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STABLE BLACK HOLES: IN VACUUM AND BEYOND

ELENA GIORGI

Abstract. Black holes are important objects in our understanding of the uni-
verse, as they represent the extreme nature of General Relativity. The mathe-

matics behind them has surprising geometric properties, and their dynamics is
governed by hyperbolic partial differential equations. A basic question one may
ask is whether these solutions to the Einstein equation are stable under small
perturbations, which is a typical requirement to be physically meaningful. We
illustrate the main conjectures regarding the stability problem of known black
hole solutions and present some recent theorems regarding the fully nonlin-
ear evolution of black holes in the case of vacuum and their interaction with
matter fields.

1. Physical motivation

Black holes are astrophysical compact objects which are believed to be over-
whelmingly present in the universe. Black holes embody the extreme nature of the
theory of General Relativity, and the singularities hidden behind them are thought
to be the point of contact of Einstein’s theory of gravity with the theory of quantum
mechanics, as quantum effects are believed to be relevant at those scales. A resolu-
tion for a quantum theory of gravity will most likely involve a better comprehension
of black holes and their singularities. Even though they are now considered central
objects in the study of astrophysics, it is only very recently that we have direct and
indirect proofs of the existence of black holes.

The first indirect observation of black holes was obtained in 2015 by LIGO (the
Laser Interferometer Gravitational-wave Observatory) through the first detection
of gravitational waves emitted by the merger of binary black hole systems. The first
measurement and the ones that have followed opened up the possibilities of a more
direct way of observing and studying these objects. The LIGO interferometers
detected the first signal emitted by such an event in September 2015 (see [1]),
and their discovery was awarded the Nobel Prize in Physics in 2017, just a little
more than a year after the announcement. The gravitational waves, which were
predicted by Albert Einstein precisely 100 years before (in 1915) in his formulation
of the theory of General Relativity, came from a collision between two black holes,
which took place 1.3 billion light years away. The event can be described as follows:
Two black holes rotate around each other. As they rotate, they lose energy through
the emission of gravitational waves. In this process they get closer and closer to
each other, while moving almost as fast as the speed of light, until they merge
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into one larger black hole. After the merger, the final black hole settles down to a
stationary state, and in doing that it emits energy through gravitational waves.

What LIGO observed are precisely the waves emitted in this process, and they
were detected as a wave-like signal by the two interferometers in Washington and
Louisiana. Clearly, in order to extract any relevant information about the event (like
the mass of the black holes, their rotations or their distance from us) from the raw
detected signal, one needs a very precise model to compare it to. One of the crucial
components in the LIGO discovery is in fact the statistical process of comparing the
signal observed by the instrument to a catalogue of so-called waveforms, which are
numerically simulated signals as expected from the prediction of General Relativity.
Remarkably, the first code able to simulate the merger of two black holes was only
obtained in 2005 by Frans Pretorius [50], just ten years before the actual detection
of gravitational waves by LIGO.

The LIGO interferometers have also detected events involving other astrophysical
objects, such as neutron stars [2], where the interaction of different matter fields
appear, but nevertheless stability properties are present. These kind of events
represent a strong motivation for the study of a nonvacuum solution to the Einstein
equation.

Another direct proof of the existence of black holes comes from the images pro-
duced by the Event Horizon Telescope Collaboration [13] of the black holes M87
in 2019 and Sagittarius A* in 2022. Both images show a ring of light around the
black hole, and its shape is due to properties of the so-called photon sphere outside
the black hole, which we will see plays a crucial role in the analysis of stability
problems.

LIGO has continued to observe mergers of black holes in recent years, and we
are starting to have a much better understanding of the population of black holes
in the universe, together with their channel formations and parameter properties.
The numerical simulations involved in the process—extremely refined and complex
on their own—rely on the mathematical understanding of black holes as solutions
to the Einstein equation. In particular, the waves emitted in the merger events
are the physical fingerprints of the particular dynamics associated to the Einstein
equation: the dispersion properties of the wave equation. The mere detection of
gravitational waves emitted by those large perturbations of black holes, in addition
to probing their existence, gives us a strong argument for the stability of these
objects to perturbations, which is a question that has interested physicists and
mathematicians alike in the past 50 years.

2. The mathematics of black holes

The mathematics of black holes was formulated as part of the theory of General
Relativity by Albert Einstein in 1915. Before then, the Newtonian theory of gravity
was the master theory for describing the movement of celestial bodies, even though
some observed phenomena, such as the precession of Mercury’s orbit, could not be
explained with Newtonian theory.

According to Newton, the spacetime is given by a three-dimensional flat space
and a one-dimensional absolute time. In such spacetime, not all observers agree on
the value of the spatial coordinates or the velocity of an object (that depends on
the choice of coordinates), but they agree on measurements of distances. In other
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words, the spatial separation

ds =
√
dx2 + dy2 + dz2,

which is the Euclidean distance, is conserved among different observers.
In 1905 Einstein challenged the Newtonian vision of spacetime, and in his Special

Relativity he proposed a theory in which the spacetime is thought to be a four-
dimensional flat spacetime, with no absolute slices and no privileged family of
observers. To each point of the spacetime, there is an associated cone, called the
light-cone, along whose edges light can travel, and everything else, massive objects
like us, can only travel slower than the speed of light, therefore being forced to
move inside the light-cone. Nothing at all is allowed to move faster than the speed
of light, and therefore it cannot travel outside the light-cone. He proposed that the
spacetime separation

ds =
√
−c2dt2 + dx2 + dy2 + dz2,

where c is the speed of light, is the conserved quantity.
This leads to the definition of Minkowski spacetime, or the spacetime of Special

Relativity, as the flat metric on R3+1 with signature (3, 1) given by

(2.1) gm = −dt2 + dx2 + dy2 + dz2,

where from now on the speed of light has been set to c = 1. Minkowski spacetime is
the Lorentzian equivalent of Euclidean space in Riemannian geometry, and its light-
cones are all uniform and vertical with slope 1. Minkowski spacetime represents
the empty space, where no masses or objects are present.

It took Einstein about ten years to understand what happens in the presence of
a massive object (for instance, to describe the spacetime of a star), and this was
the core of his theory of General Relativity. In Minkowski spacetime, an object
which travels at constant speed would follow a straight line in spacetime. If a star
is present instead, it will deform the spacetime so that the object, in following a
straight line (i.e., geodesics), would actually bend toward the star. This fact can
be summarized in John Wheeler’s words, “Spacetime tells matter how to move;
matter tells spacetime how to curve”. The light-cones of the spacetime of a star
are therefore not uniform, but they bend toward the star as they get closer to it.

An interesting phenomenon, which even escaped Einstein’s comprehension for
a long time, is that the geometry radically changes if the star becomes more and
more massive and dense. If this happens, the spacetime gets distorted: the overall
geometry of light-cones changes, and a region where not even light can escape forms.
The light-cones become tangent to a confined hypersurface, and in particular if a
light signal happens to reach that hypersurface, it will in fact never be able to leave
the region enclosed by it. The hypersurface is called the event horizon; the region
enclosed by it, the black hole.

2.1. The Einstein equation. From a mathematical point of view, black holes are
solutions to the main equation governing the theory of General Relativity, called
the Einstein equation. According to General Relativity, a spacetime is a four-
dimensional manifold equipped with a Lorentzian metric g (i.e., with signature
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(3, 1)) that satisfies the Einstein equation,1

(2.2) Ric(g)− 1

2
R(g)g = T,

where

• Ric(g) is the Ricci curvature of g,
• R(g) is the scalar curvature of g,
• T is called the stress-energy tensor and contains information about the
matter fields present in the spacetime.

The Einstein equation (2.2) is the mathematical representation of the fact that
“spacetime tells matter how to move; matter tells spacetime how to curve”: the left-
hand side of the equation is a particular combination of curvature of the spacetime,
which encodes how curved the spacetime is, while the right-hand side describes the
behavior of the matter.

At first glance, equation (2.2) may seem like the definition of the right-hand side
T, but this is not how one should think about it. The unknown of the equation is
the metric g, and even though the left-hand side of (2.2) may seem easy to write, it
is actually given by a system of second-order partial differential equations (PDEs)
in the metric, as in the definition of Ricci curvature. Those second-order PDEs are
sourced by the left-hand side of the equation, which is a given expression containing
all the information about the matter present in the universe. In its full generality,
the Einstein equation is in fact very difficult to solve and study, and in what follows
we will concentrate on two important cases.

The simplest scenario one can consider is the case where there are no matter
fields present in the spacetime, i.e., T ≡ 0. A vacuum spacetime is then a spacetime
satisfying the Einstein vacuum equation

(2.3) Ric(g) = 0.

The Einstein vacuum equation is considered the benchmark of the study of Gen-
eral Relativity, and rightly so. In fact, solutions to the Einstein vacuum equation
can be shown to have most of the geometrical properties of general spacetimes.
Nevertheless, analysis of the resulting equations describing the dynamics is simpli-
fied in the vacuum case, as gravitational radiation is not sourced by other radiations
and does not interact with matter fields. In the case of the interaction of gravi-
tational radiation with other forms of radiation, various different dynamics take
place, depending also on the specific matter field involved.

If we assume that the gravitational field can interact with electromagnetic ra-
diation (if we want to literally add some color to the equations!), we obtain an
electrovacuum spacetime, which satisfies the Einstein–Maxwell equation,

(2.4) Ric(g) = 2F ·F−1

2
|F |2g,

where F is a 2-form, called the electromagnetic tensor, satisfying the Maxwell equa-
tions,

(2.5) dF = 0, div F = 0.

1Here we set the speed of light and the gravitational constant to unity, i.e., c = G = 1. In
addition, we only consider the case of a zero cosmological constant, Λ = 0.
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In this case, the Ricci curvature is not identically zero, but rather sourced by a
quadratic expression in terms of the electromagnetic field, which itself satisfies the
equations of electrodynamics (2.5).

The electromagnetic radiation governed by the Maxwell equations represents one
of the interesting matter fields for various reasons. As seen in the next subsection,
there are explicit black hole solutions to the Einstein–Maxwell equation with a
nontrivial electromagnetic field. Moreover, the Maxwell equations themselves have
a similar hyperbolic structure as the Einstein equation, and therefore the interaction
of electromagnetic and gravitational radiation is very instructive for subsequent
studies of interaction with other matter fields.

2.2. Black hole solutions. We now present some particular solutions to the Ein-
stein vacuum and Einstein–Maxwell equations and their properties.

The simplest solution to the Einstein vacuum equation is the Minkowski space-
time gm, given by the metric (2.1), which can also be written in standard spherical
coordinates (t, r, θ, φ) as

(2.6) gm = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

As mentioned above, Minkowski is the spacetime of Special Relativity with no
presence of matter.

A more interesting solution was discovered by Karl Schwarzschild in 1916 [52],
just a few months after Einstein wrote down his equation. Schwarzschild wanted to
find an explicit solution to the Einstein vacuum equation (2.3), and he looked for one
with a high degree of symmetry. By imposing a spherical symmetry on a solution
(the spherical part r2

(
dθ2 + sin2 θdφ2

)
is also present in the Minkowski metric

(2.6)), he reduced the problem to solving an ordinary differential equation (ODE).
The ODE can be solved explicitly in terms of the radial coordinate, and in the
process of integrating for the solution one obtains a constant of integration M . The
Schwarzschild solution is then a one-parameter family of solutions, parametrized
by M ∈ R, given by

(2.7) gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

One can immediately notice that if M = 0, the above metric reduces to the
Minkowski metric (2.6). Even more interestingly, it was clear early on that for
large r the Schwarzschild metric gM gives the gravitational potential according
to the Newtonian theory of an isolated body of mass M . This means that the
Schwarzschild solution gives an explicit formula for the equivalent in General Rel-
ativity to the spacetime of a star.

One can easily notice that the metric (2.7) has a singular behavior at r = 2M ,
where the coefficient

(
1− 2M

r

)
vanishes. Nevertheless, it took long time before

the nature of such singularity became clear. At r = 2M , there is no geometrical
invariant which becomes singular, but it is rather a coordinate singularity. This
means that there is a change of coordinates which modifies the metric (2.7) into one
which is perfectly well-behaved at r = 2M . Still, the hypersurface r = 2M has an
interesting geometrical property: the light-cones of the manifold bend toward the
region r < 2M and become tangent to r = 2M . In particular, light rays traveling
along the edges of those cones, as well as massive objects traveling in the interior
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of the light-cones, are not able to leave the region r ≤ 2M once they enter it. It is
a black hole region, and the hypersurface r = 2M is an event horizon.

A region of spacetime where not even light can escape was a very difficult concept
to grasp for the physics community at that time, and the Schwarzschild solution was
indeed only considered to be valid outside the black region, i.e., for r > 2M . It was
believed that the presence of the black hole region was an artifact of the symmetry
of the solution: as in the real world there is no perfectly spherically symmetric
massive object, so there would not be any black hole region. The argument went,
if one were to consider a more realistic star, a region where not even light can
escape would not form. Einstein himself wrote in 1939 [22] that the “Schwarzschild
singularities [which is what they called the event horizon] do not exist in physical
reality”. The entire physics community was convinced that the black hole region
was merely a mathematical property of the very symmetric Schwarzschild solution.

The general expectation about the existence of black hole solutions changed
dramatically when Roy Kerr in 1963 [37] wrote down another explicit solution to
the Einstein equation, parametrized by two real parameters M and a, where a is a
rotation parameter, with |a| ≤ M .2 The Kerr solution is given by

(2.8) gM,a = −Δ

ρ2
(
dt− a sin2 θdφ

)2
+
ρ2

Δ
dr2+ρ2dθ2+

sin2 θ

ρ2
(
adt− (r2 + a2)dφ

)2
,

where

Δ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ,

and for a = 0 it reduces to the Schwarzschild metric (2.7). The Kerr solution
represents a much more realistic case of a massive object of mass M which rotates
around an axis of symmetry with angular momentum Ma.

Analyzing its geometrical properties, one can see that the hypersurface Δ = 0 is
still an event horizon: the light-cones become tangent to it and the region enclosed
by it is a black hole region. The derivation of such a metric proved to be a game
changer for the concept of a black hole, as its existence proved that the black hole
region was clearly not simply an artifact of symmetry, and it did not have to be
just a mathematical property of an unrealistic physical object. It could in fact very
well be real. The Kerr solution is now considered to be the most fundamental black
hole solution, and it is believed to represent the astrophysical black holes present
in the universe.

The Einstein–Maxwell equation has two explicit solutions which are directly re-
lated to Schwarzschild and Kerr. The Reissner–Nordström solution is parametrized
by two parameters M and Q, where Q is the electric charge, with |Q| ≤ M , and is
given by
(2.9)

gM,Q = −
(
1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

It represents a spherically symmetric charged black hole.
Finally, the Kerr–Newman solution [49] is parametrized by three parameters M ,

a and Q with a2+Q2 ≤ M2, and is given by the same expression as in (2.8), where

Δ = r2 − 2Mr + a2 +Q2, ρ2 = r2 + a2 cos2 θ.

2If |a| > M , the spacetime is said to contain a naked singularity.
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The Kerr–Newman metric is the most general known explicit black hole solution to
the Einstein–Maxwell equation, and it is a three-parameter family which describes
the gravitational field around an isolated rotating charged black hole of mass M ,
angular momentum Ma, and electric charge Q. The Kerr–Newman metric gener-
alizes the Reissner–Nordström solution (for a = 0), the Kerr solution (for Q = 0),
and the Schwarzschild metric (for Q = a = 0). As such, the Kerr–Newman space-
time plays a fundamental role in describing the final state of evolution in General
Relativity.

2.3. The dynamics of black holes. Kerr–Newman solutions are extremely useful
for performing explicit computations, such as calculations of geodesics, curvature
invariants, etc. Nevertheless, one can immediately notice that the metric coefficients
appearing in (2.8) do not depend on the time variable t. We call such solutions
stationary. In particular, stationary solutions cannot describe events such as the
merger of black hole binaries that LIGO observed. In those events, the black holes
rotate around each other and continuously change their configuration, in contrast
with a black hole described by a stationary solution, such as (2.8), which sits still
forever, rotating around its axis in the same way as time passes by.

In order to describe events that are not stationary, we need a mechanism to
study the dynamics of black holes as solutions to the Einstein equation. This
tool is precisely given by the Choquet-Bruhat theorem [23] which formulated the
Einstein equation as an initial value problem, and effectively started the field of
Mathematical General Relativity.

Theorem 2.1 (Choquet-Bruhat [23], 1952). The Einstein equation in wave coor-
dinates is given by a hyperbolic system of PDEs of the form

(2.10) �gg = N(g, ∂g),

where �g = gμνDμDν is the D’Alembertian operator associated to the metric g,
D is the covariant derivative associated to g, and N(g, ∂g) denotes nonlinear terms
in g and its first derivative with initial data is given by (g|Σ0

, k|Σ0
), i.e., the metric

and its second fundamental form on a spacelike hypersurface Σ0, which satisfy some
compatibility conditions, called the constraint equations.

The D’Alembertian operator associated to the Minkowski metric is given by the
standard wave operator,

�gm = −∂2
t + ∂2

x + ∂2
y + ∂2

z ,

and the most important properties satisfied by solutions to the standard wave
equation, such as finite speed of propagation and continuous dependence on the
initial data, can be proved to be valid for solutions to the general covariant wave
operator �g for any Lorentzian metric g.

In particular, Theorem 2.1 implies local well-posedness and continuous depen-
dence on the initial data for the Einstein equation. More precisely, given a set of
compatible initial data for the Einstein equation on some initial time slice Σ0, one
can uniquely solve locally the Einstein equation in the future of Σ0. This gives a
mechanism for studying the dynamics of the Einstein equation. Suppose we are
given an initial data set that describes two black holes that rotate around each
other. Then we can use the Choquet-Bruhat theorem to solve locally for the Ein-
stein equation and describe the behavior of the solution after a very short period
of time.
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What about the global behavior of the solution, i.e., the behavior of the solution
a long time after the initial time slice? This is a much more difficult question that
Theorem 2.1 cannot answer. For example, consider a much simpler case than the
Einstein equation: a nonlinear scalar wave equation of the form

(2.11) �gmφ = (∂tφ)
2.

If we consider equation (2.11) with initial data φ|t=0 = ∂tφ|t=0 = 0, then, by
uniqueness, the solution is given by φ(t) = 0 for all t ≥ 0, and it is therefore global,
smooth, and bounded in time. If instead we consider equation (2.11) with initial
data φ|t=0 = ∂tφ|t=0 = ε, for some ε > 0, there exists a finite time T such that
φ → ∞ for t → T . The solution is then not defined globally in time and in fact
blows up at finite time.

We say that the trivial solution to equation (2.11) is not stable under small
perturbations : if the initial data changes of size ε, for any small ε, then the behavior
of the solution changes dramatically, passing from one which is bounded for all times
to one which blows up in finite time.

Since the Einstein equation (2.10), as given by the Choquet-Bruhat theorem, has
in principle the same schematic structure as equation (2.11) (albeit more compli-
cated as it involves tensorial quantities and quasi-linear terms), one may worry that
perturbations of even the trivial solution (i.e., the Minkowski spacetime) could blow
up in finite time. Surprisingly, this does not happen, as proved by Christodoulou
and Klainerman in 1993 [12].

Theorem 2.2 (Christodoulou and Klainerman [12], 1993). The Minkowski space-
time gm is globally nonlinearly stable as a solution to the Einstein vacuum equation.

One of the underlying reasons that the Einstein equation behaves differently than
equation (2.11), whose trivial solution is not stable under small perturbations, is the
absence of nonlinear terms of the form (∂tφ)

2 on the right-hand side. This is called
the Klainerman null condition [39]. The monumental proof of the Christodoulou–
Klainerman theorem does not depend on coordinates, but is rather geometrical as
it lays open the structures of the spacetimes which are constructed as perturbations
of Minkowski spacetime.

The Christodoulou–Klainerman theorem answers affirmatively the question of
stability of the trivial solution to the Einstein equation. What about the global
behavior of perturbations of nontrivial solutions to the Einstein equation, such as
black holes? If we consider initial data given in a black hole background and a pulse
of radiation at a given time, then we know by the Choquet-Bruhat theorem that it
will propagate with finite speed as a wave. We can expect some of the radiation to
fall inside the black hole and some to disperse toward the far-away region. What
about the bulk of radiation in between?

One of the main differences between the Minkowski space and the black hole
solutions is the presence of a hypersurface, called the photon sphere, outside the
event horizon, where null geodesics (i.e., geodesics which travel along the edges of
the light-cones) tend to concentrate. Those are called trapped null geodesics, as
they are trapped on this bounded region for a long time. In the case of Schwarzschild
spacetime, the photon sphere occurs at r = 3M , outside the event horizon r = 2M .
In the case of Kerr, the structure of the photon sphere is more involved, as it does
not concentrate in one hypersurface in physical space.
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Because of the presence of the photon sphere, one may worry that the radiation
in perturbations of a black hole will tend to accumulate on the photon sphere region,
creating a concentration of energy that will cause the whole spacetime to explode
or blow up in finite time.

Surprisingly, once again, this does not happen, as the trapped null geodesics
which concentrate around the photon sphere outside the black hole solutions are
unstable: in particular, they tend to scatter off and disperse after some time in the
region. The particles of light, which start orbiting around the black hole along the
photon sphere and then gets scattered off and disperse away, are precisely the ones
observed by the Event Horizon Telescope, and they form the luminous ring outside
the black hole depicted in their images [13]. The instability of the photon sphere
is one of the important properties used to prove the stability of the wave equation
on black holes.

3. The stability problem for the Einstein equation

The stability problem for black hole solutions concerns the long-time behavior
of solutions to the Einstein equation which are perturbations of the known family
of black hole solutions. We now present the stability problem as one aspect in the
bigger context of the Final State conjecture, which aims to describe the state of the
evolution of any reasonable initial data for the Einstein equation.

Conjecture 3.1 (Final State Conjecture [38]). Reasonable initial data for the Ein-
stein equation evolve asymptotically in time to a finite number of Kerr–Newman
black holes, moving away from each other.

The Final State Conjecture as stated here is very general, and its proof is out-
of-reach in the foreseeable future. Nevertheless, this conjecture implies three sub-
conjectures, each of which is interesting in its own right and for which progress has
been made.

(1) Collapse conjecture. The Final State Conjecture predicts that black
holes are the state of evolution of any initial data for the Einstein equation.
But how do black holes form in the first place? The Collapse conjecture
states that there is a mechanism for which large initial data give rise to the
formation of a black hole.3 For more detail on the Collapse conjecture, see
[44] and [5].

(2) Rigidity conjecture. The Final State Conjecture predicts that initial
data for the Einstein equation evolve into a very special form of black
holes, i.e., the Kerr–Newman family given by the metric (2.8) with Δ =
r2 − 2Mr+ a2 +Q2. One may ask why one should expect this form of the
metric, and not any other one (which we may not have discovered yet!) to
be precisely the final state of evolution. The Rigidity conjecture states that
the Kerr–Newman family is in fact the only family of stationary solutions
to the Einstein equation. The Rigidity conjecture is proved in the case of
analytic solutions, and is known as the no-hair theorem. For more detail
on the Rigidity conjecture, see [17].

3Small initial data do not, as implied by the Christodoulou–Klainerman theorem of the stability
of Minkowski space.



10 ELENA GIORGI

(3) Stability conjecture. The Final State Conjecture predicts that the evo-
lution of initial data settles down to a member of the Kerr–Newman family,
in particular implying that all the extra radiation will not concentrate in
the process and instead disperse to infinity. This implies the Stability con-
jecture, which states that the Kerr–Newman family is stable under small
perturbations of the initial data.

We now focus on the Stability conjecture.

Conjecture 3.2 (Stability of the Kerr–Newman family conjecture). Initial data
for the Einstein equation, which are sufficiently close to a Kerr–Newman black hole,
evolve asymptotically in time to another member of the Kerr–Newman family.

Observe that the conjecture does not claim that one member of the Kerr–
Newman family is stable, but it is instead that the whole family is stable. Physically,
this corresponds to the fact that when perturbing a black hole of a certain mass,
rotation and charge, one expects the perturbation to modify its mass, rotation, or
charge. Nevertheless, the overall structure of its metric is expected to be unchanged.

We now translate the Stability conjecture into the language of PDEs. Let the
Einstein equation be represented by the nonlinear operator

(3.1) P(φ) = 0,

and let φλ be a family of stationary solutions (the Kerr–Newman family) parame-
trized by some parameter λ (given by M,a,Q), i.e., P(φλ) = 0.

Proving that the family of solutions φλ is stable under small perturbations as a
solution to (3.1) boils down to proving that a solution with initial data close to φλ

converges asymptotically in time to φλ′ with λ′ close to λ.
There are various levels of increasing difficulty for the stability problem:

(1) Consider the linearized equation

(3.2) (dP)|φλ
(ψ) = 0,

and prove the following.
• Separated solutions of (3.2), of the form

(3.3) ψ(t, r, θ, φ) = e−iωteimφR(r)S(θ)

for ω ∈ C, m ∈ Z do not exponentially grow in time. This is called
mode stability.

• All solutions of (3.2) decay in time. This is the full linear stability.
(2) Prove that all solutions to the fully nonlinear equation (3.1) decay in time.

This is the full nonlinear stability.

Why is the Stability portion of the Kerr–Newman family conjecture believed to
be true? There have been clues in the past 50 years which have been pointing
toward the expectation that the conjecture would hold. The clues concern the
following three aspects of the problem.

• Mode stability. There are no exponentially growing modes for separated
mode solutions of the form (3.3) to the Einstein equation in Schwarzschild
(Regge and Wheeler [51], Bardeen and Press [6]), in Reissner and Nord-
ström (Moncrief [47], Chandrasekhar [11]), and in Kerr (Teukolsky [57],
Chandrasekhar [11], Whiting [58], Shlapentokh and Rothman [54]). No
mode stability has been proved for Kerr–Newman spacetime, and we will
come back to this anomaly in Section 5.4.
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• Stability for the scalar wave equation on black hole backgrounds. General
solutions arising from regular initial data to

(3.4) �gψ = 0

remain bounded and decay in time in Schwarzschild and in Reissner and
Nordström (Kay and Wald [36], Blue and Soffer [8], Dafermos and Rodnian-
ski [20]), in Kerr and in Kerr and Newman (Dafermos and Rodnianski [20],
Tataru and Tohaneanu [56], Andersson and Blue [3], Dafermos, Rodnianski,
Shlapentokh, and Rothman [21]).

Extensive progress has been made in the last 15 years which allowed us to
go beyond mode analysis, to tackling full linear stability (b) for the linear
wave equation. A robust geometric interpretation of the redshift effect
[18], a physical space analysis of the trapping region and the superradiance
[20], and a hierarchy of r-weighted decay [19] all contributed to a complete
understanding of the boundedness of solutions to the linear wave equation.

• Nonlinear stability of Minkowski spacetime. Solutions to the fully nonlinear
Einstein vacuum equation, which are small perturbations of Minkowski
give rise to a complete spacetime which converges to Minkowski space (see
Christodoulou and Klainerman [12], Lindblad and Rodnianski [45], and
Bieri [7]).

3.1. Known results in stability for the Einstein equation. We now collect
some of the known results for full linear and nonlinear stability of black hole solu-
tions to the Einstein vacuum and Einstein–Maxwell equation.

The Schwarzschild spacetime has been proved to be linearly stable to gravita-
tional perturbations (Dafermos, Holzegel, and Rodnianski [16], Keller, Hung, and
Wang [34], Johnson [35], Hung [33]), and nonlinearly stable under the symmetry
class of axially symmetric polarized perturbations (Klainerman and Szeftel [42]),
and up to a codimension-3 submanifold of moduli space (Dafermos, Holzegel, Rod-
nianski, and Taylor [14]).

The Kerr spacetime has been proved to be linearly stable using Newman–Penrose
formalism (Andersson, Bäckdahl, Blue, and Ma [4]) and using harmonic gauge
(Häfner, Hintz, and Vasy [32]) in both cases for |a| � M . Other important results
also concern the proof of boundedness and decay for solutions to the Teukolsky
equation for |a| � M (Ma [46] and Dafermos, Holzegel, and Rodnianski [15]) and
some progress for |a| < M (Shlapentokh, Rothman, and Teixeira da Costa [55]).
The nonlinear stability of Kerr spacetime for |a| � M has been very recently
obtained in a combination of results by Klainerman and Szeftel [40], [41], [43],
Shen [53], and Giorgi, Klainerman, and Szeftel [31].

The Reissner–Nordström spacetime has been proved to be linearly stable to
electromagnetic-gravitational perturbations for |Q| < M in our series of work, [27],
[25], [26], and [24]. We will discuss later the partial results on boundedness and
decay for solutions to the Teukolsky system in Kerr–Newman spacetime for |a| � M
as obtained in our recent work, [29] and [28].

We state here the statement of the linear stability of Reissner–Nordström space-
time, as obtained in our [27], in order to illustrate what kind of statement is expected
from the stability results quoted above.
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Theorem 3.3 (Giorgi [27], 2020). All solutions to the linearized Einstein–Maxwell
equations around Reissner–Nordström spacetime for |Q| < M arising from regular
initial data

(1) remain uniformly bounded on the exterior and
(2) decay to a linearized Kerr–Newman solution

after adding a pure gauge solution4 which can itself be estimated by the initial data.

We emphasize here two instabilities appearing in the statement of the theorem:
the linearized Kerr–Newman and the pure gauge solutions.

We already mentioned that upon perturbing a black hole solution, the parameters
of the spacetime can change. In particular, when perturbing a Reissner–Nordström
spacetime (i.e., a Kerr–Newman metric with parameterM , Q and a = 0), we should
expect the final perturbations to converge to a Kerr–Newman metric with small a.
In linear theory, this corresponds to solutions to the linearized Einstein–Maxwell
equation around Reissner–Nordström which decay to a linearized Kerr–Newman
solution.

There is a more serious instability which is proper of the Einstein equation.
Being a tensorial equation for the Ricci tensor, the equation is invariant under
choice of coordinates or gauge. In particular, given any metric g solution to the
Einstein equation, the pullback of the metric through any diffeomorphism is also a
solution to the same Einstein equation. For this reason, in order to prove any decay
of the solution, we will effectively have to pick a gauge and control the solution in
that gauge. In linear theory, this corresponds to solutions to the linearized Einstein
equation which decay in time only up to a pure gauge solution which represents the
choice of gauge.

In what follows, we will introduce three important ingredients of many stability
problems for the Einstein equation: the formalism of Christodoulou and Klain-
erman, the Teukolsky equation, and the Chandrasekhar transformation. These
concepts are all used in the works on nonlinear stability of Kerr solutions and the
linear stability of charged black holes.

3.2. The formalism of Christodoulou and Klainerman. Most of the above-
mentioned works on the stability of black holes rely on the formalism first introduced
by Christodolou and Klainerman [12], which has been very powerful in analyzing
geometrical problems in General Relativity. As an alternative to the Choquet-
Bruhat approach in wave coordinates, Christodoulou–Klainerman formalism makes
use of null frames, i.e., vector fields which are geometrically defined along the
manifold and have the following properties.

Let (M, g) be a 3 + 1-dimensional Lorentzian manifold solution to the Einstein
equation, and let D be the covariant derivative associated to g. Suppose that (M, g)
can be foliated by spacelike 2-surfaces (S,g), where g is the pullback of the metric g
to S. To each point of M , we can associate a null frame {e3, e4, ea}, with {ea}a=1,2

being tangent vectors to (S,g) such that

g (e3, e3) = 0, g (e4, e4) = 0, g (e3, e4) = −2,

g (e3, ea) = 0, g (e4, ea) = 0, g (ea, eb) = gab.

4Pure gauge solutions are those derived from linearizing the families of metrics that arise from
applying the Bondi gauge to Reissner–Nordström families of coordinate transformations which
preserve the choice of gauge on the metric (in the case of [27]).
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We denote ∇3 = ∇e3 and ∇4 = ∇e4 the projection to S of the spacetime covariant
derivatives De3 and De4 , respectively. We then project all geometric quantities
along the null frame {e3, e4} and obtain tensors on the sphere S. For the Ricci
coefficients (or Christoffel symbols) we have for example

(3.5) χab := g(Dae4, eb), χ
ab

:= g(Dae3, eb),

which can be interpreted as the second fundamental form of the embedding of the
sphere with respect to the normal e4 and e3, respectively. The quantities χ and χ
are 2-tensors on the sphere. For the Weyl curvature, we have for example

αab = W (ea, e4, eb, e4), αab := W (ea, e3, eb, e3),

which are the extreme null curvature components of the spacetime, and are 2-tensors
on the sphere. For the electromagnetic tensor, the extreme null components are
given by

(F )βa := F (ea, e4),
(F )β

a
:= F (ea, e3),

which are 1-forms on the sphere.
In the proof of linear stability of Reissner–Nordström in [27], we make use of the

above-described formalism. On the other hand in the case of Kerr or Kerr–Newman,
the above formalism, which in particular relies on the foliation of spacetime in
spheres, needs to be extended to the case of nonintegrable frame; see Section 4.1
for more detail.

The Christodoulou–Klainerman formalism was introduced in [12] for the proof
of nonlinear stability of Minkowski space. In order to study the Einstein equation
in this formalism, one makes use of the fact that the Einstein equation is equivalent
to the Bianchi identities for the Riemann curvature, and therefore by projecting
those equations to the spheres, one obtains a large number of tensorial equations
on the spheres.

The proof of stability of Minkowski space is based on a robust vector field
method, used to derive quantitative decay based on generalized energy estimates
and commutation with an approximate Killing vector field. As mentioned above,
for the nonlinear part of the equations, the null condition is used to identify the
structure of the nonlinearity which enables the stability mechanism. Finally, the
overall setup of the proof is an elaborate bootstrap argument, according to which
one makes educated guesses about the behavior of the solution, which is improved
by using a long sequence of a priori estimates.

3.3. The Teukolsky equation. In the case of perturbations of black hole solu-
tions, the projected equations for the curvature and the Ricci coefficients are a
coupled system of transport, elliptic, and hyperbolic equations with a complicated
structure. One may wonder why such an approach, based on null frames, would be
more successful or convenient with respect to the one in wave coordinates.

The main reason to use null frames is that the Kerr–Newman family admits a
special frame, called a principal null frame, which diagonalizes the Weyl curvature.
This means that for

(3.6) e3 =
r2 + a2

ρ2
∂t −

Δ

ρ2
∂r +

a

ρ2
∂φ, e4 =

r2 + a2

Δ
∂t + ∂r +

a

Δ
∂φ,

the Weyl curvature becomes

Wa4b4 = Wa3b3 = Wa343 = Wa434 = 0, Wabcd,W3434 
= 0,
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with most vanishing components of the curvature. Since it is easier to linearize
around zero, it is convenient to write the many equations on the spheres with
respect to the principal null frame. In fact, they simplify dramatically and become
tractable: more precisely, in vacuum the symmetric 2-tensors on the spheres αab

and αab satisfy a second-order PDE which is wave-like and decouples from all the
other components of the linearization.

The symmetric 2-tensor α satisfies the following wave-like equation, called the
Teukolsky equation, as discovered by Teukolsky in 1972 [57] and given by

T (α) := �gα+ c1(r, θ)∇∂r
α+ c2(r, θ)∇∂t

α+ c3(r, θ)∇∂φ
α− V (r, θ)α = 0.

In the physics community, the Teukolsky equation is expressed in terms of a complex
scalar of spin ±2 (for gravitational perturbations) or of spin ±1 (for electromagnetic
perturbations).

The highest-order terms of the Teukolsky equation are given by a D’Alembertian
operator �g, followed by first-order terms in ∂r, ∂t, ∂φ, and a potential. One may
therefore expect that the techniques developed for the standard wave equation
(3.4) can be applied to the Teukolsky equation to obtain estimates for its general
solutions.

Unfortunately, that is not the case for the following reason. The boundedness
of the energy for �gmψ = 0 in Minkowski spacetime is obtained by multiplying the
wave equation by ∂tψ and integrating by parts. Schematically, one obtains

0 = �gmψ · ∂tψ =
(
− ∂2

t ψ +�ψ
)
· ∂tψ

= −∂2
t ψ · ∂tψ − ∂t∇ψ · ∇ψ + boundary terms

= −1

2
∂t(|∂tψ|2 + |∇ψ|2) + boundary terms,

which gives conservation of the energy density |∂tψ|2 + |∇ψ|2. Similarly for a wave
equation with a positive potential V , i.e., �gmψ − V ψ = 0, one obtains

0 =
(
�gmψ − V ψ

)
· ∂tψ

= −1

2
∂t(|∂tψ|2 + |∇ψ|2 + V |ψ|2) + boundary terms,

which gives conservation of the coercive energy density |∂tψ|2 + |∇ψ|2 + V |ψ|2. A
wave equation of the form �gψ − V ψ = 0 is called a Regge–Wheeler equation.

For a general Teukolsky equation instead, because of the presence of the first-
order terms c1∂r + c2∂t + c3∂φ in the equation, one cannot directly obtain bound-
edness of the energy as for the standard wave equation.5

3.4. The Chandrasekhar transformation. This issue appears already in the
study of the Teukolsky equation in Schwarzschild spacetime, as one would like to
pass from a Teukolsky equation of the form

(3.7) �gα− V (r)α = c1(r)∂rα+ c2(r)∂φα+ c3(r)∂tα

to a Regge–Wheeler equation of the form

�gq− V (r)q = 0

5Even for the standard wave equation in Kerr spacetime, the boundedness of the energy cannot
be obtained simply by using the vector field ∂t due to superradiance. Such an issue for the scalar
wave equation in Kerr can nevertheless be overcome; see [21].
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with a positive potential. Such a transformation was described by Chandrasekhar
[11] in the setting of mode stability, and Dafermos, Holzegel, and Rodnianski [16]
introduced a physical-space version of the transformation in Schwarzschild, valid
for general solutions to the linearized Teukolsky equation.

The Chandrasekhar transformation consists in taking two null derivatives6 along
the incoming direction e3 of the curvature component α. Schematically,

q = f1(r)∇3

(
f2(r)∇3α

)
for carefully chosen functions f1 and f2.

The generalized form of the Chandrasekhar transformation is a crucial compo-
nent of the analysis of the nonlinear Teukolsky equation of the slowly rotating Kerr
black hole solutions in vacuum as obtained in our joint work with Klainerman and
Szeftel [31]. It also plays an important role in the proof of the linear stability of
the family of charged Kerr–Newman black holes as obtained in [29] and [28].

4. The nonlinear stability of the slowly rotating Kerr black holes

The proof of the nonlinear stability of the slowly rotating Kerr black holes has
recently been obtained as a combination of results by Klainerman and Szeftel [40],
[41], [43], Giorgi, Klainerman, and Szeftel [31], and Shen [53]. The overall setup of
the proof is the construction of the evolution as a limit of continuous spacetimes,
where a maximal time of existence for the evolution of the perturbation of the
initial data for a slowly rotating Kerr black hole is assumed, together with a list of
bootstrap assumptions on the finite region of existence. The proof then comprises
various parts, all connected with each other, as it is proper of a purely nonlinear
problem. The major ingredients of the proof are the following:

(1) A formalism to derive tensorial versions of the Teukolsky and generalized
Regge–Wheeler (gRW) equations in the full nonlinear setting.

(2) An analytic mechanism to derive combined Morawetz-energy estimates for
the gRW equations, based on a far-reaching extension of the Andersson–
Blue method [3].

(3) A dynamical mechanism for finding the right gauge conditions based on
GCM (generally covariant modulated) spheres and hypersurfaces, in which
convergence to the final state takes place, and which are crucially used to
obtain estimates for the gauge-dependent quantities in the evolution.

For more detail on the structure of the proof, see the introductions of [41] and
[31].

Here we will focus on the wave equation estimates in ingredient (2) used to
improve the bootstrap estimates as obtained in [31]. We will first present how the
Christodoulou–Klainerman formalism is extended in order to study perturbations
of the Kerr solution, and we then describe the generalized Regge–Wheeler equations
of Kerr.

6This surprising transformation, consisting of taking two derivatives of a bad equation and
expecting to obtain a good equation, relies on a hidden relation between the equation for curvature
perturbations (the Teukolsky equation) and the equation for metric perturbations (the Regge–
Wheeler equation) in black hold perturbation theory.
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4.1. The formalism in Giorgi, Klainerman, and Szeftel. Recall the null
frame formalism introduced by Christodoulou and Klainerman, with the foliation
of the spacetime in 2-surfaces and null frames associated to each point of the space-
time.

In passing from Schwarzschild to Kerr or to Kerr and Newman, there is a crucial
geometrical difference: the principal null frame (3.6) in Kerr(–Newman) is not
integrable in Frobenius’s sense. This means that the subspace of the tangent space
which is orthogonal to e3 and e4 is not tangent to a surface, but rather a horizontal
distribution or 2-plane field.

For this reason, in [30] we extended the Christodoulou-Klainerman formalism
described in Section 3.2 to the case of a nonintegrable horizontal distribution. The
definitions of Ricci coefficients and curvature components can be carried through
in this case, but one has to be careful about some symmetries which do not hold in
the case of a nonintegrable frame.

For example, the Ricci coefficient χab defined in (3.5) is not in general symmetric
in its indices, but could contain an antisymmetric part, which we denote (a)trχ in
[30], i.e.,

χab = χ̂ab +
1

2
trχδab +

1

2
(a)trχ ∈ab .

The antisymmetric component (a)trχ measures the failure of integrability of the
principal null frame. Because of the presence of the antisymmetric terms, it is
convenient to complexify all the curvature and Ricci coefficients.

4.2. The generalized Regge–Wheeler equation in perturbations of Kerr.
The complexified curvature component A=α+i∗α satisfies the Teukolsky equation

L[A] = Err[L[A]],

where L[A] is a second-order tensorial wave operator on the perturbed spacetime,
and Err[L[A]] are nonlinear errors depending on all the linearized Ricci and curva-
ture coefficients. The above Teukolsky equation reduces to the Teukolsky equation
(3.7) in the case of linear perturbations of Schwarzschild.

In the case of linear perturbations of Kerr, Dafermos, Holzegel, and Rodnianski
[15] and Ma [46] defined the Chandrasekhar transformation, given schematically by

q = f1(r, θ)∇3

(
f2(r, θ)∇3A

)
,

for suitably chosen functions f1 and f2. In linear theory, the quantity q satisfies
the following gRW equation:

�gq− V (r, θ)q− i
4a cos θ

ρ2
∇∂t

q

= a
[
d1(r, θ)∇∂φ

∇3A+ d2(r, θ)∇∂φ
A+ d3(r, θ)∇3A+ d4(r, θ)A

]
,

where V (r, θ) is a positive real potential. Despite the presence of the first-order
term i 4a cos θ

ρ2 ∇∂t
q, the left-hand side of the gRW equation still has good divergence

properties as the standard Regge–Wheeler equation in Schwarzschild, while the
right-hand side of the equation can be treated as lower-order terms for |a| � M .

Just as in linear theory, to be able to control A we need to perform transforma-
tions q = q[A] which take solutions A of the Teukolsky equation into solutions of
nonlinear tensorial versions of Regge–Wheeler equations, which we call gRW equa-
tions. In nonlinear theory, the definition of the transformation q[A] is more subtle
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to avoid nonacceptable error terms in the process, and it satisfies

(4.1) �gq− V q− i
4a cos θ

ρ2
∇T q = Lq[A] + Err[�gq],

where T is a vector field defined on the perturbed spacetime which reduces to
∂t in the Kerr case, V is a real positive potential, and Lq[A] is linear in A and
has important specific properties. Finally, the error terms Err[�gq] depending on
all linearized Ricci and curvature coefficients are acceptable error terms, i.e., they
verify important structural properties, reminiscent of the null condition.

Due to the presence of the linear terms in A on the right-hand side of (4.1),
one has to view the wave equations in (4.1) as coupled with the defining equations
for q, that is coupled with second-order transport type equations in A. The most
demanding part in the analysis of gRW equations (4.1) is to derive global Morawetz-
energy type estimates for (q, A).

Even for solutions to the scalar wave equation in Kerr, the complicated nature of
the trapping region and the presence of the ergoregion creates additional problems
in the analysis. To treat these difficulties in linear theory, [46] and [15] rely on
methods first used in the context of the scalar wave equation in Kerr, based on
mode decompositions and construction of vector fields adapted to different modes.
It is however not clear how to extend this method, without loss of derivatives, to
general perturbations of Kerr. In our work [31], we rely instead on a physical space
method introduced by Blue and Andersson in [3] in the context of the scalar wave
equation in Kerr for small angular momentum.

In [3] Andersson and Blue develop a generalized vector field method which allows
for commutations with second-order differential operators, and then apply it to the
Carter differential operator K and its elliptic counterpart, together with the Killing
vector fields of the Kerr metric, to derive energy and Morawetz estimates for the
solution for |a| � M . The crucial new idea in [3] is to supplement the two Killing
vector fields of the spacetime, i.e., ∂t and ∂φ with a second-order operator

K = Dα(K
αβDβ),

where Kαβ is a Killing tensor, which commutes with the scalar wave operator. The
remarkable thing about the Kerr spacetime, discovered by Carter, is that is has an
additional Killing tensor that is not given by a composition of the Killing vector
fields.

Relative to the principal null frame, the Carter tensor takes the form

K = −a2 cos2 θg +O,

where O = |q|2(e1 ⊗ e1 + e2 ⊗ e2). The associated second-order operator

O = Dα(O
αβDβ)

verifies commutation properties with �g, i.e., [O, |q|2�g] = 0. In their work, Ander-
sson and Blue [3] introduce a set of second-order operators coming from the Killing
vector fields and the Carter tensor, and they use them as symmetry operators for
the wave equation.

In our work, we substantially adjust their method to be applied to the nonlinear
gRW equation for symmetric traceless 2-tensors for |a| � M , by being careful about
obtaining acceptable error terms by commuting with the approximate symmetry
operators in perturbations of Kerr spacetime.
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5. The stability of charged black holes

We now present some recent results about the stability problem for the Einstein
equation coupled with matter fields, in particular for charged black hole solutions
to the Einstein–Maxwell equations.

5.1. Why study nonvacuum solutions? We start by giving some motivation
on why one should study nonvacuum solutions to the Einstein equation.

In August 2017, LIGO made another breakthrough discovery when it detected
the first merger of two neutron stars [2]. Neutron stars are the collapsed core
of massive supergiant stars, mostly composed by neutrons and supported against
their collapse by neutron degeneracy pressure. Just two seconds after the gravi-
tational wave signal was detected by LIGO, a flash of gamma-rays was detected
by the FERMI satellite in space, coming from the same tiny corner of the cosmos.
This observation started an entirely new field of gravitational astronomy, called
multi-messenger astronomy, where the same cosmic event is observed through two
different signals: one in gravitational waves (detected by LIGO) and one in elec-
tromagnetic rays (detected by the FERMI satellite).

The merger of two neutron stars is expected to collapse into a rotating and
charged black hole [48]. In fact, even though the magnetic field potentially sur-
rounding a black hole is expected to disperse very fast, in the case of a rotating
collapse, the momentum of the magnetic field produces a current of electric charge
which is expected to remain after the magnetic field has dispersed.

In addition to that, there have been recent works [9], [10] pointing out that even
the merger of two black holes could be charged! In fact, the first detection in 2015
(which is still the strongest one observed by LIGO) is compatible with a charge-to-
mass ration as high as 0.3, which makes the presence of the charge in analysis of
these scenarios not negligible.

5.2. The equations. We now look at how the interaction of black holes with
matter fields change the analysis of the equations governing the perturbations. As
described in Section 2.1, the interaction between gravitational and electromagnetic
fields in spacetime is governed by the Einstein–Maxwell equation,

(5.1) Ric(g) = 2F ·F−1

2
|F |2g.

More precisely, the left-hand side of the equation, involving the Ricci curvature,
encodes information about gravitational radiation, while the right-hand side of
the equation, involving the electromagnetic tensor F , encodes information about
electromagnetic radiation.

Gravitational radiation is transported by the Weyl curvature Wμνγλ which is a
4-tensor whose extreme null component αab = W (ea, e4, eb, e4) is a 2-tensor on the
horizontal structure. Electromagnetic radiation is transported by the electromag-
netic tensor Fμν , which is a 2-form whose extreme null component (F )βa = F (ea, e4)
is a 1-tensor on the horizontal structure.

The gravitational and electromagnetic fields, when taken independently, satisfy
the Teukolsky equation [57] of spin s, for s = ±2,±1, respectively,

T [2](α) = 0,

T [1]((F )β) = 0,
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where the operators T are schematically given, as above, by

T = �g + c1(r, θ)∇∂r
+ c2(r, θ)∇∂t

+ c3(r, θ)∇∂φ
− V (r, θ) = 0.

On the other hand, in coupled electromagnetic-gravitational perturbations of a
black hole, there is interaction between the gravitational and the electromagnetic
radiation. Instead of having two independent Teukolsky equations, one would ex-
pect to have equations which couple the 2-tensor αab with the 1-tensor (F )βa, such
as for example7

T [2](α) = Q · ∇⊗̂(F )β,

T [1]((F )β) = Q · divα,
where Q is the charge of the black hole and

• (∇⊗̂ξ)ab = ∇aξb +∇bξa − δab(divξ) for a 1-tensor ξ,
• (divθ)a = ∇bθab for a symmetric traceless 2-tensor χ.

But things are not quite as simple as one may expect. In fact, in a charged
black hole with Q 
= 0, the 1-tensor (F )β is not gauge-invariant. Gauge-invariance
is related to the instability due to the choice of gauge described above, and can be
expressed in terms of null frames in the following way.

A general linear frame transformation of the null frame {e3, e4, ea} is of the form

(5.2)

e′4 = λ(e4 + μaea),

e′3 = λ−1(e3 + μ
a
ea),

e′a = ea +
1

2
μ
a
e4 +

1

2
μae3,

with λ = 1+O(ε), μ, μ = O(ε), where ε is the size of the perturbation. In particular,

neglecting terms of size ε2, the transformed frame {e′3, e′4, e′a} defined by (5.2) is
also a valid null frame. We say that a tensor Ψ on the horizontal structure is
(quadratically) gauge-invariant if it only changes quadratically with a general linear
frame transformation (5.2), i.e.,

Ψ′ = Ψ+O(ε2),

where Ψ′ is the tensor evaluated in the transformed frame {e′3, e′4, e′a}. We are
interested in gauge-invariant quantities as they are believed to represent physical
quantities, such as gravitational and electromagnetic waves, which should not de-
pend on the chosen coordinates or gauge.

Even though α is still gauge-invariant for charged black holes, it is not as useful in
view of the equation it satisfies. We define instead (see [29]) new gravitational and
electromagnetic radiation quantities f and b, a 2-tensor and a 1-tensor, respectively,
which are gauge-invariant and are related to the Weyl curvature α.

As a consequence of the Einstein–Maxwell equation, the 1-tensor b satisfies a
Teukolsky-type equation coupled with f, and the 2-tensor f satisfies a Teukolsky-
type equation coupled with b. We therefore have a system of the schematic form
[29]

T [1]((F )β) = Q · c4(r, θ)(divf),
T [2](f) = Q · d4(r, θ)(∇⊗̂b).

7In fact, the operators ∇̂⊗ and div, respectively, transform a 2-tensor into a 1-tensor and vice
versa.
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It is tempting to ask ourselves, How do we identify the gravitational and electro-
magnetic radiation from a physical point of view? The Einstein–Maxwell equation,
which governs the interaction between the two radiation types, does not clearly
distinguish between them though, as the whole perturbation is governed by the
coupled electromagnetic-gravitational perturbations. Historically, we know that
gravitational radiation is a spin-2 quantity while electromagnetic radiation is spin-
1. In the case of coupled radiation, the spin-2 quantity f is also defined in terms of
the electromagnetic tensor, and, vice versa, the spin-1 quantity b is also defined in
terms of the curvature. Both quantities encode part of the perturbations, and they
satisfy the master equations describing the coupled perturbation.

We found that there exists a Chandrasekhar transformation in the case of charged
black holes too. The Chandrasekhar-transformed quantities of b and f, given
schematically by

p = f1(r, θ)∇3

(
f2(r, θ)b

)
,

q = g1(r, θ)∇3

(
g2(r, θ)f

)
for suitably chosen functions f1, f2, g1, g2, satisfy a symmetric system of

• Regge–Wheeler equations in Reissner–Nordström spacetime,
• generalized Regge–Wheeler equations in Kerr–Newman spacetime.

Observe that in this case the transformation only involves one derivative in the
ingoing null direction e3.

5.3. The case of Reissner–Nordström spacetime. In Reissner–Nordström, we
obtain the following symmetric system of Regge–Wheeler equations.

Theorem 5.1 (Giorgi [27]). The gauge-invariant quantities p and q representing
electromagnetic and gravitational radiations for linear perturbations of Reissner–
Nordström satisfy the following coupled system of wave equations:

�gp− V1(r) p =
Q

r2
div q,

�gq− V2(r) q =
Q

r2
∇⊗̂p,

where V1(r) =
1
r2

(
1− 2M

r + 6Q2

r2

)
, V2(r) =

4
r2

(
1− 2M

r + 3Q2

2r2

)
are positive poten-

tials.
The system is symmetric, as the respective right-hand sides of the equations are

adjoint operators on the sphere, i.e., for a 1-tensor ξ and a 2-tensor θ,∫
S

ξ · (div θ) =

∫
S

(∇⊗̂ξ) · θ.

The symmetric structure on the right-hand side of the system implies that it is
possible to derive energy estimates for the system by summing the estimates for
the two equations. Upon integration on the sphere, the coupling terms cancel out
reducing to boundary terms.

In physical-space terms, this is equivalent to the fact that we can define a com-
bined energy-momentum tensor for the system Qμν [p, q] as

Qμν [p, q] := Qμν [p] +Qμν [q]−
Q

r2
(
∇⊗̂p · q

)
gμν ,
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where

Qμν [ψ] = ∇μψ · ∇νψ − 1

2
gμν

(
∇λψ · ∇λψ + V |ψ|2

)
is the energy-momentum tensor associated to the Regge–Wheeler equation �gψ −
V ψ = 0. By applying the vector field method to the current Qμν [p, q]X

ν for a
vector field X, we obtain [27]

• energy estimates, as above, for X = ∂t,
• Morawetz estimates for X = f(r)∂r, with f(r) vanishing at the photon
sphere.

In this case, one obtains in the bulk a quadratic form which can be
proved to be positive definite in the exterior region for |Q| < M . This
is done by separating the exterior region in subregions where the function
f(r) is defined differently.

5.4. The mode stability of Kerr–Newman. Recall that one of the clues to
the validity of the Stability conjecture for the Kerr–Newman family is the proof of
mode stability of Schwarzschild, Reissner–Nordström, and Kerr, as obtained by the
physics community.

Quite strikingly, the Kerr–Newman solution stands up as genuinely different from
the similar cases of Kerr or Reissner–Nordström in the simplest possible form of
stability. As stated by Chandrasekhar in [11, Section 111], “the methods that have
proved to be so successful in treating the gravitational perturbations of the Kerr
spacetime do not seem to be applicable (nor susceptible to easy generalizations)
for treating the coupled electromagnetic-gravitational perturbations of the Kerr–
Newman spacetime.”

The techniques applied in those early works, which relied on decomposition in
frequency modes of perturbations of the solutions, failed to be extended to the case
of Kerr–Newman spacetime. The issue in the analysis of a coupled system comes
from the decomposition in modes. In mode stability analysis, one study solutions
of the Teukolsky equation T [s](ψ[s]) = 0 of the separated form

ψ[s](t, r, θ, φ) = e−iωteimφR[s](r)S
[s]
m�(aω, cos θ).

From the Teukolsky equation, one derives an angular ODE for S which defines the

spin s-weighted spheroidal harmonics S
[s]
m�(aω, cos θ), as eigenfunctions of the spin

s-weighted Laplacian

�[s] =
1

sin θ
∂θ(sin θ∂θ)−

m2 + 2ms cos θ + s2

sin2 θ
+ a2ω2 cos2 θ − 2aωs cos θ.

For a = 0, they reduce to the spherical harmonics S
[s]
m�(0, cos θ) = Y

[s]
m�(cos θ).

Spin-weighted spherical harmonics of different spins are simply related through the
angular operators appearing on the right-hand side of the coupled equations, and
have the same eigenvalues. Schematically,

∇⊗̂Y
[+1]
m� = −λY

[+2]
m� , div Y

[+2]
m� = λY

[+1]
m� .

On the other hand, in the general axisymmetric case, the spin-weighted spheroidal
harmonics of different spins are not simply related through those angular operators.

This in fact explains the “apparent indissolubility of the coupling between the
spin-1 and spin-2 fields” [11] for electromagnetic-gravitational perturbations of
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Kerr–Newman, in contrast with Reissner–Nordström or Kerr. In treating the cou-
pled electromagnetic-gravitational perturbations of Kerr–Newman spacetime, the
decomposition in modes of the equations, which had the objective of simplifying
the analysis of the perturbations, actually makes them unsolvable.

5.5. The physical-space analysis in Kerr–Newman. Our approach to solving
this issue is to abandon the decomposition in modes and perform a physical space
analysis of the equations. Following the road map that mathematicians have taken
in the last decade in interpreting in physical space the mode analysis done by the
physics community, the Kerr—Newman solution may be the case where a physical
space approach could succeed where the mode analysis in physics failed. Observe
that our proof of boundedness of a general solution through a physical space anal-
ysis will in particular imply the absence of exponentially growing modes, therefore
proving mode stability.

We derived [29] the following equations governing the linear stability of Kerr–
Newman spacetime to coupled electromagnetic-gravitational perturbations.

Theorem 5.2 (Giorgi [29]). The gauge-invariant quantities p and q representing
electromagnetic and gravitational radiations for linear perturbations of Kerr and
Newman satisfy the following coupled system of wave equations:

�gp− V1(r, θ)p− i
2a cos θ

ρ2
∇∂t

p =
QΓ

3

ρ5
(div q) + a∇≤1(b, f),

�gq− V2(r, θ)q− i
4a cos θ

ρ2
∇∂t

q =
QΓ3

ρ5
(
∇⊗̂p− 3

2
(η − η)⊗̂p

)
+ a∇≤1(b, f),

where V1, V2 are positive real potentials and Γ = r + ia cos θ, Γ = r − ia cos θ.
The system is symmetric, as the respective right-hand sides of the equations are

adjoint operators with respect to the spacetime integral, i.e., for a 1-tensor ξ and a
2-tensor θ,

(5.3) ξ · (div θ) = (∇⊗̂ξ) · θ + ((η + η)⊗̂ξ) · θ −Dμ(ξ · θ)μ.

In the above η and η are Ricci coefficients which satisfy∇ρ2 = (η+η)ρ2. Because
of this property, in deriving energy estimates for the system by summing the esti-
mates of the two equations and integrating by parts in ∇, the interaction between

the angular derivative of the function Γ
3

ρ5 and the lower-order terms − 3
2 (η−η)⊗̂p in

the system precisely cancels out [28], by giving rise to spacetime boundary terms,
according to relation (5.3).

As mentioned above, most of the results for scalar, electromagnetic, and gravi-
tational perturbations of Kerr or Kerr–Newman spacetimes rely on the separability
in modes and the frequency-decomposition of the solution. Even though these
methods are very effective (and they are at the present moment the only ones that
allow for the analysis in the subextremal range for general solutions), they are nev-
ertheless not well suited for the analysis of coupled electromagnetic-gravitational
perturbations of Kerr–Newman spacetime, as separability in modes cannot be ob-
tained in that case. The notable exception among the above-mentioned methods
is the physical-space analysis for the wave equation in slowly rotating Kerr by An-
dersson and Blue [3], which makes crucial use of the Carter tensor in Kerr and the
fact that the differential operator associated to the Carter tensor commutes with
the D’Alembertian operator in Ricci-flat spacetimes.
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Nevertheless, the main obstruction to the application of the Andersson–Blue
method [3] to the case of Kerr–Newman spacetime is that, even though the metric
admits a Killing tensor, its associated differential operator does not in general
commute with the wave equation.

In [28], we prove that even though the Kerr–Newman spacetime is not Ricci-flat,
the Carter differential operator K associated to the Carter tensor still commutes
with the D’Alembertian operator of Kerr–Newman. Interestingly enough, the com-
mutation property is not a direct consequence of the Einstein–Maxwell equations,
but rather of peculiar properties of the curvature and electromagnetic components
in Kerr–Newman.

Such properties then allow us to extend the physical-space analysis of Andersson
and Blue [3] to Kerr–Newman spacetime [28]. More precisely, in [28] we prove that
boundedness of the energy for the system of gRW equations in Kerr–Newman can
be obtained, provided that Morawetz estimate bounds are derived. Once those
are obtained, boundedness and decay for the solutions to the Teukolsky system
can be deduced and, subsequently, used to obtain bounds on the gauge-dependent
quantities. These latter estimates are the object of future work.

6. Conclusions

One of the fundamental problems in General Relativity is to understand the final
state of evolution of initial data for the Einstein equation. Through gravitational
collapse and dispersion of gravitational waves, the geometry to which solutions to
the Einstein equation are expected to relax outside the event horizon of a black hole
is the one given by the known stationary and axisymmetric explicit solutions: the
Kerr and the Kerr–Newman black hole, in the vacuum and electrovacuum cases,
respectively.

Rigorous analysis of the wave equation in a black hole background by the math-
ematics community has allowed us to go beyond the simplest form of stability—
mode stability—to have a better picture of the behavior of linear and nonlinear per-
turbations of black hole solutions. In the case of the Einstein vacuum equation, the
Teukolsky equation satisfied by a curvature component cannot be used directly to
obtain boundedness of general solutions. The Chandrasekhar transformation allows
us to transform it into a well-behaved equation—the (generalized) Regge–Wheeler
equation—to which standard techniques for the wave equation can be applied.

In both the cases of nonlinear stability of the Kerr spacetime and in coupled
electromagnetic-gravitational perturbations of Kerr–Newman, the physical space
analysis of the gRW is crucial to deriving the main estimates.

In the case of nonlinear stability of Kerr spacetime, the Andersson–Blue physical
space method [3] can be adapted to the case of the nonlinear gRW equation for
|a| � M , which is a tensorial wave equation coupled with transport equations.
The derivation of such an equation and its analysis necessitates the introduction of
a new formalism [30] which allows for a nonintegrable horizontal structure.

In the case of the Einstein–Maxwell equation, some nontrivial coupling of grav-
itational and electromagnetic radiations takes place, and it is not a priori clear
what are the relevant quantities that one should consider. It turns out that new
definitions of gauge-invariant quantities are needed to obtain a favorable system
of generalized Regge–Wheeler equations, where the coupling terms appear in a
symmetric fashion, allowing for derivation of spacetime estimates.
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This is particularly important for the most general case of perturbations of the
Kerr–Newman family, where in order to overcome the issue of “indissolubility of the
coupling between spin-1 and spin-2 fields” [11], we necessarily need nonseparated
equations, which should be analyzed in physical space.

The equations governing perturbations of Kerr–Newman are a system of two
coupled gRW equations, obtained from the Teukolsky equations through the Chan-
drasekhar transformation, which crucially have

• real potentials and first-order terms of the form i∂t (as in Kerr),
• adjoint coupling terms (as in Reissner–Nordström).

The decomposition in modes prevented us from seeing this good structure of the
equations. On the other hand, a physical space analysis of the above system allows
us to derive boundedness of the energy and spacetime energy decay estimates, giv-
ing a stronger result than mode stability, and therefore solving the long-standing
problem of stability of the most general black hole solution.
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