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SUNFLOWERS: FROM SOIL TO OIL

ANUP RAO

Abstract. A sunflower is a collection of sets whose pairwise intersections are
identical. In this article, we shall go sunflower-picking. We find sunflowers in
several seemingly unrelated fields, before turning to discuss recent progress on
the famous sunflower conjecture of Erdős and Rado, made by Alweiss, Lovett,
Wu, and Zhang, as well as a related resolution of the threshold vs expectation
threshold conjecture of Kahn and Kalai discovered by Park and Pham. We

give short proofs for both of these results.

1. Sunflowers

Figure 1. A sunflower with four petals

The moral of Ramsey theory is that large systems can exhibit surprising struc-
ture. There are many examples of this kind, starting with the prototypical one:
every graph on n vertices either contains a clique1 on (1/2) · log2 n vertices or an
independent set2 on (1/2) · log2 n vertices. Roth’s theorem [15] proves that every
subset of {1, . . . , n} of density Ω(1) must contain an arithmetic progression.3 The
Hales–Jewett theorem [9] and the Ajtai–Szemerédi corner theorem [1] are other
examples of this phenomenon.
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1Mutually adjacent vertices
2Mutually nonadjacent vertices
3Three numbers a, a+ d, a+ 2d
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A sunflower with w petals is a collection of w sets whose pairwise intersections
are identical. The common intersection is called the core. In 1960, Erdős and Rado
[4] proved a Ramsey theoretic result concerning sunflowers: every large collection
of sets must contain a sunflower. They gave a simple inductive argument showing
that every collection of more than k! · (w − 1)k sets of size at most k must contain
a sunflower with w petals.4 There are examples with Ω(w)k sets that have no
sunflowers, and they conjectured that the correct bound is O(w)k.

The seeds were planted, and the search for sunflowers and sunflower lemmas
began in earnest.

We begin this article by taking a tour through various fields where sunflowers
are essential. We shall see examples relevant to finding arithmetic progressions in
sumsets, understanding models of computation such as monotone boolean circuits
and data structures, and we ask fundamental questions about the threshold of a
monotone function. In each of these arenas, we skip details and zoom in to focus
on the role played by sunflowers.

In 2019, Alweiss, Lovett, Wu, and Zhang [2] made significant progress toward
proving the sunflower conjecture. Subsequent refining by myself [13], Frankston,
Kahn, Narayanan, and Park [7], and Bell, Chueluecha, and Warnke [3] led to the
result that every collection of O(w log k)k sets of size at most k must contain a
sunflower with w petals. A few months later, some of these ideas were used by
Park and Pham [11] to give a surprisingly simple and elegant resolution of the
threshold vs expectation threshold conjecture of Kahn and Kalai [10]. In this article,
we present a version of these arguments that give the easiest proofs yet. In fact, we
give a single argument that simultaneously proves the sunflower bound and resolves
the conjecture about thresholds.

2. Arithmetic progressions in sumsets

In 1992, Erdős and Sárközy [5] used sunflowers to find arithmetic progressions in
subset sums. Given a set T ⊆ {1, . . . , n}, let sum(T ) denote the quantity

∑
x∈T x.

Then they proved:

Theorem 1 ([5]). Given any set S ⊆ {1, . . . , n} of size |S| � log2 n, there are
subsets T1, . . . , Tw+1 ⊆ S, with w ≈ |S|/ log2 n, such that the sequence sum(T1), . . . ,
sum(Tw+1) is an arithmetic progression.

Much like the sunflower lemma, this is an example of finding structure in a large
system. However, the structure we seek here is an arithmetic progression; what
does this have to do with sunflowers? Erdős and Sárközy move between the two
structures as follows. First, by counting the number of possible sums that can be
obtained by subsets of S and estimating a binomial coefficient, they show that some
(w log n)logn subsets of S of size logn must attain the same sum. By the sunflower
lemma, and the choice of parameters, this collection of sets is guaranteed to contain
a sunflower. The proof is completed by Claim 2, whose proof we leave as an exercise
(Figure 2):

4Often the sunflower lemma is stated under the assumption that each set is of size exactly k
rather than at most k. Here we use the more general form because many applications rely on this
form, and all of the ideas for proving the lemmas carry through.
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Figure 2. Four petals induces an arithmetic progression of length 5.

Claim 2. If S1, . . . , Sw ⊆ {1, . . . , n} is a sunflower with core C, |S1| = · · · = |Sw|,
and sum(S1) = sum(S2) = · · · = sum(Sw), then

sum(C), sum(S1), sum(S1 ∪ S2), . . . , sum(S1 ∪ · · · ∪ Sw)

is an arithmetic progression.

3. Monotone circuit lower bounds

Sunflowers have had a huge impact in theoretical computer science. Perhaps
the most well-known example is Razborov’s proof from 1985 [14] that there are no
small monotone circuits computing the clique function. Here, we give a cartoon
description of this clever argument.

A boolean circuit computes with the help of gates implementing boolean logic.
These logic gates can compute the OR, AND, or negation of their inputs. The
inputs to the gates are either the outputs of other gates or input variables. The
size of the circuit is the number of wires used, which is the same as the number of
connections made between gates. A monotone circuit is a boolean circuit that does
not have any gates computing negations. The circuit computes a function if there
is a gate whose value is equal to the value of the function, for every choice of the
input variables.

For a graph G on n vertices and a set S of vertices, define

cliqueS(G) =

{
1 if G contains a clique on the vertices of S,

0 otherwise.

The function of interest for us is

cliquek(G) =
∨

S⊆{1,...,n},|S|=k

cliqueS(G),

which computes whether or not the graph contains a clique of size k. Razborov’s
argument leads to Theorem 3:

Theorem 3 ([14]). For every ε > 0 and n large enough, every monotone circuit

computing cliquen1/3−ε(G) must have size at least 2Ω(n1/6−ε).

Razborov proves that this function requires exponentially large monotone cir-
cuits, if k ≈ n1/3. Razborov’s result is one of the few examples where we are
able to prove lower bounds on reasonable models of computation—it is a gem of
theoretical computer science.

At a high level, sunflowers are used critically to show that any circuit computing
cliquek can be used to obtain a smaller circuit with the same ability. Each such
step involves a tiny error. We obtain a good approximation to the original circuit
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that is so simple that we can directly reason that it does not work. This proves
that the original circuit does not work either.

Now, let us give a few more details. Let G be a graph on n vertices that contains
a uniformly random clique of size k and no other edges. Let H be a uniformly
random (k − 1)-partite graph. G always contains a clique of size k, while H never
contains a clique of size k. A monotone circuit computing the clique function would
have to output 1 on G and 0 on H. An input variable to the circuit is the indicator
for the presence of an edge, which can be thought of as cliqueS for some set S of
size 2.

Let us discuss how to approximate the circuit by a simpler circuit. First, we
claim that cliqueS ∧ cliqueT can be safely replaced by cliqueS∪T . This is because by
the choice of G,

cliqueS(G) ∧ cliqueT (G) ≤ cliqueS∪T (G),

and by the choice of H,

cliqueS(H) ∧ cliqueT (H) ≥ cliqueS∪T (H).

Thus, carrying out this approximation preserves the ability of the circuit to distin-
guish G from H, while reducing the size of the circuit.

Sunflowers play a key role in approximating OR gates, via Claim 4:

Claim 4. If S1, . . . , Sw form a sunflower with core C and all sets Si are of size at
most

√
k, then

cliqueS1
(G) ∨ · · · ∨ cliqueSw

(G) ≤ cliqueC(G),

and with high probability over the choice of H,

cliqueS1
(H) ∨ · · · ∨ cliqueSw

(H) ≥ cliqueC(H).

When the input is G, the claim is trivial. When the input is H, the approx-
imation causes a problem if there is a clique on C in H, yet none of the petals
constitute a clique. This is extremely unlikely to happen: given that the core is a
clique, the events that the petals are also cliques are independent, and the choice
of parameters ensures that each occurs with probability Ω(1). So, one can argue
that one of the petals will be a clique with probability 1− 2−Ω(w).

Thus, if t is large enough, any expression of the type

cliqueS1
∨ · · · ∨ cliqueSt

can be approximated by a smaller expression of the same type—use the sunflower
lemma to find a sunflower among the sets and replace it by the core. Repeatedly
applying these operations, one can show that any arbitrary small monotone circuit
can be approximated by a circuit whose structure is so simple that it is trivial to
verify that it cannot distinguish G from H.

4. Lower bounds for data structures

Data structures are a fundamental concept in computer science. They are used
to efficiently maintain an object so that the object can be quickly modified and
queried. Our next example is a lower bound on the running time of data structures
for the problem of maintaining a set and computing its minimum. From my recent
work with Ramamoorthy [12], building on ideas from [6, 8], our work shows the
following:
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Theorem 5 ([12]). Any nonadaptive data structure of word size log n that allows us
to add or delete elements from a subset T of {1, . . . , n} and compute the minimum
element of the set must access Ω(log n/ log log n) locations for some operation.

The result is independent of the algorithm used to implement the data struc-
ture and the particular encoding of the data (namely T ) used; the argument only
relies on the sets of locations that the data structure reads and writes to. A
valid data structure for our purposes is one that encodes the set T as a vector
enc(T ) ∈ {1, . . . , n}m. The data structure is associated with a family of subsets
of the coordinates of the encoding S0, S1, . . . , Sn ⊆ {1, . . . ,m} and an algorithm
for manipulating enc(T ). For each i, the algorithm is able change enc(T ) to either
enc(T ∪ {i}) or enc(T − {i}) by reading and writing to the coordinates of enc(T )
given by Si. The algorithm can compute the minimum of T by reading the coordi-
nates given by S0. Under just these assumptions, the argument proves that some
set Si must be of size Ω(logn/ log log n).

If all of the sets S0, S1, . . . , Sn are of size � log n
log log n , the choice of parameters

implies that there is a sunflower among the sets S0 ∪ S1, S0 ∪ S2, . . . , S0 ∪ Sn.
Suppose the sunflower corresponds to S0∪S1, . . . , S0∪Sw, with w ≈ (log n)100 and
core C. By construction, we must have S0 ⊆ C. The key claim is the following:

Claim 6. If S0 ∪ S1, . . . , S0 ∪ Sw is a sunflower with core C, then every subset of
T ⊆ {1, . . . , w} has an encoding as a vector in {1, . . . , n}|C|.

This claim combined with a straightforward counting argument implies that
|C| ≥ Ω( logn

log logn ), proving that one of the sets Si must be large. To prove the

claim, for any set T , arrive at its encoding by deleting the elements of the set
{1, . . . , w}−T from the encoding of {1, . . . , w}. After this process, every coordinate
of Si − C for i ∈ T has the same value that it had after the elements of {1, . . . , w}
were inserted. The claimed encoding corresponds to the contents of the core at
this point, which is a string in {1, . . . , n}|C|. T can be recovered from the encoding
by computing the minimum of T , then deleting the minimum, then computing the
minimum and deleting it, and repeating these operations over and over until the
entire set T has been recovered. The minimum can always be computed using the
core, since S0 ⊆ C. Because for i = j, Si ∩ Sj ⊆ C, one never needs to keep track
of the contents of coordinates outside the core; the contents of the core are enough
to simulate the entire process and determine T .

5. Estimating the threshold of monotone functions

Suppose we sample a random graph by including each edge independently with
probability ε. How can we estimate the probability that the graph contains a perfect
matching?

This is a special case of a more general question. Let 2[n] denote the set of
subsets of {1, . . . , n}, and let f : 2[n] → {0, 1} be a monotone function, meaning
that X ⊆ Y implies that f(Y ) ≥ f(X). Let X ∈ 2[n] be sampled by including
each i ∈ X independently with probability ε. Because f is monotone, E[f(X)]
is increasing in ε. The threshold of f is the value of ε for which E[f(X)] = 1/2.
There are a couple of generic ways to bound E[f(X)], and these bounds induce
other kinds of thresholds that capture something about the structure of f . These
ideas were explored extensively by Kahn and Kalai [10], Talagrand [16], Frankston,
Kahn, Narayanan, and Park [7], and Park and Pham [11].
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Given a family of sets F and a set X, define the shadow FX = {F ∈ F : F ⊆ X}.
It is easy to see that every monotone function f admits a minimal collection of sets
F such that f(X) = 1 for X ∈ F . Moreover, if F is the minimal family for f , then
f(X) = 1 if and only if |FX | ≥ 1. So, by the union bound,

E[f(X)] ≤
∑
Y ∈F

P[Y ⊆ X] = E[|FX |].(5.1)

More generally, for every monotone function g with f ≤ g, meaning that f(X) ≤
g(X) for all X, we have the bound,

E[f(X)] ≤ E[|GX|],(5.2)

where here G is the family of minimal sets of g.
The expectation threshold of f is the largest value of ε for which the right-hand

side of (5.2) is equal to 1/2 for some monotone g with f ≤ g. By (5.2), the
threshold is always at least the expectation threshold. When f computes whether
or not a graph has a perfect matching, the threshold is≈ log n

n , while the expectation

threshold is ≈ 1
n . Kahn and Kalai conjectured that this is the worst possible ratio:

the threshold is always at most O(logn) times larger than the expectation threshold.
In general, the above union bound can be quite far from tight. It is not tight

when the events Y ⊆ X have intersections of significant measure. There is a more
sophisticated way to get upper bounds on E[f(X)], as observed by Talagrand [16]—
it can be thought of as a fractional variant of the union bound discussed above.
Suppose there is a probability distribution Z on 2[n] and κ satisfying

f(U) ≤ κ · E[1Z⊆U · ε−|Z|]

for all sets U . Then we obtain the upper bound,

E[f(X)] ≤ κ · E[1Z⊆X · ε−|Z|] = κ,(5.3)

since for any fixed Z, the probability that Z ⊆ X is exactly ε|Z|.
The fractional-expectation threshold is the largest value of ε for which there is a

Z satisfying the above condition with κ = 1/2. The union bound of (5.2) can also
be proved using (5.3), because if f ≤ g and G is the set of minimal sets of g, then
we can sample Z so that

P[Z = Z] =

{
E[1Z⊆X]

E[|GX|] if Z ∈ G,
0 otherwise,

then because E[1Z⊆X] = ε|Z|, we have that for any U

f(U) ≤ g(U) ≤ |GU | ≤ E[|GX|] · E[1Z⊆U · ε−|Z|],

proving (5.2). So, the bound given by (5.3) is certainly at least as good as the bound
given by (5.2). In particular, this implies that the threshold is at least as large as the
fractional-expectation threshold, which in turn is at least the expectation threshold.
But how far apart can these numbers be?

Talagrand conjectured that the fractional-expectation threshold is within a mul-
tiplicative factor of O(logn) from the threshold and within an O(1) factor of the ex-
pectation threshold. Following recent progress on the sunflower lemma, Frankston,
Kahn, Narayanan, and Park [7] proved that the fractional-expectation-threshold is
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within O(logn) of the threshold, thus resolving Talagrand’s first conjecture. Subse-
quently, Park and Pham proved that the expectation threshold is within a O(logn)
factor of the threshold, resolving Kahn and Kalai’s conjecture:

Theorem 7 ([11]). For any monotone function f : {0, 1}n → {0, 1}, the threshold
is at most O(logn) times larger than the expectation threshold.

This allows us to compute the threshold for many graph properties, such as
perfect matchings, Hamiltonian circuits, and bounded degree spanning trees. The
ideas used to prove new sunflower lemmas play a key role in these proofs.

Talagrand made an important observation that suggests a definition that is ulti-
mately used to prove the improved sunflower lemma. Suppose that κ is the smallest
number for which there is a Z establishing (5.3). Then by von Neumann’s minimax
theorem, there is a distribution on U such that for every choice of Z,

E[f(U)] ≥ κ · E[1Z⊆U · ε−|Z|].(5.4)

Without loss of generality, we may assume that U is supported on the minimal
sets of f , since we can always modify the distribution in this way and preserve the
inequality. So, after making this change, we can rewrite (5.4) as

ε|Z|/κ ≥ E[1Z⊆U].(5.5)

This shows that U has a very interesting property: it is spread, in the sense that it
is unlikely to contain any fixed set Z: P[Z ⊆ U] ≤ ε|Z|/κ ≤ r−|Z| for r = κ/ε.

The ideas used to prove the sunflower lemma are ultimately useful in proving the
threshold vs expectation threshold conjecture, as well as the threshold vs fractional-
expectation threshold conjecture. Let us briefly put on hold our study of these
thresholds to discuss how the concept of being “spread” is useful in proving the
new sunflower bound.

6. Sunflowers in spread families

At last we return to the sunflower question: how many sets of size k are sufficient
to ensure the presence of a sunflower with w petals? Alweiss, Lovett, Wu, and
Zhang discovered an elementary counting argument that is surprisingly powerful in
helping answer this question.

Given a collection S of sets, let U ∈ S be uniformly random. As in Section 5,
we shall say that U is r-spread (for some parameter r = O(w log k)) if for every set
Z, P[Z ⊆ U] ≤ r−|Z|. Now, suppose |S| ≥ rk. If U is not r-spread, then there is a
set Z such that the family S ′ = {S ∈ S : Z ⊆ S} has at least rk−|Z| sets. In this
case, we inductively find a sunflower in the family of sets of size at most k − |Z|
obtained by deleting Z from the sets of S ′. Adding Z back into this sunflower gives
us a sunflower in our original family of sets. So, it only remains to find sunflowers
in spread families.

We prove Claim 8 in Section 7. (All logarithms are computed base 2).

Claim 8. For r = (64 log k)/ε, if S is such that U is r-spread and W is a uniformly
random set of size εn, then P[SW = ∅] ≤ 1/2.

Assuming the claim, let W1, . . . ,W2w be a random partition of the universe into
2w sets, and set ε = 1/(2w), so r = 128w log k. Claim 8 implies that at least w of
these sets will contain a set of the family in expectation, and so there must be w
mutually disjoint sets—a sunflower with w petals.
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7. A clever counting argument

Finally, we arrive at the key technical theorem which will help us prove the new
sunflower bound as well as resolve the threshold vs expectation threshold conjecture.
Recall that we defined the shadow GU = {Y ∈ G : Y ⊆ U}, and U is r-spread if
P[Z ⊆ U ] ≤ r−|Z|. We prove:

Theorem 9. Let S ⊆ 2[n] be a family of sets of size at most k. Then there is a
distribution on pairs (W,G), where W ∈ 2[n] is a uniformly random set of size εn
and G ⊆ 2[n] is a family of sets, such that either SW = ∅ or for every S ∈ S, GS = ∅
and yet for any r-spread U that is independent of (W,G) with r = (64 log k)/ε, we
have E[|GU|] < 1/8.

Let us first use the theorem to complete our proofs of the sunflower lemma and
the threshold vs expectation threshold conjecture.

7.1. Sunflower lemma. To prove Claim 8, let S be the given family, and letU be a
uniformly random set of S, which is r-spread with r = (64 log k)/ε. By the theorem,
E[|GU|] < 1/8 implies that P[∀S ∈ S,GS = ∅] < 1/8 and so P[SW = ∅] > 7/8,
proving Claim 8.

7.2. Threshold vs expectation threshold. Let S = F be the family of minimal
sets of the given monotone function f and k = n. Let ε be the threshold of f , so
E[f(X)] = 1/2. Standard concentration bounds imply that there must be a number
t with |t − εn| < O(

√
n) such that if W is chosen to be a uniformly random set

with |W| = t, then E[f(W)] ≤ 3/4. For ease of presentation, let us assume that
t = εn.

Let g denote the monotone function whose family of minimal sets is G. By the
theorem, either f(W) = 1 or f ≤ g, so

P[f ≤ g] ≥ 1/4.(7.1)

If U is the distribution on sets where each element is included in U independently
with probability 1/r = ε/(64 log k), then U is r-spread, so the theorem guarantees
that E[|GU|] < 1/8. By Markov’s inequality,

P
G

[
E
U
[|GU|] ≥ 1/2

]
< 1/4.(7.2)

But (7.1) and (7.2) imply that there is a fixed choice of G such that f ≤ g and
E[|GU|] ≤ 1/2, proving the threshold vs expectation threshold conjecture.

7.3. Proving Theorem 9. Let W1, W2, . . . ,Wlog k be uniformly random disjoint
sets of size m = εn/ log k. Here all logarithms are computed base 2. Our goal
is to use W1, . . . ,Wlog k to define sets G1, . . . ,Glog k. We shall then set W =
W1 ∪ · · · ∪Wlog k and G = G1 ∪ · · · ∪ Glog k.

Let Wi denote W1∪· · ·∪Wi, and let Gi denote G1∪· · ·∪Gi. Define G1, . . . ,Glog k

iteratively as follows. For each i and for S ∈ S, include S −Wi in Gi if and only if

(i) |S −Wi| ≥ k/2i, and
(ii) S −Wi is a minimal set of {S −Wi : S ∈ S,Gi−1

S = ∅}.
Intuitively, the above process attempts to cover all the sets of S. In each step,
we discard the elements of S that have already been covered and proceed to cover
more elements by including sets of size at least k/2i in Gi. By the time i = log k,
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we will cover all remaining sets that are not included in W1 ∪ · · · ∪Wlog k. So, a
set of S is left uncovered in this process only if it is contained in W = Wlog k.

We give an upper bound on the expected number of sets T ∈ Gi of size a as
follows. Fix W1, · · · ,Wi−1.

(i) There are at most
(

n
m+a

)
choices for the set T ∪Wi with |T | = a. We have(

n

m+ a

)
=

(
n

m

)
·

a∏
j=1

n−m− j

m+ j
≤

(
n

m

)
·
( n

m

)a

=

(
n

m

)
·
( log k

ε

)a

.

(ii) Given T ∪ Wi, let S′ − Wi−1 be the smallest set of {S − Wi−1 : S ∈
S,Gi−1

S = ∅} that is contained in T ∪Wi; break ties by picking the lexico-
graphically first set. It must be that |S′−Wi−1| ≤ k/2i−1, or else S′−Wi−1

would have been included in Gi−1. Furthermore, T ⊆ S′−Wi−1, or S′−Wi

would be a strict subset of T , and T would not be included in Gi. So, there

can be at most 2k/2
i−1

= 4k/2
i

choices for T consistent with T ∪Wi.

The above count shows that the expected number of sets of size a in Gi is at most

4k/2
i
(

log k
ε

)a

. Thus, we can bound

E[|GU|] ≤ E

[ ∑
Y ∈G

( ε

64 log k

)|Y |]

=

log k∑
i=1

E

[ ∑
Y ∈Gi

( ε

64 log k

)|Y |]

≤
log k∑
i=1

∞∑
a=k/2i

( ε

64 log k

)a

· 4k/2i
( log k

ε

)a

=

log k∑
i=1

(1/16)k/2
i

1− 1/64

<
∞∑
j=1

2 · (1/16)j < 1/8.

This proves the theorem.

8. Conclusion

Sunflowers have had an enormous impact in a surprising number of different
fields. They are certain to spring up in new places in the future. The counting
method of [2] has already found applications in places where there are no sunflowers.
It is an exciting time to be playing with these concepts!
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