et al. [ACFG05] presented a polynomial time al-
gorithm for computing algebraic general solutions of autonomous AODEs F (y, y′) =
0. Vo and Winkler (in [VW15]) adapted the algebro-geometric method in order
to compute algebraic general solutions of nonautonomous parametrizable AODEs
F (x, y, y′) = 0. But in the absence of a degree bound for such algebraic solutions,
a bound for the algebraic extension degree must be specified.

As in the previous development, via a proper rational parametrization

P(s, t) = (p1(s, t), p2(s, t), p3(s, t))

of the corresponding surface SF , one reduces the problem of solving F (x, y, y′) = 0
to an associated planar rational system of the form

(13)

{
s′ = M(s, t)

t′ = N(s, t),

where M and N are rational functions in s and t; compare (9). If the surface
parametrizable AODE F (x, y, y′) = 0 has an algebraic general solution, then its
associated system w.r.t. a proper rational parametrization has a rational first in-
tegral ; i.e., a nonconstant rational function W (s, t) such that M ∂W

∂s + N ∂W
∂t = 0;

cf. [VW15, Proposition 3]. Furthermore, by [VW15, Corollary 1], if W = P/Q is
a rational first integral in reduced form of the associated system and (ŝ, t̂) is an
algebraic general solution, then ŝ is an algebraic general solution of the autonomous
first-order AODE F1(s, s

′) = 0, where

F1(s, r) := rest(P (s, t)− cQ(s, t), rM2(s, t)−M1(s, t));

analogously for t̂. Theorem 2 in [VW15] states that if (ŝ, t̂) is an algebraic general
solution of the associated system, then

ŷ = p2(ŝ(2x− p1(ŝ, t̂)), t̂(2x− p1(ŝ, t̂)))

is an algebraic general solution of the original AODE.
As in [ACFG05], we need to bound the degree of the desired algebraic solution.

Theorem 5 in [VW15] states that if F (x, y, y′) = 0 has an algebraic solution with
minimal polynomial of degree less than or equal to n, then the associated system
has a rational first integral of degree m(n); an explicit formula for m(n) is given.
So we can decide the existence of an algebraic solution having extension degree less
than or equal to n.
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Example 2.20 (from [VW15]). Consider the differential equation

4x(x− y)y′2 + 2xyy′ − 5x2 + 4xy − y2 = 0.

The solution surface of the differential equation is rational and has the proper
rational parametrization

P(s, t) =

(
s,− t2 − 5ts+ 5s2

s
,
t2 − 4st+ 5s2

2s(t− 2s)

)
.

The associated system with respect to P is{
s′ = 1

t′ = t2−3s2

2s(t−2s) .

If we look for an algebraic general solution ŷ of degree at most n = 2, we need to find
a rational first integral of degree at most m(n) = 32 of the associated system. In
this case, the associated system has the rational first integral W = (t2−4st+3s2)/s.
Thus it has an algebraic solution (ŝ, t̂) = (x, t(x, c)), where t(x, c) is a root of the
algebraic equation t2 − 4xt+3x2 − cx = 0. So, by [VW15, Theorem 2], we see that

ŷ =

√
cx(cx+ 1)− 1

c

is an algebraic general solution of the differential equation.

3. Systems of autonomous AODEs of dimension one

In Section 2 we have seen how to deal with the rational solutions and the for-
mal Puiseux series solutions of an autonomous AODE by analyzing the associated
curve of the given differential equation. In this section we show how to extend these
results to the case of systems of AODEs in one differential indeterminate. For this
propose, the key property is that the dimension of the associated geometric object
has dimension one. In Section 3.1 we treat the case of rational solutions, and in
Section 3.2 we focus on the case of formal Puiseux series solutions. The results and
ideas presented in this section are essentially based on [LSNW15] for the case of
rational solutions and on [CFS21] for the case of formal Puiseux series solutions.
Recently, these results were extended to systems involving several differential inde-
terminates [CFRS21].

Throughout this section, we will work with the ground fieldQ of rational numbers
and with its algebraic closure Q. In addition, we consider finitely many polynomials

(14) F = {Fj(w0, w1, . . . , wn) | j ∈ J} ⊂ Q[w0, w1, . . . , wn],

where J ⊂ N is a finite subset. Associated to F , we consider the autonomous
algebraic system S of ordinary differential equations

(15) S = {Fj(y, y
′, . . . , y(n)) = 0 | j ∈ J},

where y is an indeterminate over a differential extension field of Q(x), and ′ denotes
the differentiation w.r.t. x. We impose on S the following two hypotheses:

(1) The algebraic variety defined by F , in the affine space An+1(Q), has di-
mension one, not necessarily pure; note that this dimension is the algebro-
geometric one and not the usual concept of dimension in differential alge-
bra. This hypothesis will allow us to connect to the theory in Section 2.
We denote by CS this one-dimensional variety.
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(2) For all j ∈ J , there exists i ∈ {1, . . . , n} such that degwi
(Fj) > 0 or,

equivalently, none of the equations in S is purely algebraic.

For finding solutions of S, we will present two different approaches:

• project the system, compute solution candidates, and check whether they
are indeed solutions;

• derive a simplified system of differential equations with the same solution
set as S, where solutions can be found directly.

The first approach is used for rational solutions. The projection can be applied
either to the parametrization, as is done here, or to the rational solution, see
[LSNW15, Section 5]. This approach works if the parametrizations and solutions
are described in a closed form. Thus, for finding formal Puiseux series solutions,
we have to simplify S first by (differential) elimination methods. As we will show
in the examples, for computing rational solutions, this approach could be used as
well.

3.1. Rational solutions. In this section, we analyze the existence, and actual
computation, of rational solutions of S. We start by observing that if ŷ(x) is a
nonconstant rational solution of S, then ŷ(x + c), where c is transcendental over
Q, is a rational general solution (see [LSNW15, Theorem 2.3]). Therefore, for our
purposes, it is enough to find one nonconstant rational solution. But first, we
deduce some necessary conditions for the existence of such solutions. If there exists
a nonconstant rational solution ŷ of the system S, then Pŷ = (ŷ(x), . . . , ŷ(n)(x)) is
a parametrization of CS . Thus, CS has to be a rational curve. Furthermore, Pŷ is
proper (see [LSNW15, Corollary 2.2]). Since all proper parametrizations of a curve
are related by the composition with a Möbius transformation, the properness of
Pŷ implies that all proper parametrizations of CS must have, as first component,
a nonconstant rational function. See also [LSNW15, Corollary 2.4] for the analysis
of polynomial solutions. In addition to the above conditions, in [LSNW15, Section
3] the notion of partial degree of a space curve is introduced, and from there new
sufficient conditions are derived (see [LSNW15, Theorem 4.1]).

Now, let us say that CF satisfies the minimal sufficient conditions mentioned
above: let CF be rational, and let

(16) P = (p1(x), . . . , pn+1(x))

be a proper parametrization of the space curve CS , where p1(x) is not constant.
Then, the following theorem shows how to proceed in order to decide, and compute,
the nonconstant rational solutions of S.

Theorem 3.1 ([LSNW15, Theorem 4.2]). Let P be as in (16). The following
assertions are equivalent:

(1) S admits a nonconstant rational solution.
(2) There exist a, b ∈ Q, a �= 0 such that either

(2.1) a p′j(x) = pj+1(x) for every j = 1, . . . , n, or

(2.2) a(x− b)2p′j(x) = pj+1(x) for every j = 1, . . . , n.

Moreover, if one of these equivalent statements holds, then ŷ = p1(ax) (if (2.1)
holds) and ŷ = p1(

abx−1
ax ) (if (2.2) holds) is a nonconstant rational solution of S.

Clearly, Theorem 3.1 provides an algorithm for our purposes. In [LSNW15] a
second computational approach, based on a suitable projection of CF over a plane
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curve, is discussed. Moreover, in [LSNW15] one can also find a detailed analysis on
the optimality of the required field to express the coefficients of the rational general
solution of S. In the following, we illustrate these ideas by an example.

Example 3.2. We consider the set F = {F1, . . . , F7} ⊂ Q[w0, w1, w2, w3], where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = 27w2
4 + 2w3

3

F2 = 2w1w3 − 3w2
2 − 2w3

F3 = 9w1w2
2 − 9w2

2 + w3
2

F4 = 6w1
2 − 12w1 + w3 + 6

F5 = w0w3 − 3w1w2 + 6w2 + 2w3

F6 = 3w0w2 + 6w1 + 6w2 + w3 − 6
F7 = 6w0

2w1 − 6w0
2 + 24w0w1 − 24w0 + 12w1 − w3 − 6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The autonomous system S is obtained by the substitution wi = y(i) for i = 0, . . . , 3.
The genus of the associated curve CF is zero, and CF can be properly parametrized
as

P =

(
(x+ 1)

2

3 (2x− 1) t
,
(5x− 1) (x+ 1)

9x2
,
2 (2x− 1)

3

27x3
,−2 (2x− 1)

4

27x4

)
.

Condition (2.1) in Theorem 3.1 does not hold. Nevertheless, condition (2.2) holds
with

a(x− b)2 = − (2x− 1)2

3
.

So taking

T (x) =
2x+ 3

4x
,

we get that

ŷ = p1(T (x)) =
(2x+ 1)

2

4x+ 6

is a nonconstant rational solution of S. Therefore, the rational general solution of
S is

ŷ(x+ c) =
(2x+ 2 c+ 1)2

4x+ 4 c+ 6
.

3.2. Formal power series solutions. In this section, we generalize the previous
section to formal Puiseux series. More precisely, existence, uniqueness and conver-
gence of formal Puiseux series solutions of S as in (15) are covered. In contrast
to Section 3.1, we first simplify the given system and then apply the results from
Section 2.1.

By using algebraic decomposition methods such as regular chains [Kal93], S can
be decomposed into a finite union of subsystems Sk with the same set of regular
zeros. In our case it turns out that regular zeros are the nonconstant Puiseux series
solutions. The Sk are of the form

(17) Sk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1(y, y
′) =
∑r1

j=0 G1,j(y) · (y′)j = 0

G2(y, y
′, y′′) =

∑r2
j=0 G2,j(y, y

′) · (y′′)j = 0
...

Gm(y, . . . , y(m)) =
∑rm

j=0 Gm,j(y, . . . , y
(m−1)) · (y(m))j = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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with rj ≥ 1 and Gj,rj �= 0 for every 1 ≤ j ≤ m. By using differential elimination
methods (see [Rit50]), we can further simplify Sk to obtain a single differential
equation of order one, namely an equation of the type

(18) Hk(y, y
′) = 0

such that Hk ∈ Q[y, y′] \ {0}. We call Hk the reduced differential equation of Sk.

Theorem 3.3 ([CFS21, Theorem 3]). Let S be a differential system as in (15).
Then there are reduced differential equations H1, . . . , Hm ∈ Q[y, y′] such that the
union of the nonconstant Puiseux series solutions is equal to the solution set of S.

Note that the cases Hk = 1 and Hk ∈ Q[y] are not excluded and are indeed
possible. If this happens, there are no or only constant solutions, respectively, and
the subsystem Sk and its reduced differential equation Hk can be neglected.

Hence, in order to find all nonconstant solutions (rational, algebraic, or formal
Puiseux series solutions) of S, we can analyze the reduced differential equations of
the subsystems of S. In particular, the convergence of the formal Puiseux series
solutions and the computational bounds from Section 2.1 remain true [CFS21,
Theorems 4 and 6]. Let us highlight the result on convergence:

Theorem 3.4. Let S be a differential system as in (15). Every formal Puiseux
series solution of S, expanded around any finite point or around infinity, is conver-
gent.

From the reduced differential equations, all Puiseux series solutions and alge-
braic solutions can be computed. For the Puiseux series the representation of the
solutions is done by a set of truncations such that they are in one-to-one corre-
spondence with the series. Algebraic solutions are represented by their minimal
polynomials.

Example 3.5. Let us continue Example 3.2 and apply the reduction process to the
system S. The regular chain decomposition of S consists of the single subsystem

S1 =

⎧⎨
⎩

G1 = y2y′ − y2 + 4yy′ + y′2 − 4y = 0
G2 = (y + 2)y′′ + (2y2 + 8y + 6)y′ − 2y2 − 8y − 4 = 0
G3 = y(3) − (6y2 + 24y + 12)y′ + 6y2 + 24y + 6 = 0

⎫⎬
⎭ .

By differential elimination, we obtain that G2, G3 are consequences of G1 and the
reduced differential equation is

H(y, y′) = y2y′ − y2 + 4yy′ + y′2 − 4y = 0

(see Figure 5). Using the results from Section 2.1 on rational general solutions,

ŷ =
(2x+ 2 c+ 1)2

4x+ 4 c+ 6

can be deduced. The local solutions are given by the generic solution

yg = y0 + y1x+O(x2), y21 + (y20 + 4y0) y1 − y20 − 4y0 = 0, y0 /∈ {0,−2,−4}
and the solutions at the critical points by{ −4, 0, ŷ1 = x2 − x3 +O(x5), −2 + 2x± ix2 +O(x3), −2 + 1

x + x,

−4− x2 − x3 +O(x3), x+ 1
x + c−2

x2 + c2−4c+4
x3 +O( 1

x4 )

}
.

By plugging the constant solutions of H into S, it can be checked that they are
not solutions. The generic solution yg corresponds to the expansion of the rational
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Figure 5. The real part of the plane curve H(u, v) = 0, obtained
from the reduced differential equation of Example 3.5. The high-
lighted points denote the critical curve points.

general solution ŷ with y0 = (2c+1)2

4c+6 , y1 = 4c2+12c+5
(2c+3)2 . The solution ŷ1 is covered by

ŷ for c = −1/2. The other particular solutions at the critical points are not covered
by ŷ and, hence, do not correspond to rational solutions.

4. Transformations of AODEs

As we have seen in the previous sections, in order to solve an AODE or a system
of AODEs, we associate an algebraic variety, and from its properties we derive, if
possible, the solutions belonging to some class of functions as the rational functions.
On the other hand, in the study of algebraic varieties, birational transformations
play an important role since they preserve the essential information of the geometric
object. So, the natural question arises: how do these transformations affect the
differential equation or a system of differential equations? In this section we study
the subset, indeed a group, of these transformations that preserve the rational
solvability of the differential equation establishing a direct connection on the sets of
rational solutions of the given AODE and its transformation. The ideas and results
presented here have been elaborated in [NSW12b], [NSW15]; see also [NH20].

In this situation, we introduce the set

(19) AODE(n) = {F (x, y, . . . , y(n)) = 0 | F ∈ K[x, u0, . . . , un], degun
(F ) > 0},

where K is an algebraically closed field of characteristic zero. Moreover, for F ∈
AODE(n), we denote by V(F ) the hypersuface defined by F in An+2(K). Note that

in Section 2.2, where F is of order one, i.e., F ∈ AODE(1), we have introduced
the surface SF that, with the notation here, is SF = V(F ) ⊂ A3(K). Similarly, in

Section 2.1, if F ∈ AODE(1) is autonomous, we have associated to the differential
equation a plane algebraic curve that, in fact, can be seen as a cylinder in A3(K).

Additionally, we also introduce the set

(20) PODE(n) = {F ∈ AODE(n) | V(F ) is birationally parametrizable}.
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4.1. Affine linear transformations. We start by analyzing the case of affine
linear transformations. We describe the theory for first-order AODEs, but it can
be easily extended to other orders, as we show in Section 4.2. We consider the
group A of all affine linear transformations of A3(K)

(21)
L : A3(K) → A3(K)

v �→ Av +B,

where A is a nonsingular 3× 3 matrix over K and B is a 3× 1 matrix over K. By
abuse of notation, we will also denote by L the natural extension of the map L to
A3(K(x)).

We represent L, given as in (21), as the pair of matrices L = [A,B]. In this
situation, we introduce the set

(22) G =

⎧⎨
⎩
⎡
⎣
⎛
⎝ 1 0 0

b a 0
0 0 a

⎞
⎠ ,

⎛
⎝ 0

c
b

⎞
⎠
⎤
⎦ ∈ A where a, b, c ∈ K and a �= 0

⎫⎬
⎭ .

Note that G is a subgroup of A.

G defines a left group action on each of the sets AODE(1) and PODE(1) and, in

consequence, the corresponding orbits induce a partition ofAODE(1) and PODE(1),

respectively. More precisely, given F,G ∈ AODE(1) (similarly for F,G ∈ PODE(1)),
the equivalence relation is defined as F ∼ G if and only there exists L ∈ G such
that F ◦ L−1 = G.

The important fact is that the solvability (in particular, the rational solvabil-
ity) is invariant within the equivalent classes: if G = F ◦ L−1, with L ∈ G
and F,G ∈ AODE(1), and y(x) is a solution of G(x, y, y′) = 0 and (x, ŷ, ŷ′) :=
L−1(x, y(x), y′(x)), then ŷ is a solution of F (x, y, y′) = 0.

Moreover, in [NSW12b, Theorem 3.1] it is shown that, in the classes induced

in PODE(1), the associated system (see (9)) is preserved. We refer the reader
to [NSW12b] for a detailed analysis of associated systems for different types of

elements in PODE(1).
Let us illustrate these ideas by means of an example.

Example 4.1. We consider the differential equation F (x, y, y′) = 0, where

F (x, y, y′) = 20 y3 + 120 y2x+ 240 yx2 + 160x3 + 181 y2 + 724 yx

+ 20 yy′ + 724x2 + 40xy′ − 25 y′
2
+ 586 y + 1172x

− 39 y′ + 571.

First we check whether there exists an autonomous AODE in the equivalence class
of F . For this purpose, we compute F ◦ L−1 for L ∈ G generic, we collect the
coefficients of F ◦ L−1 in {y, y′}, and we analyze the existence of solutions of the
algebraic system of equations, in the parameters that define L, corresponding to x.
In this case, one gets that by taking

[A,B] =

⎡
⎣
⎛
⎝ 1 0 0

2 1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0

3
2

⎞
⎠
⎤
⎦ ,

G := F ◦ L−1 is autonomous. Indeed

G(x, y, y′) = 20 y3 + y2 + 20 yy′ − 25 y′ 2 + y′.
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Applying the ideas in Section 2.1 (see Example 2.6), one gets that

ŷ =
x+ c+ 6

(x+ c+ 1)
2

is a rational general solution of G(x, y, y′) = 0. Now,

L−1(x, ŷg(x), ŷ
′
g(x)) =

(
x,−2x+

x+ c+ 6

(x+ c+ 1)
2 − 3,−2 +

−x− c− 11

(x+ c+ 1)
3

)
.

Therefore,

−2x+
x+ c+ 6

(x+ c+ 1)2
− 3

is a rational general solution of the initial equation F (x, y, y′) = 0.

4.2. Birational transformations. In this section we treat a more general case.
On one hand, we consider AODEs of order n, and, on the other, we extend the
analysis to birational transformations. For this purpose, let T denote the set of all
birational transformations of An+2(K). In the following we introduce a subgroup of
T that will preserve the information of the differential equation. First, we consider
the Möbius transformations of A1(K(x)), that is, rational functions of the form

a(x)u0 + b(x)

c(x)u0 + d(x)
,

where a, b, c, d ∈ K[x] and ad − bc �= 0. Let M consist in the set of all Möbius
transformations of K(x). Then, for every L ∈ M, we consider the rational map
defined as

(23) ΦL = (Φ1(x),Φ2(x, u0),Φ3(x, u0, u1), . . . ,Φn+2(x, u0, . . . , un)),

where

(24)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ1 = x
Φ2 = L(x, u0)

Φ3 =
∂Φ2

∂x
+ u1

∂Φ2

∂u0

Φr =
∂Φr−1

∂x
+ u1

∂Φr−1

∂u0
+ · · ·+ ur−2

∂Φr−1

∂ur−3
, 3 < r ≤ n+ 2,

and we define the set of transformations as

(25) G(n) = {ΦL |L ∈ M}.
In [NSW15, Proposition 2.1] it is proved that G(n) is a subgroup of T . Similarly,

as in Section 4.1, this group generates a left group action on AODE(n), and on

PODE(n), that induces an equivalence relation. Namely, if F,G ∈ AODE(n), sim-

ilarly if F,G ∈ PODE(n), then F and G are related if there exists Φ ∈ G(n) such
that F ◦ Φ−1 = G. In this situation, in [NSW15, Theorem 3.1], it is stated that
the existence of rational solutions is an invariant property within each equivalence
class. Moreover, in [NSW15, Theorem 3.2], it is proved that the associated system

for all elements in a class, given by an equation in PODE(n), are related. Also, let
us mention that [NSW15, Theorem 3.3] shows how to determine the transformed

equation, via an element in G(n), of an element in AODE(n).
Similarly as in Section 4.1, the equivalence class of a nonautonomous equation

could contain an autonomous equation, and hence it might be possible to simplify
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the process of solving the first given equation. Nevertheless, differently from what
happened in Section 4.1, here it is still an open problem to derive a complete
algorithm for this task. Some special situation can be treated as explained in
[NSW12a]. Let us briefly give some hints here. First of all, we say that an AODE
G(x, y, y′, . . . , y(n)) = 0 is normal if the leading coefficient of G w.r.t. y(n) belongs to
K[x, y]; note that all first-order AODEs are normal. In this situation, the following
result holds (see [NSW12a, Theorem 4.1]).

Theorem 4.2. Let G ∈ AODE(n) be an nth-order normal differential equation,
and let M(x, u1) be the leading coefficient of G(x, u0, . . . , un) w.r.t. un.

(1) If M has a nonlinear irreducible factor over K[x], then no element in the
equivalence class of G is autonomous.

(2) If a1u0 + b1 and a2u0 + b2 are two different linear factors of M over
K[x], then the possible transformations ΦL ∈ G(n), such that ΦL · G is
autonomous, are defined by

either L−1 =
b1u0 − b2
−a1u0 + a2

or L−1 =
(b2 − b1)u0 + b1

−(a2 − a1)u0 − a1
.

In this case, if none of these functions, for every pair of linear factors,
transforms G into an autonomous AODE, then there is no autonomous
AODE in the equivalence class of G.

Let us finish this section illustrating the previous ideas by an example.

Example 4.3. We consider the second-order AODE F (x, y, y′, y′′) = 0, where

F (x, y, y′, y′′) = x5y′′ + 4x4yy′′ − 2x4y′2 + 6x3y2y′′ − 6x3yy′
2

− 4x3y′
3
+ 4x2y3y′′ − 6x2y2y′

2
+ xy4y′′ − 2xy3y′

2

− 2x4y′ − 4x3yy′ + 12x2yy′
2
+ 4xy3y′ + 2 y4y′

+ 2x3y + 6x2y2 + 6xy3 − 12xy2y′ + 2 y4 + 4 y3.

Its defining polynomial F (x, u0, u1, u2) has leading coefficient (w.r.t. u2)

x5 + 4x4u0 + 6x3u2
0 + 4x2u3

0 + xu4
0,

that factors as

x (u0 + x)4 .

Therefore, according to Theorem 4.2, the possible ΦL ∈ G(n) are those such that

L−1 ∈
{
−u0x+ x

u0
,
−2u0x+ x

u0 − 1
,−u0x− x,−2u0x− x

u0

}
.

Taking the first option, i.e., L = − x
u0+x , we get that (see [NSW15, Theorem 3.3])

G := ΦL · F = F (ΦL−1).

The primitive part w.r.t. {u0, u1, u2} of the numerator of the above rational function
is

G(x, u0, u1, u2) = −4u3
1 + u2.

Hence, the autonomous AODE

G(x, y, y′, y′′) = −4y′3 + y′′ = 0
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belongs to the equivalence class of the nonautonomous AODE F (x, y, y′, y′′) = 0.
The equation G(x, y, , y′, y′′) = 0 has the solution

ŷ = − c1 + x√
−2 c1 − 2x

+ c2.

Thus, taking into account [NSW15, Remark 2.1],

L(x, ŷ) := −
x
(
−c2

√
−2 c1 − 2x−

√
−2 c1 − 2x+ c1 + x

)
−c2

√
−2 c1 − 2x+ c1 + x

is a solution of the original AODE F (x, y, y′, y′′) = 0.

5. Software

In this section, we present the structure and content of the software packages
AGADE and FirstOrderSolve. These packages are developed for the popular com-
puter algebra system Maple and consist of the algorithmic methods introduced in
Section 2.

5.1. The Maple package AGADE. The package AGADE (Algebro-Geometric meth-
ods for solving Algebraic Differential Equations) implements several algebro-geo-
metric methods for computing rational general solutions of first-order AODEs. The
package can be obtained via the website https://risc.jku.at/sw/agade/. Down-
load the library AGADE.mla from the online repository and make sure that Maple
can find this file in its library path. Afterward, the package is loaded via:

> with(AGADE);

[RGSautonomousFOAODE , RGScurveParametrizableFOAODE ,

↪→ RGSplanarRationalSystem , RGSsurfaceParametrizableFOAODE]

where the abbreviations RGS and FOAODE stand for rational general solution and
first-order AODE, respectively. These four commands perform the following tasks:

• RGSautonomousFOAODE: an implementation of the algorithm from Section
2.1 for computing rational general solutions of autonomous first-order
AODEs.

• RGScurveParametrizableFOAODE: implements the algorithm for computing
rational general solutions of first-order AODEs via curve parametrization,
cf. Section 2.2.

• RGSsurfaceParametrizableFOAODE: an implementation of the algorithm
from Section 2.2 for computing rational general solutions of first-order
AODEs via surface parametrization.

• RGSplanarRationalSystem: computes a rational general solution of a pla-
nar rational system. This is the preferred method for finding solutions of
the associated planar system for the surface parametrization approach (see
[NW11b, Algorithm RATSOLVE]).

All methods, except for the last,5 take as input a first-order AODE F (x, y, y′) = 0,
where F ∈ Q[x, y, y′],6 and two symbols y and x denoting the dependent and
the independent variable of the differential equation, respectively. For example,

5The method RGSplanarRationalSystem takes as input the planar rational system in the form
of a list of equations, symbols denoting the two dependent variables and the independent variable,
and a degree bound for the rational first integrals of the system.

6Note that F must be an element of Q[y, y′] if the first method is used.

https://risc.jku.at/sw/agade/


THE ALGEBRO-GEOMETRIC METHOD 115

consider the autonomous first-order AODE 20y3 + y2 +20yy′ − 25y′2 + y′ = 0 from
Section 2.1. We wish to compute a rational general solution with the method for
autonomous AODEs. This can be accomplished using the subsequent commands:

> F := 20*y(x)^3 + y(x)^2 + 20*y(x)*diff(y(x), x) - 25*diff(y(x), x)^2

↪→ + diff(y(x), x);

3 2 /d \ /d \2 /d \

F := 20 y(x) + y(x) + 20 y(x) |-- y(x)| - 25 |-- y(x)| + |-- y(x)|

\dx / \dx / \dx /

> RGSautonomousFOAODE(F=0, y, x);

25 _C1 + 25 x + 120

-------------------

2

(5 x + 5 _C1 - 1)

All commands support additional arguments which can be used to pass specific
parametrizations to the algorithms or to determine information about the used
parametrization and the constructed associated equations. A complete specification
can be found in Mitteramskogler [Mit21].

Finally, consider the AODE x2y′2 − 2xyy′ − 5y′2 − x2 = 0. We want to solve
this differential equation with the method via curve parametrization and determine
the used parametrization7 and the constructed associated differential equation. For
this, we pass the additional argument extendedOutput=true:

> F := x^2*diff(y(x), x)^2 - 2*x*y(x)*diff(y(x), x) - 5*diff(y(x), x)

↪→ ^2 - x^2;

2 /d \2 /d \ /d \2 2

F := x |-- y(x)| - 2 x y(x) |-- y(x)| - 5 |-- y(x)| - x

\dx / \dx / \dx /

> output := RGScurveParametrizableFOAODE(F=0, y, x, extendedOutput=

↪→ true):

> output:-Solution;

2 2

-1 + (x - 5) _C1

------------------

2 _C1

> output:-Parametrization;

2 2 2 2

T x - 5 T - x

[-----------------, T, T]

2 x T

> output:-AssocQuasilinEquation ;

d T(x)

-- T(x) = ----

dx x

Additional examples of how to use the package AGADE can be found in the online
demo file AGADE Demo.mw.

7The third argument of the output parametrization is a symbol, denoting the name of the
parameter.
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5.2. The Maple package FirstOrderSolve. The Maple package FirstOrder-

Solve contains several procedures that implement algorithms for computing alge-
braic and (formal) Puiseux series solutions of first-order autonomous AODEs (cf.
Section 2.1). The package is available at the online repository https://risc.jku.

at/sw/firstordersolve/. Detailed information on the commands can be found
in the included help or in [BCFS21].

After downloading the library, the package is initialized by the command

> with(FirstOrderSolve);

[AlgebraicSolution , GenericSolutionTruncation ,

↪→ ProlongSolutionTruncation , SolutionTruncations]

These main procedures perform the following tasks:

• SolutionTruncations: for computing all formal Puiseux series solutions,
expanded around zero and around infinity;

• AlgebraicSolution: for computing the minimal polynomials of the alge-
braic solutions;

• GenericSolutionTruncation: for computing a truncation of the solutions
with noncritical initial values;

• ProlongSolutionTruncation: for prolonging the solution truncations up
to a higher degree.

For every command a differential polynomial F ∈ Q[y, y′] is required as input. In
case a specific precision of the Puiseux series solutions (the degree of its truncations)
is desired, this number has to be given as input. Otherwise, this value will be
chosen minimally such that the output truncations are distinct and the truncations
are in one-to-one correspondence with the solutions. A specific initial value for the
solutions is optional. There are several more options available such as avoiding
factorization of F and omitting solutions of a specific type, for example Puiseux
series solutions expanded around infinity.

Let us demonstrate the package for Examples 2.10 and 2.14.

> F := y(x)^4 + 3*diff(y(x), x);

F := y(x)^4 + 3*diff(y(x), x)

> AlgebraicSolution(F);

{x*y^3 + y^3 - 1}

> SolutionTruncations(F);

[{[_CC - 1/3* _CC^4*x, {}]}, {0, RootOf(_Z^3 - 1)^2/x^(1/3)}, {RootOf(

↪→ _Z^3 - 1)/x^(1/3) + _CC/x^(4/3)}]

The first output covers the algebraic solutions given by the shift in the output mini-
mal polynomial. The generic solution and the two additional power series solutions
correspond to particular initial values and expansion points (cf. Example 2.13).

For the second example we first compute the generic solution. Then, we use the
optional argument for computing the Puiseux series solutions at two exceptional
initial values, namely y(0) = 0 and y(0) = α, where 36α4 − 16α2 + 9 = 0.

> G := diff(y(x), x)^4 - diff(y(x), x)^2 - y(x)^4 + 4*y(x)^2/9;

G := diff(y(x), x)^4 - diff(y(x), x)^2 - y(x)^4 + (4*y(x)^2)/9

> GenericSolutionTruncation(G, 1);

{[_CC + RootOf(-9*_CC^4 + 9*_Z^4 + 4*_CC^2 - 9*_Z^2)*x, {0, -2/3,

↪→ RootOf (36*_Z^4 - 16*_Z^2 + 9), 2/3}]}

https://risc.jku.at/sw/firstordersolve/
https://risc.jku.at/sw/firstordersolve/


THE ALGEBRO-GEOMETRIC METHOD 117

> SolutionTruncations(G, iv=0);

{0, x, -x}

> SolutionTruncations(G, iv=RootOf (36*_Z^4 - 16*_Z^2 + 9));

{RootOf (36* _Z^4 - 16*_Z^2 + 9) + RootOf (2*_Z^2 - 1)*x + ((4* RootOf (65*

↪→ _Z^2 + 144* RootOf (2*_Z^2 - 1)*RootOf (36*_Z^4 - 16*_Z^2 + 9)^3 +

↪→ 98* RootOf (2*_Z^2 - 1)*RootOf (36*_Z^4 - 16*_Z^2 + 9))*RootOf

↪→ (36*_Z^4 - 16*_Z^2 + 9)^3)/3 - (8*RootOf (65*_Z^2 + 144* RootOf

↪→ (2*_Z^2 - 1)*RootOf (36*_Z^4 - 16*_Z^2 + 9)^3 + 98*RootOf (2*_Z^2

↪→ - 1)*RootOf (36* _Z^4 - 16*_Z^2 + 9))*RootOf (36*_Z^4 - 16*_Z^2 +

↪→ 9))/27)*x^(3/2)}

6. Conclusion and outlook

We have presented the algebro-geometric method for explicitly solving algebraic
ordinary differential equations of order one. The central feature of this method con-
sists of associating to the given differential equation an algebraic set, parametrizing
this algebraic set, and then transferring this parametrization—if possible—to a so-
lution of the differential equation. Different classes of solution formulas have been
considered, such as rational, algebraic, and formal Puiseux series solutions. For
some of these solution classes we have given decision procedures. Algebro-geometric
transformations may lead to formulations which are advantageous for solving; we
have dealt with affine and birational transformations. And finally we have briefly
described two Maple packages implementing some of these approaches.

This new symbolic approach to solving algebraic differential equations might
open a door to a wide landscape of differential problems. Higher-order equations
need a closer analysis of the associated algebraic set. The case of partial differential
equations needs to be investigated in the future.

Another possibility for further research is to study necessary field extensions in
every step of the computations and restrict to real solutions only. In this way, also
the presented algorithms might be adapted and optimized.

Appendix A. Formal power series

Here we recall some classical terminology from [Wal50]. Let K be a field of
characteristic zero. The main algebraic structures used in this paper are listed in
Table 1. Formal power series are infinite sums that can be manipulated with the
usual algebraic operations on series (addition, subtraction, multiplication, division,
differentiation, etc.). Formal Puiseux series are a special type of formal power
series. When expanded around zero, formal Puiseux series with coefficients in K

are of the form

ϕ =
∑
i≥k

ci x
i/n.

Formal Puiseux series expanded around infinity are of the form

ϕ =
∑
i≥k

ci x
−i/n.

Here ci ∈ K, k ∈ Z, and n ∈ N∗. In case that n = 1, we may also speak about
formal Laurent series.
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With the change of variables x̃ = x− x0, where x0 ∈ K, a formal Puiseux series
can be expanded around any (finite) point x0 instead of 0. With the change of
variables x̃ = 1/x, the series can be expanded around infinity.

Let us recall the relations K[x] ⊂ K(x) ⊂ K{{x}}, K[x] ⊂ K[[x]], K(x) ⊂ K((x)),
K{{x}} ⊂ K〈〈x〉〉, and

K[[x]] ⊂ K((x)) ⊂ K〈〈x〉〉.
It is well known that K((x)) is the fraction field of K[[x]] and that

K〈〈x〉〉 =
⋃
n≥1

K((x1/n)).

For algebraically closed K, K〈〈x〉〉 is the algebraic closure of K((x)). The minimal
natural number n such that ϕ ∈ K((x1/n)) is called the ramification index of ϕ.
Note that the ramification index of formal Puiseux series with integer exponents
and formal Laurent series is equal to one. The order of the series ϕ is defined as
the least index k/n with nonzero coefficient ck.

Algebraic Puiseux series ϕ ∈ K{{x}} are formal Puiseux series which are the
root of a nontrivial polynomial Q(x, y) ∈ K(x)[y], i.e., Q(x, ϕ) = 0. Algebraic
Puiseux series with coefficients in C have a positive radius of convergence. Since
not every formal power series with nonnegative integer exponents is algebraic, the
inclusion K{{x}} ⊂ K〈〈x〉〉 is strict.

The composition of formal Puiseux series f ◦g is well defined and again a formal
Puiseux series as long as ord(g) > 0. If both series f and g have positive radius of
convergence, then also the composition is convergent as Puiseux series.

Appendix B. Local parametrizations

Let F ∈ K[x, y] define a plane algebraic curve CF in A2(K), where K is alge-
braically closed. A local parametrization centered at (a0, b0) ∈ CF is a pair of formal
Laurent series A(t) ∈ K((t))2\K2 such that A(0) = (a0, b0) and F (A(t)) = 0. In the
set of all local parametrizations of CF , we introduce the equivalence relation ∼ by
defining A(t) ∼ B(t) if and only if there exists a formal power series T (t) ∈ K[[t]] of
order one such that A(T (t)) = B(t). A local parametrization is said to be reducible
if it is equivalent to another one in K((tm))2 for some m > 1. Otherwise, it is called
irreducible. An equivalence class of an irreducible local parametrization (a(t), b(t))
is called a place of CF centered at the common center point (a0, b0) and is denoted
by [(a(t), b(t))]. Observe that the components of the local parametrizations in the
same place have the same order.

In the case of finite a0, the local parametrizations are obtained from the formal
Puiseux series ϕ, expanded around a0, by solving

F̃ (x, y) = F (x− a0, y) = 0.

Since K〈〈x〉〉 is algebraically closed, there are degy(F ) many such Puiseux expan-
sions. If n ∈ N∗ is the ramification index of ϕ, then (tn, ϕ(tn)) are local parametriza-
tions of CF̃ and (a0 + tn, ϕ(tn − a0)) are local parametrizations of the original
curve CF centered at the (a0, b0) with possibly distinct b0 = ϕ(0 − a0). Such lo-
cal parametrizations are called classical Puiseux parametrizations centered above
a0 and they are unique up to the substitution t = n

√
1 t. The case a0 = ∞ can be

treated by suitable change of coordinates. In algebraic geometry one would consider
F (1/x, y). However, in the algebro-geometric approach presented in this paper, the
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polynomial F also defines a differential equation such that F (1/x,−x/y2) has to
be considered in order to keep the differential relation.
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