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Why study prime numbers? Perhaps the immediate reasons are aesthetic. It is
easy however to justify the topic after the fact. Prime numbers lead to some of the
deepest structural open questions in mathematics—the Riemann hypothesis and its
generalizations. Their study also merges with our quest to understand the nature
of randomness in mathematics.

The first result on primes is their infinitude, due to Euclid. More than a thou-
sand years after Euclid, Dirichlet proved the infinitude of primes in arithmetic
progressions {q� + a}�>0 for any fixed coprime a and q. In Dirichlet’s work we
find the beginning of representation theory (Dirichlet characters), algebraic number
theory (Dirichlet’s class number formula), and analytic number theory (Dirichlet
L-functions). Riemann took Dirichlet’s work further and laid down a program for
quantitatively understanding the distribution of prime numbers both within the
integers and in arithmetic progressions. Key to Riemann’s program is the Riemann
zeta-function, defined as

ζ(s) =
∑
n≥1

1

ns

for �s > 1. Riemann obtained the analytic continuation of ζ(s) to the entire
complex plane and identified ζ(s) as a single function central to our understanding
of the integers. On the one hand ζ(s) captures the fact that integers factor uniquely
into prime numbers, this is reflected in the Euler product,

ζ(s) :=
∑
n≥1

1

ns
=

∏
p

(
1− 1

ps

)−1

, �s > 1.

On the other hand ζ(s) captures the fact that the integers form a lattice; this is
reflected (less obviously1) in the functional equation

ξ(s) = ξ(1− s), where ξ(s) := π−s/2Γ
(s

2

)
ζ(s).

1The functional equation is equivalent to the Poisson summation formula which uses funda-
mentally the fact that integers lie on a lattice.
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Finally, Riemann showed that zeros of ζ(s) are in a sense dual objects to primes, and
specifically if ζ(s) has no zeros in �s > 1

2 , then the primes are regularly distributed
within the integers, or more precisely, as regularly as a generic random sequence
can be. At the beginning of the 20th century this program was partially completed
by de la Valleé-Poussin and Hadamard with a proof of the prime number theorem,

π(x) := {p ≤ x : p prime} ∼ x

log x
.

This classical material is discussed in various introductory books, e.g., Ingham’s
The distribution of prime numbers [14], Davenport’s Multiplicative number theory
[1], or more recently in Montgomery and Vaughan’s Multiplicative number theory
[19] or Tenenbaum’s Analytic and probabilistic number theory [20]. This material
is also presented in the first third (Parts 1 and 2) of the book under review.

There is a heavy emphasis throughout standard textbooks on the connection
between the Riemann zeta-function and the distribution of prime numbers. This
creates a common impression that the Riemann zeta-function and prime numbers
are equivalent and interchangeable. Modern analytic number theory entirely dis-
pells this idea; we currently have many results about primes that go far beyond
anything that the Riemann zeta-function could ever deliver. One of the important
aspects of the book under review is that it emphasizes the results on prime numbers
and methods to study prime numbers that go beyond the reach of the Riemann
zeta-function.

The rift away from the Riemann zeta-function starts in the third part of this
book. Koukoulopoulos recognizes that in order to understand prime numbers, one
has to take a step back and first understand the integers, in particular the way in
which integers factorize into prime numbers. The most appropriate concept for this
task is that of a multiplicative function. Multiplicative functions are functions f
that respect the multiplicative structure of the integers, that is f(ab) = f(a)f(b) for
integers a, b that are coprime. As such they are particularly well suited for probing
the ways in which integers factorize. The simplest question that one can ask about
a multiplicative function f is about the behavior of averages

∑
n≤x

f(n)

as x goes to infinity. Such averages can then readily answer more direct questions
about the multiplicative structure of the integers, for example questions about the
number of prime factors of a “typical” integer.

Following Riemann, to understand such an average, it is natural to associate to
a multiplicative function f a Dirichlet series F (s) =

∑
n≥1 f(n)n

−s. For Riemann’s
method to succeed, one needs to analytically continue F into the complex plane
and then establish that F has desirable properties, such as a functional equation
and an Euler product. Unfortunately, this is possible only for a very restricted
class of multiplicative functions (explicitly and still conjecturally described by the
Langlands program). This approach misses many natural multiplicative functions,
such as the Liouville function.2 Moreover, it is often a tremendous achievement to
obtain such an analytic continuation (e.g., Wiles’s proof of modularity of elliptic
curves).

2This is defined as 1 if n has an even number of prime factors and −1 otherwise,
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Therefore, starting with the work of Wirsing [21], the field has seen the develop-
ment of alternative methods for understanding averages of multiplicative functions.
These methods work in great generality and neither demand nor yield excessive
arithmetic information. Wirsing’s method is based on setting up an integral delay
equation connecting the average of a multiplicative function f on the primes with
the average of f on the integers. Approximately solving the integral equation then
yields the behavior of partial sums ∑

n≤x

f(n).

This is discussed in Chapter 14 of the book, while Chapter 13 showcases the more
complex analytic LSD method, which is more restrictive but yields stronger results.

The next two chapters, Chapters 15 and 16, describe in a mere fifteen pages many
beautiful applications of mean values of multiplicative functions. First the author
proves the Erdős–Kac theorem, according to which the number of prime factors of a
typical integer n is normally distributed with mean and variance log logn. Then, he
obtains information on the size of the jth smallest prime factor of a typical integer
n: if pj(n) denotes the jth smallest prime factor of n, then log log pj(n) ≈ j.
Finally, the author proves the Sathe–Selberg theorem which describes precisely the
number of integers n ≤ x that have exactly k prime factors (with uniformity in k).
These results are some of the highlights of probabilistic number theory, and a more
in-depth treatment is contained in Elliott’s works [2, 4] or Tenenbaum’s book [20]
on the subject.

Equipped with the knowledge of the anatomy of the integrs, the author intro-
duces sieve methods in Part 4. Sieves were invented by Viggo Brun in the 1910s. In
their most basic version sieves are designed to count the number of integers without
small prime factors in various sequences. In the combinatorial incarnation a sieve is
a variant of inclusion-exclusion inequalities that, in addition, incorporate informa-
tion about how typical integers factor. Though elementary sieves are impressive,
the most simple sieve immediately gives results that are beyond the capability of
the Riemann hypothesis. For instance one of the earliest application of sieves was
the proof that ∑

p twin prime

1

p
< ∞.

The analogous series over all primes diverges. As an aside, the comparison with the
Riemann hypothesis is not accidental. The Riemann hypothesis (or the generalized
Riemann hypothesis) is often used as a benchmark for the strength of a result in
analytic number theory. To probe the strength of a result, we often ask: does this
result recover unconditionally a consequence of the Riemann hypothesis? Does it
go beyond what the Riemann hypothesis can achieve?

Sieves also come in an analytic flavor first pioneered by Selberg. The principle
is entirely different: we notice that if n has no small prime factors less than z, then

1 ≤
( ∑

d|n
d≤z

λd

)2

.

We then sum over all n of interest and optimize the choice of λd to minimize the
resulting right-hand side (for example, by using Lagrange multipliers). While it is
extremely elegant, until recently the Selberg sieve did not find striking applications
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of its own (i.e., that cannot be obtained with a combinatorial sieve). This however
changed recently and dramatically with the work of Goldston, Pintz, and Yildrim
[8], Zhang [22], and Maynard (and Tao) [16] on the existence of small gaps between
primes. This is discussed in the last part of the book.

An important result in sieve theory is the fundamental lemma. The fundamental
lemma shows that sieve methods give us complete control over the small prime
factors of integers, i.e., prime factors of n that are less than nε(n) for any ε(n) that
goes to 0 arbitrarily slowly. The author includes a very intuitive explanation of the
proof of the fundamental lemma, explaining the meaning behind various technical
parameter choices. He also concludes with a description of the more efficient β-
sieve. A few standard applications are included (the Brun–Titchmarsh and the
Titchmarsh divisor problems). Among the less standard ones is the very useful
Shiu’s bound for averages of multiplicative functions,

∑
x<n<x+xδ

f(n) ≤ Cδx
δ exp

( ∑
p≤x
prime

f(p)− 1

p

)

with Cδ > 0 a constant. In recent years such bounds have found their way into
far away areas; for example, Shiu’s bound is one of the crucial ingredients in the
proof of the holomorphic quantum unique ergodicity conjecture by Holowinsky and
Soundararajan [13]. The quantum unique ergodicity conjecture roughly concerns
the behavior of eigenfunctions of the Laplacian in the high energy limits on arith-
metic manifolds. Shiu’s bound illustrates a point: knowledge of the anatomy of
integers can be used to develop sieves, which are then fed back to yield even more
precise results about the structure of the integers and percolate into far away ap-
plications. Such loops are common in the subject.

While this is not evident, the remaining two parts of the books are still con-
cerned with sieve methods and their applications. The fifth part is called “Bilinear
methods” but it could have as well been called “analytic sieve methods.” Here the
author discusses chiefly Vinogradov’s method, one of the most powerful methods
for understanding primes using analytic techniques. Vinogradov’s method can be
described as a sieve method that expects highly nontrivial analytic information
as an additional input. This method (in various more sophisticated variants and
incarnations) forms the bedrock of most recent advances on prime numbers. For
example, this is crucial in the proof of the existence of primes of the form x4 + y2

by Friedlander and Iwaniec [6] (or of the form x3 + 2y3 by Heath-Brown [12]) or
the proof by Maynard [18] of the existence of infinitely primes without the digit 7.

Let us briefly discuss the method. If we wish to understand the behavior of
∑
p≤x

κ(p)

for some sequence κ that is far from being multiplicative, then as a crucial ingredient
Vinogradov’s method expects bounds for so-called bilinear sums,

∑
αnβmκ(mn),

where the sequences αn and βm are arbitrary. It is bewildering that a sum of
such generality can be bounded nontrivially; this is possible, at least in principle,
because the sequence κ does not have multiplicative structure. In practice non-
trivial bounds can be obtained rigorously by bounding the operator norm of a
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matrix with entries κ(mn). Interestingly, a similar method in harmonic analysis,
discovered significantly later, goes by the name of the TT � method (having to do
with the fact that the operator norm of TT � and T �T matches).

As an application of Vinogradov’s method, the author includes a result on count-
ing arithmetic progressions of length 3 in the primes. This is the first nontrivial
case of the Green–Tao theorem [10], even though the methods used by Green and
Tao for longer progressions are entirely different.

The last chapter of this part of the book discusses Linnik’s theorem. Linnik’s
theorem asserts that we do not have to “wait too long” before seeing a prime in an
arithmetic progression. Specifically, there exists an A > 1 and C > 1 such that for
any (a, q) = 1, there exists a prime with p ≡ a (mod q) and p ≤ CqA (see [11]
for a result with A = 5.5). Linnik’s theorem recovers a consequence of the general-
ized Riemann hypothesis. Until recently, it was considered an extraordinality deep
result, using the full scope of the machinery of sieves and L-functions. In recent
times the proof has been very significantly streamlined by Elliott [3], Friedlander
and Iwaniec [7], and subsequently Granville, Soundararajan, and Harper [9]. The
author includes here a proof along these lines. The proof that is presented has not
appeared before in book form and forms one of the highlights of the book.

The last and most delightful part of the book illustrates two recent major break-
throughs about primes: specifically, the author discusses Maynard’s proof [16] of
Zhang’s theorem [22] on the existence of bounded gaps between primes; and the
recent work of Maynard [17] and Ford, Green, Konyagin, and Tao [5] on the ex-
istence of large gaps. The last part serves as an illustration of how much can be
achieved just by using a subset of the methods discussed in the book. Hopefully,
this will motivate the reader to plow further into the subject!

In summary, this is an excellent book introducing the reader to a wealth of
modern techniques for studying prime numbers. There is a lot of new material
here that has never appeared before in book form. The author took great care in
explaining both the intuition behind this very technical subject and in providing
the “best” proofs, especially proofs that are short and understandable. The book
will be an excellent introduction to anybody interested in primes at a research level
(or rather, interested in quickly reaching this level). It is however not a terminus.
The serious reader will then want to look at follow-up books, such as Analytic
number theory by Iwaniec and Kowalski [15] or Opera de Cribro by Friedlander and
Iwaniec [7], which introduces additional techniques, e.g., automorphic forms, the
circle method, or more complex sieve or harmonic analytic methods.
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