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This book is concerned with the large n behavior of the iterated convolution
powers μ(n) of (nice) probability measures μ. The aim is to understand how the
behavior of such convolution powers relates to the algebraic structure of underlying
group G, as well as its geometry and topology. The group G is assumed to be a
real connected Lie group but no further assumptions are made. The measure μ is
assumed to be symmetric (i.e., μ(A) = μ(A−1) for any Borel set A) and to have a
continuous compactly supported density, which is positive at the identity element e
ofG. Connected Lie groups are algebraic objects whose algebraic structure is largely
captured by their Lie algebra. They are also geometric objects when equipped
with a left-invariant Riemannian structure (i.e., the choice of a linear basis for
their Lie algebra). Importantly, the different possible choices of a left-invariant
Riemannian structure all lead to the same large scale geometry, which we can think
of as intrinsically attached to G (a proper definition entails the notion of quasi-
isometry).

Fix a relatively compact symmetric neighborhood Ω = Ω−1 of the identity ele-
ment e in G. Is it possible to relate the behavior of the function

n �→ μ(n)(Ω)

to the algebraic structure of G? To the large scale geometry/topology of G? What
types of behavior should we expect to see? From the perspective of probability
theory, μ(n)(Ω) is the probability that the random walk on G, started at the identity
element and, driven by the measure μ, finds itself in Ω at time n.

One of the simplest geometric quantities associated to G is the function n �→ |Ωn|
equal to the Haar volume of Ωn. In the context of connected Lie groups, it is a fact
that this function behaves either like rd for some integer d or grows exponentially
fast (this is not the case for finitely generated groups!). How are the behaviors of
the functions n → μ(n)(Ω) and n → |Ωn| related?

At this level, there is no reason to restrict our attention to real connected Lie
groups, and one can ask this question for all compactly generated locally compact
groups, in particular, all finitely generated groups. The book focuses on connected
Lie groups because the author has discovered a rich, sophisticated answer in that
context. Extensions of the results presented in the book to finitely generated groups
(and other groups) are not easy to formulate, and they appear to be well beyond
our present understanding.

In a nutshell, “potential theory” in the title refers to the problem of estimating
μ(n)(Ω) and to the techniques employed to do so. Although it may not be obvious
at first sight, estimating μ(n)(Ω) is analogous to studying the heat equation on the
Lie group G. This should not be surprising because μ(n) is the distribution at time
n of a random walk on G and, at least in simpler contexts, there are well-established
connections between random walks, Brownian motion, and the heat equation. The
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“geometry” of Lie groups in the title refers to the large scale geometry alluded to
above. The importance and value of thinking about groups in such terms (coarse
geometry) has been championed prominently and very successfully by M. Gromov
over several decades. The geometric concepts considered in the book go well beyond
the volume growth function n → |Ωn| and include certain filling invariants we will
briefly describe below (see Gromov’s book-long article [8]).

Examples and the taxonomy of groups

As we shall see, the results discussed in the book under review provide a complete
basic picture of the behavior of μ(n)(Ω) in the entire class of real connected Lie
groups (note that complex Lie groups are, of course, real Lie groups, and that by
real Lie groups we mean finite-dimensional real Lie groups).

For background information, we provide two diagrams. Figure 1 concerns finitely
generated groups; Figure 2, real connected Lie groups. Note that a non-trivial
finitely generated group is not a connected real Lie group. However, consideration
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of such groups is useful to put into perspective both the content of the book and
potential future directions of research. It is hard to appreciate the content of this
book without a bird’s eye view of the general taxonomy of group structures. In
addition to the basic algebraic classes (abelian, nilpotent, polycyclic, soluble,. . . ),
two classic dichotomies are important to us: unimodular versus non-unimodular,
and amenable versus non-amenable. The following comments should help the reader
understand the huge differences that exist between finitely generated groups and
connected Lie groups for our present purpose.

A locally compact group admits left-invariant Haar measures and right-invariant
Haar measures. Two left-invariant (resp., right-invariant) Haar measures differ by
a positive constant multiple, and the map x �→ x−1 turns one type of Haar measure
into the other. Denote by drx and dlx a chosen right-invariant Haar measure and
the companion left-invariant Haar measure obtained via the map x → x−1. These
two measures are mutually absolutely continuous and the relation dlx = m(x)drx
defines the modular function m of G. It satisfies m(xy) = m(x)m(y), x, y ∈
G. A group is unimodular if m ≡ 1 (left-invariant and right-invariant measures
coincide). Countable groups are unimodular and so are compact groups, abelian
groups (!), and nilpotent groups. The simplest non-unimodular group is the group
of all orientation-preserving affine bijections of the real line, under composition.

In matrix form, it is the group of 2-by-2 matrices of the form

(
a b
0 1

)
, (a, b) ∈

(0,+∞) × (−∞,+∞). The left-invariant Haar measure is a−2dadb, whereas the
right-invariant Haar measure is a−1dadb.

A locally compact group is amenable if it admits an invariant mean, that is,
a linear functional on L∞(G) which has norm 1 and is positivity preserving and
right-invariant. Compact groups and soluble groups are amenable. Free groups on
at least two generators and non-compact semisimple Lie groups1 are non-amenable.

In Figure 1, the complement of the union of the polycyclic, metabelian, and
hyperbolic boxes can be viewed as a region where our understanding is limited (we
allow here for some exceptions) and in which much remains to be explored. It is
not just that we do not know what the behavior of n → μ(n)(Ω) is, we do not know
how to approach the question. In this context, there are groups for which we do
not know how to determine if they are amenable or not, and uncountably many
essentially different behaviors for n �→ μ(n)(Ω) can be observed in the soluble box
alone. We do not know how to properly describe the behavior of n → μ(n)(Ω) on
SL3(Z). This is in sharp contrast with the results presented in the book for real
connected Lie groups.

In, Figure 2 Lie theory allows us to decompose any connected Lie group into
better understood pieces. Namely, a general (finite-dimensional, real) Lie algebra
can be decomposed as a semidirect product of its radical q (largest soluble ideal)
and a Levi subalgebra s, which is a semisimple Lie algebra acting on q. Moreover,
s = sn ⊕ sc is the direct sum of one or two semisimple Lie algebras, one of compact
type (sc) and the other of non-compact type (sn). In particular, a Lie group G
is amenable if and only if s = sc is of compact type. This important result cap-
tures a fundamental difference between connected Lie groups and finitely generated

1A connected Lie group is semisimple if it contains no non-trivial connected normal solvable
(equivalently, abelian) subgroups.
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groups: for real connected Lie groups, the amenable/non-amenable dichotomy has
no mystery.

The maps ad(x) : y �→ [x, y] play a key role in the classification of Lie algebras.
A Lie group with Lie algebra g is unimodular if and only if det(ad(x)) = 1 for all
x ∈ g. A Lie algebra g is of type R if the eigenvalues of ad(x) are pure imaginary
for any x ∈ g. A semisimple Lie algebra is of type R if and only if it is of compact
type. Nilpotent Lie algebras are of type R. In fact, Lie groups whose Lie algebra is
of type R are exactly the groups whose volume growth n �→ |Ωn| has a polynomial
upper bound (see [9, 10]).

Basic illustrative examples used below include the following.

• The semisimple groups SL2(R) and its universal cover, S̃L2(R); SLn(R),
n > 2.

• The soluble groups that are the semidirect products of the form

R�A R2, A =

(
a b
c d

)
,

(
x,

(
y
z

))(
x′,

(
y′

z′

))
=

(
x+ x′,

(
y
z

)
+Ax

(
y′

z′

))
,

where A is as follows.2

(E1) Heisenberg : A =

(
1 1
0 1

)
; this is also the group of matrices

⎛
⎝1 x y
0 1 z
0 0 1

⎞
⎠.

(E2) Sol : A =

(
e 0
0 e−1

)
; this is also the group of matrices

⎛
⎝e−x 0 y

0 ex z
0 0 1

⎞
⎠.

(E3) Solvable, non-unimodular : A =

(
eλ1 0
0 eλ2

)
with λ1 + λ2 �= 0; this is also

the group of matrices

⎛
⎝eλ1x 0 y

0 eλ2x z
0 0 1

⎞
⎠.

(E4) Example of an R group that is not nilpotent : A =

(
0 1
−1 0

)
.

Examples (E1), (E2), and (E4) are unimodular, whereas (E3) is non-unimodular
because of the assumption that λ1 + λ2 �= 0.

Convolution operators

On a locally compact, compactly generated group G, the convolution of an or-
dered pair of measures (μ, ν), each of finite total mass, is the measure μ ∗ ν defined
by

μ ∗ ν(f) =
∫
G×G

f(xy)μ(dx)ν(dy)

when f is a continuous, compactly supported function on G (no reference to a Haar
measure is needed here). The left-invariant convolution operator associated with a
measure μ of finite total mass, ‖μ‖ = |μ|(G), is defined on the same f by

f �→ f ∗ μ, f ∗ μ(x) =
∫
G

f(xy−1)μ(dy).

2Each of these A is of the form A = expB for some B so that Ax is well defined.
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If τgf(x) = f(gx) (left-translation by g), then τg(f ∗ μ) = (τgf) ∗ μ, that is, the
operator f �→ f ∗ μ is left-invariant. This operator extends as a bounded operator
on L2(G, drx) with norm

‖μ‖op = sup
‖f‖2≤1

{‖f ∗ μ‖2} ≤ ‖μ‖.

When the group is non-unimodular, this simple fundamental inequality,

‖μ‖op ≤ ‖μ‖,

does not hold if one replaces L2(G, drx) by L2(G, dlx). The adjoint of this con-
volution operator (on L2(G, drx)) is f �→ f ∗ μ̌, where μ̌(A) = μ(A−1) for any
Borel set A. Assuming that the measure μ admits a continuous density φ with
respect to the (right-invariant) Haar measure drx, we let φn be the continuous
density of the iterated convolution μ(n) with respect to drx. Following the book,
in the non-unimodular case we avoid purposely expressing the density φn of μ(n)

explicitly in terms of φ. Fix a compact generating set Ω of G, which is a symmetric
neighborhood of e, and set

V (n) = |Ωn| =
∫
Ωn

drx

(the symmetry of Ω makes the choice between the measures dr and dl irrelevant
here). We call V the volume growth function of G because the rough behavior of
this function as n tends to infinity does not depend on the choice of the compact
generating set Ω. The motivated reader can go through our list of examples (E1)–
(E4) above, and decide in which ones n → |Ωn| grows exponentially fast (two have
this property) and in which they do not ((E1) and (E4)).

Informally, the basic question addressed in the book is the following.

Question 1. On a locally compact, compactly generated group G with identity
element e, let μ(dx) = φ(x)drx be a symmetric probability measure with compact
generating support and continuous density φ with φ(e) > 0. What is the behavior
of the function (n, x) �→ φn(x)? In particular, what is the behavior of φn(e) as n
tends to infinity? Can we relate that behavior to the algebraic/geometric structure
of the group?

Sub-Laplacians and their heat equations

On a (connected, real) Lie group G with Lie algebra g (viewed here as the space
of left-invariant vector fields on G), let {X1, . . . , Xk} be a family of left-invariant
vector fields which generates g as a Lie algebra. Each Xi is a partial differential
operator of order 1 acting on smooth functions on G and, being left-invariant, it is
entirely determined by its value at the identity element of G. The associated sub-

Laplacian Δ =
∑k

1 X
2
i (this is a second-order differential operator acting on smooth

functions on G) is the infinitesimal generator of the heat semigroup Ht = etΔ. This
semigroup solves the heat equation (∂t −Δ)u = 0 with initial value f ∈ L2(G, drx)
in the form u(t, x) = Htf(x). It is easily constructed using spectral theory because
Δ gives rise to a self-adjoint operator on L2(G, drx). It is a Markovian semigroup
associated with a diffusion process on G, and it commutes with left translations.
Moreover, the parabolic partial differential operator ∂t − Δ is hypoelliptic and
Htf = f ∗ μt, where μt is a probability measure admitting a smooth positive
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density μt(dx) = ht(x)d
rx. It has the property that μt(A) = μt(A

−1) for any Borel
set A.

When G is unimodular, h : (0,+∞) × G, (t, x) �→ ht(x), is the fundamental

solution of the heat equation ∂tu =
∑k

1 X
2
i u with initial value δe (Dirac mass at

the identity element, e of the group G), and the convolution kernel of Ht, that is,
Htf(x) =

∫
G
ht(y

−1x)f(y)dy.
To give a concrete idea of what all this means, consider the Heisenberg group

given in its matrix form,

⎛
⎝1 x z
0 1 y
0 0 1

⎞
⎠. Partial derivatives in the x and y direction

at the identity element (i.e., at x = y = z = 0) generate two left-invariant vector
fields, X and Y , given in coordinates by X = ∂

∂x and Y = ∂
∂y +x ∂

∂z . An immediate

computation gives that the left-invariant vector field Z equal to ∂
∂z at the identity

element is Z = ∂
∂z = XY − Y X = [X,Y ]. Hence, {X,Y } generates the entire Lie

algebra, and the sub-Laplacian

Δ = X2 + Y 2 =
∂2

∂2x
+

∂2

∂2y
+ x2 ∂2

∂2z
+ 2x

∂2

∂z∂y

generates a self-adjoint convolution semigroup whose action on a function f is given
by etΔf(x) = Htf(x) =

∫
G
ht(y

−1x)f(y)dy.

Question 2. On a Lie group G with identity element e, what is the behavior of
(t, x) �→ ht(x)? In particular, what is the behavior of ht(e) as t tends to infinity?
Can we relate that behavior to the algebraic/geometric structure of the group?

To a large extent, Question 2 is nothing but a somewhat sophisticated version
of Question 1, set in the context of connected Lie groups. Indeed, for any t > 0

and integer n > 0, μt = μ
(n)
t/n so, for instance, μn = μ

(n)
1 (the measure μ1 is not

compactly supported but its density tends to 0 very fast at infinity). In this review,
we will focus on convolution operators and Question 1.

Rapid historical review of Question 1 (iterated convolutions)

Coin tossing and de Moivre’s central limit theorem in the third edition (1756)
of his The Doctrine of Chances can serve as our starting point: the group is Z and
de Moivre and Laplace show that φn(0) ∼ cn−1/2. The second edition of Poincaré’s
Calcul des Probabilités contains a discussion of the problem in the context of card
shuffling (the group is the symmetric group, finite but definitely non-abelian). In
1921, Pólya introduced the dichotomy recurrence versus transience for a simple
random walk on the square lattices Zd. He proved that a simple random walk is
recurrent3 in dimensions d = 1, 2, and transient when d ≥ 3. Kawada and Ito dis-
cussed the behavior of φn in the context of compact groups in 1940, and one can also
mention important works by Gnedenko, Kolmogorov, Khinchine, and Lévy (these
efforts concern only basic abelian groups). None of these works really addresses
Question 1 in its generality as they focus on very particular groups. It is worth
noting that by the mid-1950s, the relation between random walks and Brownian
motion (in the context of Euclidean spaces) was well established, providing the
source of the natural connection between Question 1 and Question 2.

3A random walk is recurrent if, with probability 1, it returns infinitely often to its starting
point. It is transient otherwise.
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It is Kesten’s PhD thesis (1958) that provided the first consideration of Ques-
tion 1 for general countable groups with what was then a completely new view-
point—directly relevant to the book under review—emphasizing the relationship
between the behavior of n �→ φn(e) and the algebraic structure of the underly-
ing group. A later version of Kesten’s (amenability) theorem, valid for all lo-
cally compact groups including non-unimodular groups, describes the famous di-
chotomy between amenable and non-amenable groups exactly in terms of the be-
havior of n �→ φn(e). The group G in Question 1 is amenable if and only if
lim supn→∞ φn(e)

1/n = 1, equivalently, if and only if ‖μ‖op = 1.
In the early 1960s, Kesten suggested that, perhaps, the only finitely generated

groups that carry a (non-degenerate) recurrent random walk are the finite exten-
sions of {e}, Z, and Z2, a problem that certainly relates again to Question 1.
Kesten’s problem provided the impetus for works by Guivarc’h, Keane, Roynette
(e.g., [5]), and others during the 1970s (the Lie group version of Kesten’s problem
was resolved then), but the case of finitely generated groups remained open until
Varopoulos solved it in the affirmative in 1985 (Varopoulos’s solution uses Gromov’s
theorem on a group of polynomial volume growth). What Varopoulos proved is The-
orem 1 below, which relates volume growth to the behavior of φn(e). Originally,
this was proved for finitely generated groups and for connected Lie groups; see
[16, Chapter VII]. The version given here takes advantage of Losert’s description of
groups with polynomial volume growth in the context of general locally compact,
compactly generated groups [12–15].

Theorem 1. Assume G is a locally compact, compactly generated, and unimodular
group.

• Analytic dichotomy: Either there exists an a = a(G) ≥ 0 such that, for any
μ as in Question 1, lim infn→∞ naφn(e) > 0; or for any a ≥ 1 and any μ
as in Question 1, lim supn→∞ naφn(e) < +∞.

• Geometric dichotomy: The first case arises exactly when there exists b such
that lim infn→∞ n−bV (n) < +∞.

• Algebraic dichotomy: The first case arises exactly when there exist a normal
compact group K0 ⊂ G, an auxiliary compact group K, and a connected

simply connected nilpotent Lie group Ñ (on which K acts) such that G̃ =

Ñ �K contains G/K0 as a closed subgroup with compact quotient.
• In the first case there is an integer d, such that both V (n) � nd and φn(e) �
n−d/2.

The somewhat complicated condition spelled out in the third bullet (algebraic
dichotomy) should be understood as saying that, at large scales, G looks like the

connected simply connected nilpotent Lie group Ñ . When G is finitely generated,
the condition is equivalent to the fact that G contains a nilpotent subgroup with
finite index and the equivalence between the geometric and algebraic dichotomies
is a version of Gromov’s theorem on groups of polynomial volume growth.

Note how the first two bullets each state what is, essentially, a trivial (yes/no)
dichotomy. However, the information provided in the last two bullets turn these into
very informative dichotomies. Among our examples (E1)–(E4), (E3) is excluded
(these groups are not unimodular), (E1) and (E4) fall in the first case of the analytic
dichotomy with the integer d being d = 4 for the Heisenberg group in (E1) and d = 3
for (E4), and (E2) falls in the second case (it has exponential volume growth and the
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return probability decays faster than any inverse power function). Examples (E1)

and (E4) also illustrate the algebraic dichotomy: in (E1), Ñ = G, K0 = K = {e};
in (E4), Ñ = R3, K = S1 = R/Z (the circle group) acting by rotation on the last
two coordinates of R3, K0 = {e} (the only compact subgroup of G), and G can be

identified with the subgroup of Ñ�K equal to {(θ, x, y, z) : θ ∈ S1, x, y, z ∈ R, x = θ

mod Z}. The quotient G̃/G is compact.
Kesten’s question about finitely generated groups that carry a non-degenerate

recurrent random walk is resolved using Theorem 1 because recurrence is charac-
terized by the condition

∑
n φn(e) = +∞. It follows that these groups must satisfy

V (n) � nd, equivalently, φn(e) � n−d/2, with d = 0, 1, or 2, and then it is not hard
to show that such groups are finite extensions of {e}, Z, or Z2.

If we assume that the group G is a real connected Lie group, then we can describe
the algebraic dichotomy purely in terms of the Lie algebra g of G: the first case
arises exactly when g is an R-algebra (i.e., G is an R-group).

The content of the book

The limitations of Theorem 1 and the analytic dichotomy. Theorem 1 is
incomplete in two obvious ways:

(a) it is restricted to unimodular groups; and
(b) it gives little information about non-amenable groups, simply putting them

into the large bag of groups, where φn(e) decays rapidly (faster than any
inverse power function).

In short, one of the aims of the book under review is to alleviate these limitations in
the context of real connected Lie groups. This takes us on a journey along which we
discover much of great interest. Early results that must have guided the discoveries
presented in the book under review include limit theorems for free groups (for this,
see the book-length treatment in [17]) and the work of Bougerol [1–3] on local
limit theorems for semisimple Lie groups (with finite center) and a class of soluble
groups (including non-unimodular examples). For a semisimple real Lie group G
with finite center, Bougerol proved that

lim
n→+∞

na(G)‖μ‖−n
op φn(e) = cμ > 0,

where a(G) depend only on G (in fact, a(G) = (r+ 2p)/2, where r is the real rank
and p is the number of indivisible positive roots,4 that is, a(G) is a number that
one reads off the Lie structure of G).

We are ready to state the most basic version of one of the main theorems proved
in the book.

Theorem 2 (Analytic dichotomy). Let G be a connected real Lie group. Either,
for any μ as in Question 1, there is a real a(μ) ≥ 0 such that

(1) lim inf
n→+∞

na(μ)‖μ‖−n
op φn(e) > 0

or, for any μ as in Question 1, there exists c > 0 such that

(2) lim sup
n→+∞

ecn
1/3‖μ‖−n

op φn(e) < +∞.

4A positive root is indivisible if half of it is not a root.
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The statements of both sides of this dichotomy can be sharpened considerably
by proving matching upper and lower bounds for ‖μ‖−n

op φn(e) (see the beautiful
theorem stated in Section 1.3.1, page 4, of the Introduction). In the first case, one
can find a ≥ 0 and 0 < c ≤ C < +∞ (all possibly depending on μ) such that, for
all n,

cn−a ≤ ‖μ‖−n
op φn(e) ≤ Cn−a.

The reader should be warned that the book does not contain a proof of this fact.
We are told (on page 103) that a proof can be built on the methods of the book
but that the details would be very long to write down in full. In the second case
of the dichotomy, there are positive constants c1, c2, c3, c4 (depending on μ) such
that, for all n,

c1e
−c2n

1/3 ≤ ‖μ‖−n
op φn(e) ≤ c3e

−c4n
1/3

.

A proof of this fact is presented in the book. To illustrate this result, we consider
our running examples. Non-compact semisimple Lie groups, the Heisenberg group
(E1), and the R-group (E4), all satisfy the first alternative (1). The group Sol (i.e.,
(E2)) satisfies the second alternative. Groups in the family of examples (E3) satisfy
the first alternative if λ1λ2 > 0, and the second if λ1λ2 < 0. None of these facts
are particularly easy to see at this moment, and (E3) illustrates how Theorem 2
applies to non-unimodular groups.

Theorem 2 is one of the main results presented in the book and, with or without
the refinements just mentioned, it gives a compelling answer to Question 1 in the
case of connected real Lie groups. But the real thrust and goal of the book is
to present a series of dichotomies set in very different terms, each of which is
also proved to be equivalent to the dichotomy of Theorem 2. The equivalence
between these different dichotomies is a significant and impressive result. It is also
stimulating because it sheds light on many natural questions:

• What is the natural setting for such results? (The book discusses extensions
to algebraic groups.)

• Is it possible to state versions of these results for interesting subclasses of
finitely generated groups (e.g., lattices in connected Lie groups)?

This is a question that is completely open. To wit, we do not know what the
behavior of ‖μ‖−n

op φn(e) is on the group SL3(Z)! (Thanks to work by S. Gouëzel
[6], we know that finitely generated hyperbolic groups behave as in case (1).) To
understand one of many reasons why this book is mostly focused on connected Lie
groups, note that it is known that φn(e) can exhibit a great variety of different
behaviors (uncountably many) among amenable (even soluble) finitely generated
groups; see, e.g., [4]. The discussion above shows that this is not at all the case for
real connected Lie groups.

The algebraic dichotomy. Let q be a soluble Lie algebra, and let n be its largest
nilpotent ideal (nilradical). Recall that we have the map adx : y �→ [x, y]. For
each v ∈ V = q/n, this map induces a map ad v : W → W , W = n/[n, n]. These
maps form a commutative algebra which admits a so-called root decomposition,
essentially, a common diagonalization after complexification (there are, of course,
finitely many roots). The roots are complex-valued linear functionals on V associ-
ated with root spaces (subspaces of the complexification of W ) and the action of
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ad v, v ∈ V . On a root space and up to the addition of a nilpotent transformation,
ad v has the form λ(v)I with the root

λ(v) = Reλ(v) + i Imλ(v) (complex linear functional on V ).

Let {L1, . . . , Lp} be the distinct values taken by the real parts Reλ of the roots.
By construction, the direct sum Wi of the root spaces associated with a given
Li satisfies W i = Wi (in the complexification of W ), and this gives a real root

decomposition W = W̃1 ⊕ · · · ⊕ W̃p. Here, “real root” means “the real part of a
root”. These real roots Li are distinct linear forms on V . They are the key objects
in defining the following algebraic dichotomy.

Definition 1 ((C) versus (NC) for real finite-dimensional Lie algebra).

• A soluble Lie algebra q is a (C)-algebra if there exists (αi)
p
1 ∈ [0,+∞)p

such that
∑p

1 αiLi = 0 and αiLi �= 0 for at least one i ∈ {1, . . . , p}.
• A soluble Lie algebra q is an (NC)-algebra if, for any (αi)

p
1 ∈ [0,+∞)p,∑p

1 αiLi = 0 implies αiLi = 0 for all i ∈ {1, . . . , p}.
• A general Lie algebra g is a (C)-algebra (resp., (NC)-algebra) if and only if
its radical (largest soluble ideal) is a (C)-algebra (resp., (NC)-algebra).

The dichotomy (C)-(NC) is suitable to capture the analytic dichotomy of Theo-
rem 2 in the context of amenable connected Lie groups. Namely, for an amenable
connected Lie group G, the Lie algebra g of G is (NC) if and only if for any μ
as in Question 1, there is a real a(μ) ≥ 0 such that (1) holds true (because G is
amenable, ‖μ‖op = 1). In the book, this is stated in Theorems 2.3 (C-theorem) and
3.2 (NC-theorem).

To be able to deal with non-amenable groups, one has to use some basic structure
theory. A general (finite-dimensional, real) Lie algebra can be decomposed as a
semidirect product of its radical q (largest soluble ideal) and a Levi subalgebra s

which is a semisimple Lie algebra. Moreover, s = sn ⊕ sc is the direct sum of
two semisimple Lie algebras of compact type (sc) and non-compact type (sn). We
already mentioned that a Lie group G is amenable if and only if s = sc is of compact
type.

Now, a semisimple Lie algebra of non-compact type, sn, can be decomposed as a
direct sum of vector spaces that are subalgebras, sn = ns + a+ kn (ns is nilpotent,
a is abelian and [ns, a] ⊆ ns, and kn is the Lie algebra of a compact group). This
is called the Iwasawa decomposition of sn, and it provides a decomposition of g in
the form

(3) g = r+ t, r = q+ ns + a, t = kn + sc.

Ignoring the difficulties coming from the fact that such decomposition is not unique
(which can be shown to be unimportant), we arrive at the key (B)-(NB) dichotomy.

Definition 2 ((B) versus (NB) for real finite-dimensional Lie algebras).

• A Lie algebra g is a (B)-algebra if r = q+ ns + a is a (C)-algebra.
• A Lie algebra g is an (NB)-algebra if r = q+ ns + a is an (NC)-alebgra.

Theorem 3 (Equivalence of the analytic and (B)-(NB) dichotomies). For a con-
nected Lie group G with Lie algebra g and referring to Theorem 2, (1) holds if and
only if g is (NB), and (2) holds if and only if g is (B).

This equivalence is stated in Theorems 4.6 (B-theorem) and 4.7 (NB-theorem)
and the entirety of Chapter 4 is devoted to this classification. Note that R-groups
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are groups of polynomial volume growth, and one can characterize unimodular
(NB)-groups as those groups whose Lie algebra is the direct sum of an R-algebra
and a semisimple algebra (Part I. B.5, page 202).

The geometric dichotomy for models. Filling invariants have a long history
as they address variations on classical isoperimetric problems. In the classical
isoperimetric problem, in dimension d, one asks for a bound on the volume of a
compact set with smooth boundary in terms of the (d− 1)-volume of its boundary.
One can also ask about the minimal surface area of a surface filling up a close
curve of a given length. This leads to the notion of Dehn function. In both cases,
one is working in a d-dimensional Riemannian manifold. In these two cases, one
uses volume/area to measure the quality of the filling but one may also focus on
different quantities; see, e.g., [7,8]. One possibility mentioned in [8, page 74] is what
Gromov call the filling span. In a fixed dimension n, this involves the Lipschitz
constant of Lipschitz extensions to the n-ball of a given Lipschitz embedding of the
boundary of that ball. In the book under review, unit cubes are used instead of
balls (Section 7.5.1). Namely, let M be a Riemannian manifold diffeomorphic to
Rd. For each integer n, let f be a Lipschitz map from the boundary of the unit cube

[0, 1]n ⊂ Rn to M . Considering all possible Lipschitz extensions f̂ : [0, 1]n → M of
f (such extensions always exist), let A(f) be the infimum of the Lipschitz constants

Lip(f̂) = sup{d(f̂(x), f̂(y))/‖x− y‖} of such f̂ . For fixed R ≥ 1, define ϕn(R) the
supremum of A(f) over all f with Lip(f) ≤ R.

Definition 3. For a given n, say that M has the polynomial filling property in
dimension n if there is a constant C such that, for all R ≥ 1, ϕn(R) ≤ CRC .

Definition 4. Say that the pointed space (M, o) is polynomially retractable if
there exists a locally Lipschitz map F : M × [0, 1] → M such that, for all m ∈ M ,
F (m, 1) = m, F (M, 0) = o ∈ M , and there exists C for which, for all (m,λ) ∈
M × [0, 1], |dF (m,λ)| ≤ C(1 + d(o,m))C .

Here, dF is the differential of F and d(o,m) is the distance from m to o. In
words, one can retract M to a point with at most polynomial distortion along the
way. When M is polynomially retractable (to any of its points) it follows that it
has the polynomial filling property in any dimension n.

Call a Lie group U a model if it is diffeomorphic to some Rd. It turns out that
such models U are exactly the simply connected connected soluble Lie groups; see
Section 1.5.1.

Theorem 4 (The geometric (C)-(NC) dichotomy for models).

• If the Lie algebra of a model U is (NC), then U is polynomially retractable.
• If the Lie algebra of a model U is (C), then there is an n so that the
polynomial filling property fails in dimension n in U .

There are two ways to describe the (B)-(NB) version of this theorem for con-
nected Lie groups. One way is to use coarse quasi-isometries (here we follow the
book in calling “coarse quasi-isometry” what is now most often called a “quasi-
isometry”). Given a connected Lie group G, find a model U which is coarse quasi-
isometric to G. This can always be done as explained in Section 11.1 of the book
(Theorem 11.16). Then G is (B) (resp., (NB)) if and only if U is (C) (resp.,
(NC)). The second, more elegant way (but perhaps somewhat less directly infor-
mative) is to use the notion of polynomial retract to a compact set (instead of
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a point). It is known that any connected Lie group G always retracts to a com-
pact subgroup K. The group G is (NB) if and only if there exists such a retract,
H(g, t) : G× (0, 1) �→ G, whose gradient is polynomially bounded, i.e., there exists
C such that |dH(g, t)| ≤ C(1 + d(e, g))C for all (g, t) ∈ G× (0, 1). This statement
is found in Theorem 12.9.

The homological dichotomy. The discussion above is phrased in homotopy
terms (continuous deformations, retracts), and the final piece we need to mention
is concerned with homology. Consider a model U as above and a closed differential
form ω without constant term and which has polynomial growth, i.e., there exists
C such that , for all g ∈ U , |ω(g)| ≤ C(1 + d(e, g))C . We surely can solve dθ = ω
on U . The question is whether we can do it with a polynomial bound on θ. The
answer is: yes, always, if U is (NB), not always if U is (B). This can be expressed
more formally and more generally in terms of the finiteness of the Betti numbers of
the complex of (polynomially bounded) differential forms on a connected Lie group
G. If these Betti numbers are finite, say that G has finite polynomial homology.
Then, a connected Lie group G has finite polynomial homology if and only if it is
(NB) (see Theorem 12.21).

The structure of the book

The key components of the book are presented in three distinct parts, each com-
ing with a set of appendices and each filling about 200 pages. Part I is concerned
with the analytic/probabilistic classification (convolution powers) and the equiv-
alence with its algebraic counterpart (using roots). Parts II and III are entitled
“Geometric Theory” and “Homology Theory”, respectively. Whereas Part I stands
by itself, Parts II and III are interrelated and make use of the algebraic consider-
ations developed in Part I. In fact, the only direct link between Part I and Parts
II and III is the algebraic version of the dichotomy. Indeed, it is an open question
to formulate and prove any direct link and relation between, say, the behavior of
convolution powers and the behavior of filling invariants in this general context.
This is in contrast to the fact that such links are well established in the context of
amenable unimodular groups when classical isoperimetry directly relates, at least
in a coarse way, to the decay of convolution powers.

Each of the three parts involves distinct (often completely unrelated) tools and
techniques, each relies on elements of sophisticated existing theories and requires
the development of variations on classical arguments as well as new ideas.

Conclusion

The motivated reader will find this book fascinating. It presents, in a somewhat
idiosyncratic but readable way, a personal, substantial, and interesting mathemat-
ical journey. Because of the variety of concepts and ideas involved, most readers
will face some difficulties when reading the book: irritations at the peculiar presen-
tation of concepts they understand, and befuddlement at some of those concepts
they are not familiar with. This is despite the author’s very genuine attempts to
introduce and explain in a self-contained manner the key ideas and constructs. It is
perhaps this attempt at being self-contained that explains the absence of mention
of existing related works. Certainly the author cites all works that have influenced
his journey in developing the presented material, but the four-page reference list is
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strictly utilitarian, and no visible efforts are made to provide the reader with point-
ers to works that could facilitate and enhance their understanding of the text by
providing additional background information, different but similar developments
regarding certain concepts, or special examples treated by different methods. It
is not possible to remedy this here but one can point out the obvious: there are
many published works on random walks (e.g., [11]) and on filling invariants (e.g.,
[18,19]) that have some relation to problems discussed in the book, and the reader
would have benefited tremendously if carefully selected pointers to the literature
had been given. The reader will, nevertheless, find plenty to think about, either
by exploring what is said but which the reader does not completely understand, or
by considering the many open directions of research indicated and discussed in the
text. In both cases, the reader will have an opportunity to make significant new
contributions to our understanding of the original questions raised by the author.
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