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BILLIARDS AND TEICHMÜLLER CURVES

CURTIS T. MCMULLEN

Abstract. A Teichmüller curve V ⊂ Mg is an isometrically immersed alge-
braic curve in the moduli space of Riemann surfaces. These rare, extremal
objects are related to billiards in polygons, Hodge theory, algebraic geometry
and surface topology. This paper presents the six known families of primitive
Teichmüller curves that have been discovered over the past 30 years, and a
selection of open problems.

1. Introduction

The moduli space Mg of compact Riemann surfaces of genus g is both a metric
space and an algebraic variety.

The metric comes from the Teichmüller distance between X,Y ∈ Mg, which
measures the minimal conformal distortion of a map f : X → Y . This metric is
given by a norm on each tangent space to Mg, but for g > 1 it is not Riemannian;
in fact the norm balls are complicated convex sets, varying so much from point to
point that Mg is completely inhomogeneous.

The algebraic structure on Mg comes from a projective embedding, which pro-
vides a multitude of algebraic curves V ⊂ Mg. Each curve carries a natural hyper-
bolic metric, coming from its uniformization V = H/Γ.

We say V ⊂ Mg is a Teichmüller curve if this inclusion is an isometry. These
rare and remarkable objects lie at the nexus of algebraic geometry, number the-
ory, complex analysis, topology and automorphic forms. We focus on primitive
examples, since all others are related to these by covering constructions (§2).

Teichmüller curves are elusive, but once found, they can often be viewed explic-
itly from many perspectives at once. For example, any primitive Teichmüller curve
V determines a totally real number field K, with deg(K/Q) ≤ g, such that:

• V ∼= H/Γ, with Γ ⊂ SL2(K);
• every Riemann surface X ∈ V ⊂ Mg can be assembled from triangles with
vertices in K ⊕Kτ ⊂ C, for some τ ∈ H; and

• a factor of the Jacobian of X admits real multiplication by K.

The curve V is rigid, so both V and its map to Mg are also defined over a number
field. In particular cases one can obtain algebraic equations for V , generators for
Γ, and geometric models for X and for endomorphisms of its Jacobian.
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Figure 1.1. A periodic billiard trajectory in the regular heptagon.

Figure 1.2. A generalized billiard table with optimal dynamics.

Billiards. Frequently X ∈ V can be chosen so there is a polygon P and a finite
reflection group G, adapted to V , such that

X/G ∼= P ⊂ C.

In this case, billiards in the polygon P has optimal dynamics : every trajectory is
either periodic, or uniformly distributed. Moreover, X and V can be reconstructed
from P .

The regular polygons provide the first examples of both optimal billiards and
Teichmüller curves (see Figure 1.1 and §3). It is also possible that P is immersed,
rather than embedded in C; in this case we obtain a generalized polygon with
optimal dynamics (see Figure 1.2 and §7).

The current catalog. This paper provides a survey of the known examples of
Teichmüller curves, a glimpse of their multifaceted constructions, a hint of how
they were discovered, and a selection of the many open questions that remain.

The known primitive Teichmüller curves are given by 6 infinite series, and 3
sporadic examples. These are:

1. the three Weierstrass series WD, in genus 2, 3 and 4 (§4, §5);
2. the sporadic examples of type E6, E7 and E8, in genus 3 and 4 (§6);
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3. the Bouw–Möller series Vp,q, providing finitely many examples in every Mg

(§7); and
4. the gothic and arabesque series, GD and AD, both in genus 4 (§8, §9).

The five horizontal series WD, GD and AD above each lie in a single moduli space.
The index D is a real quadratic discriminant, i.e. an integer D > 0, D = 0 or
1mod 4, with

√
D 	∈ Z.

Completeness? In low genus, the list of primitive Teichmüller curves is almost
complete.

• In genus g = 2, all primitive Teichmüller curves are known: they are ac-
counted for by the series WD ⊂ M2 and one other curve, associated to
billiards in the regular decagon (Theorem 4.5).

• In genus g = 3, there are only finitely many primitive Teichmüller curves
not accounted for by the series WD ⊂ M3 (Theorem 5.5).

On the other hand, the vertical Bouw–Möller series Vpq gives the only known
construction of primitive Teichmüller curves in genus g ≥ 5. Thus a central open
problem is to settle:

Question 1.1. Are there infinitely many primitive Teichmüller curves in M5?

The unexpected families GD and AD in genus 4 hint that similar constructions
may be hidden in higher genus.

Teichmüller surfaces. The discovery of the gothic curves GD also revealed an al-
most miraculous new phenomenon: there are primitive, totally geodesic Teichmüller
surfaces in M1,3, M1,4 andM2,1. This survey concludes with a description of these
new surfaces from the perspective of algebraic geometry in §8, and from the per-
spective of quadrilaterals in §9.

Notes and references. References and commentary are collected, section by sec-
tion, in §10.

Via the action of SL2(R) on ΩMg, Teichmüller curves are connected to the
larger topic of dynamics on moduli spaces, which is itself patterned on the theory
of homogeneous dynamics, Lie groups, lattices and ergodic theory. For a view of
the broader setting, we recommend the many excellent surveys such as [D], [Go],
[HS2], [Mas3], [MT], [Mo3], [Sch2], [Vo1], [Wr2], [Wr3], [Y], and [Z].

Outline. In §2 and §3 we set the stage with definitions and basic examples re-
garding moduli spaces, polygons and billiards. The known families of primitive
Teichmüller curves are described in §4 through §9.

Four appendices follow. The triangle groups Δ(p, q,∞) ⊂ SL2(R) are reviewed
in Appendix A. There are six accidental isomorphisms between members of series
of Teichmüller curves listed above; these are recorded in Appendix B. Tables of
invariants of Teichmüller curves appear in Appendices C and D.

Notation. The nth Chebyshev polynomial will be denoted by Tn(x) ∈ Z[x]; it is
characterized by

(1.1) Tn(cos θ) = cos(nθ).
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We let H1(X) denote cohomology with complex coefficients. The upper half-plane
in H = {z : Im(z) > 0} ⊂ C is endowed with the complete hyperbolic metric

ρH =
|dz|
2 Im z

of constant curvature −4. The group SL2(R) acts linearly on R2 ∼= C and by Möbius
transformations on H.

2. Moduli spaces and Teichmüller curves

This section develops background material on Riemann surfaces, polygons, and
the action of SL2(R) on the moduli space of holomorphic 1-forms ΩMg. This
material will allow us to formulate the main topic we aim to address:

Problem 2.1. Construct and classify all primitive Teichmüller curves V → Mg.

Moduli space. The moduli space Mg parameterizes the isomorphism classes of
compact Riemann surfaces X of genus g. It is naturally a complex orbifold, and an
algebraic variety, of complex dimension 3g − 3 when g ≥ 2.

The Teichmüller metric on Mg is defined by a norm on each tangent space; it
can be characterized as the largest metric such that every holomorphic map

(2.1) f : H → Mg

is either a contraction or an isometry. In the isometric case, we say f is a complex
geodesic.

Metrically, moduli space is completely inhomogeneous: the tangent spaces at
X,Y ∈ Mg are isomorphic as normed vector spaces if and only if X = Y . Never-
theless, there exists a unique complex geodesic through every point in every possible
direction.

Polygons and Riemann surfaces. How can one specify a Riemann surface X ∈
Mg?

In the case g = 1, X is a torus, thus one can write X = C/Λ for some lattice
Λ ⊂ C. Alternatively, if we choose a parallelogram P ⊂ C that is a fundamental
domain for the action of Λ, we can construct X by gluing together opposite sides
of P .

More generally, if P ⊂ C is any polygon, and the edges of P are identified in
pairs by translations, then the result is a compact Riemann surface X = P/∼. And
in fact:

Every compact Riemann surface of genus g ≥ 1 can be presented as
a polygon P ⊂ C with its edges glued together by translations.

Note that X inherits a flat metric from P . At first sight this may seem paradox-
ical: for g ≥ 2, X admits no smooth flat metric. However the metric on X has, in
general, isolated singularities of negative curvature arising from the vertices of P .

Example in genus 2. Consider the polygon L(a, b) shown in Figure 2.1. Note
that we have introduced two extra vertices, so L(a, b) is combinatorially an octagon.
Gluing edges by vertical and horizontal translations, we obtain a Riemann surface
X of genus 2. The eight vertices of L(a, b) descend to a single point p ∈ X; there,
the induced flat metric has a cone angle of 6π.
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Figure 2.1. The polygon L(a, b) glues up to give a Riemann sur-
face of genus 2.

Holomorphic 1-forms. This flat uniformization of X by a polygon P can be
contrasted with more traditional ways of presenting a compact Riemann surface,
e.g. as an algebraic curve or as a quotient of H by a Fuchsian group. While a
polygonal presentation of X is elementary, it is not canonical; moreover, it provides
X with additional structure.

To explain this, recall that the space Ω(X) of holomorphic 1-forms ω on X has
dimension g; indeed, dimΩ(X) can be taken as the definition of the genus g of X.
In local coordinates, ω = ω(z) dz, where ω(z) is a holomorphic function. Provided
ω 	= 0, its zero set Z(ω) ⊂ X consists of 2g − 2 points, counted with multiplicity.

The moduli space of all nonzero 1-forms (X,ω) of genus g forms a bundle

ΩMg → Mg;

in fact, it is a holomorphic vector bundle of rank g with its zero section removed.

Strata. The locus where the zeros of ω have multiplicities p = (p1, . . . , pn) forms
a stratum

ΩMg(p1, . . . , pn) ⊂ ΩMg

of dimension 2g+n− 1. These strata decompose ΩMg into disjoint algebraic sets,
indexed by the partitions p of 2g − 2. We sometimes use exponential notation
for repeated blocks of a partition; e.g. the unique open stratum is denoted by
ΩMg(1

2g−2) = ΩMg(1, 1, . . . , 1).

From polygons to 1-forms. Let X = P/∼. Since the 1-form dz on C is invariant
under translation, it descends to give a 1-form ω ∈ Ω(X). Here is a more precise
description of the relationship between Riemann surfaces and polygons.

Theorem 2.2. Every element of ΩMg can be presented in the form

(2.2) (X,ω) = (P, dz)/∼

for a suitable polygon P ⊂ C.

It is often useful, as we will see below, to allow the ‘polygon’ P to be discon-
nected. With this proviso, the proof of the result above is fairly elementary: one can
construct a geodesic triangulation of the flat surface (X, |ω|), with Z(ω) among its
vertices, and then present X as the quotient of a collection of Euclidean triangles.
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Geometry of a 1-form. A holomorphic 1-form provides X with a singular flat
metric |ω|. This metric has a cone angle of 2π(p+ 1) at each zero of order p. The
form |ω|2 determines a smooth measure on X, with total mass given by

area(X,ω) =

∫
X

|ω|2 = area(P ).

Near any point p 	∈ Z(ω), we can choose a local flat coordinate z(q) =
∫ q

p
ω on

X such that ω = dz. The geodesics on (X, |ω|) are simply straight lines in these
charts. Since these flat coordinates are well–defined up to translation, each geodesic
γ has a well–defined slope s. In particular, γ cannot cross itself; all geodesics are
simple. We allow a geodesic to begin or end at a point of Z(ω), but never to pass
through a zero. In particular, a closed geodesic is always disjoint from Z(ω).

These features are elementary to see in a polygonal model (X,ω) = (P, dz)/∼;
for example, the horizontal lines in P descend to a foliation F(ω) of X by geodesics
with slope zero. Intrinsically, this foliation is defined by the closed 1-form β = Imω.

A cylinder C ⊂ X is the closure of a maximal open set foliated by parallel
closed geodesics. Every closed geodesic γ lies in a cylinder; in particular, γ is never
unique its homotopy class. Most elements of π1(X) are not represented by closed
geodesics; rather, the loop of minimal length in a given homotopy class is a chain
of geodesic segments of varying slopes, with endpoints in Z(ω).

Action of SL2(R). Remarkably, upon passage to the bundle ΩMg, the highly
inhomogeneous space Mg acquires a dynamical character : namely, it admits a
natural action of SL2(R). This action is easily described in terms of a polygonal
presentation (2.2): for A ∈ SL2(R), we have:

A · (X,ω) = (XA, ωA) = (A(P ), dz)/∼ .

Here A acts linearly on P ⊂ C ∼= R2, and the (combinatorial) gluing instructions
remains the same.

Alternatively, given A =
(
a b
c d

)
one can define a harmonic form on X by

ωA =
(
1 i

)(a b

c d

)(
Reω

Imω

)
,

and then change the complex structure on X so ωA is holomorphic on XA. The
zeros of ω and ωA have the same order, so:

SL2(R) leaves each stratum ΩMg(p) invariant.

Complex geodesics. Note that if A ∈ SO2(R) is simply a rotation, then XA = X
and ωA = exp(iθ)ω for some θ. Thus the projection of A · (X,ω) to Mg depends
only on the coset

(2.3) [A] ∈ SO2(R)\ SL2(R) ∼= H,

and the map F (A) = (XA, ωA) covers a unique map f : H → Mg, making the
diagram

(2.4) SL2(R)

��

F �� ΩMg

π

��
H

f �� Mg

commute.
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Figure 2.2. The SL2(R)–orbit of L(a, b) defines a complex geo-
desic in M2.

The map f is a holomorphic, isometric immersion of H into moduli space, which
we refer to as the complex geodesic generated by (X,ω). If X = P/∼, then the
image of f simply consists of all Riemann surfaces of the form XA = A(P )/∼,
A ∈ SL2(R); see Figure 2.2.

Real geodesics. Every 1-form also generates a distinguished real Teichmüller ge-
odesic ray γ : [0,∞) → Mg; parameterized by arclength, it is given by

(2.5) γ(t) = f(ie2t) = Xt,

where

(Xt, ωt) =

(
e−t 0

0 et

)
· (X,ω).

The Riemann surface Xt is obtained from (X, |ω|) by shrinking its horizontal
geodesics and expanding its vertical ones.

Teichmüller curves. The stabilizer of (X,ω) is a discrete subgroup

SL(X,ω) ⊂ SL2(R).

It is easy to see that the complex geodesic generated by (X,ω) descends to give a
map f : V → Mg, where

(2.6) V = H/ SL(X,ω).

Here the action of SL(X,ω) on H is slightly twisted, since SO2(R) acts on the left
in equation (2.3); it is given by A(z) = (az − b)/(−cz + d).

Now suppose V has finite hyperbolic area; equivalently, suppose SL(X,ω) is a
lattice in SL2(R). Then the image of the map

f : V → Mg

is a Teichmüller curve in Mg. That is, V is the normalization of a totally geodesic
algebraic curve.

We refer to (X,ω) as a generator of the Teichmüller curve V . The generator of V
is not unique—for any λ ∈ C∗ and A ∈ SL2(R), V is also generated by A · (X,λω).

Hidden symmetries. The pivotal group SL(X,ω)—which is large in the case of
a Teichmüller curve—reflects hidden symmetries of the form (X,ω) itself.

More precisely, SL(X,ω) can be described as follows. Let Aff+(X,ω) denote
the group of orientation–preserving homeomorphisms of X that stabilize Z(ω), and
have the form

φ(x, y) = A

(
x

y

)
+ b
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in local flat coordinates z = x + iy on the domain and range satisfying ω = dz.
Here A ∈ SL2(R) and b ∈ R2.

We refer to φ as an affine automorphism of (X,ω), since it preserves the real–
affine structure on X determined by ω; in particular, φ sends geodesics to geodesics.
The matrix A = Dφ is independent of the choice of charts, and is characterized by
the property that

(2.7) φ∗(ω) =
(
1 i

)
A

(
Reω

Imω

)
.

In particular, A = I if and only if φ belongs to Aut(X,ω), the group of holomorphic
automorphisms of X satisfying φ∗(ω) = ω.

It is then easy to see we have an exact sequence:

1 → Aut(X,ω) → Aff+(X,ω)
D→ SL(X,ω) → 1.

For g > 1, the group Aut(X,ω) is finite, so the stabilizer of (X,ω) in SL2(R) is
virtually the same as its affine symmetry group.

Examples. The square torus E = C/Z[i] generates the simplest example of a
Teichmüller curve. In this case, every orientation–preserving automorphism of E ∼=
R2/Z2 as a Lie group is also an affine automorphism of (E, dz). Thus SL2(E, dz) =
SL2(Z), and the map f : V → M1 is an isomorphism. This is the trivial Teichmüller
curve.

An example in genus two is provided by the form (Y, η) = L(2, 2)/∼ (see Figure
2.1). Here we find

(2.8) SL(Y, η) = 〈S, T 〉 =
〈(

0 1

−1 0

)
,

(
1 2

0 1

)〉
⊂ SL2(Z).

In these examples SL(E, dz) and SL(Y, η) are both triangle groups, namely
Δ(2, 3,∞) and Δ(2,∞,∞). See Appendix A for more on triangle groups, which
will occur frequently in the discussions to follow.

Cylinders and parabolics. The modulus of a cylinder of height h and circumfer-
ence c is m = h/c. In general, if (X, |ω|) is covered by a collection of n horizontal
cylinders (Ci) with moduli (mi), and m > 0 divides mi for all i (meaning mi/m is
an integer), we can construct an affine automorphism φ of (X,ω) with

Dφ =

(
1 1/m

0 1

)
.

Namely we take φ|Ci to be a linear, right Dehn twist, iterated mi/m times. The
iterate is chosen so Dφ|Ci is the matrix above for all i. Since φ|Ci is the identity
on ∂Ci, these twists fit together to give a map φ ∈ Aff+(X,ω).

Conversely, it is not hard to show:

Proposition 2.3. Suppose SL(X,ω) contains a parabolic element A fixing the
line of slope s through the origin. Then (X,ω) is tiled by a family of cylinders
(C1, . . . , Cn) of slope s, with rational ratios of moduli.

We can now explain the appearance of the parabolic matrix T = ( 1 2
0 1 ) in

SL(Y, η). Note that L(2, 2) is built from three copies of the unit square. The
bottom two squares define a horizontal cylinder C1 ⊂ Y , isometric to a Euclidean
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cylinder of height and circumference (h1, c1) = (1, 2). Similarly the top square gives
a cylinder C2 with (h2, c2) = (1, 1). Thus m = gcd(m1,m2) = gcd(1/2, 1) = 1/2,
and Dφ = ( 1 2

0 1 ).
As for the generator S, it is easy to see that L(a, b)/∼ has a 4-fold rotational

symmetry whenever a = b (see Figure 3.4).

Cusps of V . We note that the Teichmüller curve V generated by a 1-form (X,ω) is
properly immersed in Mg, and hence the SL2(R) orbit of (X,ω) in ΩMg is closed.

Proposition 2.4. A Teichmüller curve V has finite hyperbolic area, but it is never
compact; it always has at least one cusp.

Idea of the proof. Assume g ≥ 2 and (X,ω) ∈ ΩMg(p). Construct a geodesic
segment σ on (X, |ω|) with endpoints in Z(ω). After rotating ω, we can assume σ
is horizontal. Now consider the Teichmüller geodesic ray Xt = γ(t) in V generated
by (X,ω), as in equation (2.5). As t → ∞ the length of δ on Xt tends to zero.
Since the SL2(R) orbit of (X,ω) is closed in its stratum, the endpoints of δ cannot
collide, so Xt tends to infinity in Mg. Therefore V is noncompact, and Xt tends
to a cusp of V . �

Combined with Proposition 2.3, we find that (X,ω) has many cylinder decom-
positions and a dense set of periodic directions.

Square–tiled surfaces. Let us say (X,ω) is a square–tiled 1-form if it can be
obtained by gluing together a finite number of copies of the unit square ([0, 1]2, dz).

Generalizing the case of (Y, η) = L(2, 2)/∼, one can show that SL(X,ω) has
finite index in SL2(Z) for any square–tiled 1-form. One can also check that square
tiled surfaces are dense in Mg. Consequently:

Teichmüller curves are dense in Mg.

These Teichmüller curves, however, are simply echos in higher genus of the
trivial Teichmüller curve V ∼= M1. Every Teichmüller curve generates similar
echos in higher genus, via covering constructions. For example, there is a degree 3
holomorphic map f : Y → E such that η = f∗(dz).

Primitivity. For this reason we will focus our attention on primitive Teichmüller
curves in Mg: those that do not arise from lower genus.

To define these, let us say (X,ω) is the pullback of (Y, η) if there is a holomorphic
map f : X → Y such that ω = f∗(η). A 1-form with g(X) > 1 is primitive if it is
not the pullback of a form of lower genus.

Every form in ΩMg, g > 1, is the pullback of a unique primitive 1-form (X,ω)
[Mo1, Thm. 2.6], [Mc3, Thm. 2.1]. We say a Teichmüller curve is primitive if it is
generated by a primitive 1-form. In this case Aut(X,ω) is trivial, and hence

Aff+(X,ω) ∼= SL(X,ω).

Invariants. We conclude this section by discussing three invariants of the Te-
ichmüller curve f : V → Mg generated by a 1-form (X,ω).

1. The lattice SL(X,ω), often called the Veech group, is determined by V up to
conjugacy in SL2(R). Indeed, it is simply the Fuchsian group uniformizing V .

2. The trace field of SL(X,ω), defined by

K = Q(trA : A ∈ SL(X,ω)) ⊂ R,
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is also an invariant of V . It is a totally real number field, of degree at most g over
Q, satisfying

(2.9) K = Q(trA)

for any hyperbolic element A ∈ SL(X,ω). Moreover K = Q if and only if (X,ω) is
the pullback of a form of genus one.

3. All generators of V lie in the same stratum ΩMg(p), so this too is an invariant
of V .

The trace field and stratum are known for all the Teichmüller curves V we will
discuss below. The lattice SL(X,ω), on the other hand, is often inaccessible. Nev-
ertheless, topological invariants of V , such as its Euler characteristic, can frequently
be determined.

3. Billiards

We now turn to the remarkable connection between Teichmüller curves and bil-
liards in polygons.

The first nontrivial Teichmüller curves V ⊂ Mg were discovered in 1989 by
Veech. They play a key role in his proof of:

Theorem 3.1. Billiards in a regular polygon P has optimal dynamics.

Here optimal dynamics means that any unit speed billiard trajectory τ : R → P
satisfies the Veech dichotomy ; it is either

(i) periodic: meaning τ (t) = τ (t+ T ) for some T > 0; or
(ii) uniformly distributed : meaning τ (R) is dense, and

lim
T→∞

1

T

∫ T

0

f(τ (t)) dt =
1

area(P )

∫
P

f(z) |dz|2

for any continuous function f : P → R.

Which alternative holds—(i) or (ii) above—depends only on the initial slope of the
trajectory. See Figure 3.1 for examples.

In this section we describe the series of Teichmüller curves associated to regular
polygons, and present the proof of Theorem 3.1, following [V1] and [Mas2]. We also
summarize, in Theorem 3.9, the known examples of triangles with optimal billiards.

A striking feature of Theorem 3.1 is that it describes the behavior of every
trajectory in P , and shows that only two, radically different types of behavior are

Figure 3.1. Three billiard trajectories in a regular pentagon.



BILLIARDS AND TEICHMÜLLER CURVES 205

Figure 3.2. A billiard trajectory that is neither periodic nor dense.

P

P ʹ

Figure 3.3. The double pentagon P ∪ P ′ yields a surface of genus 2.

possible. For more general polygons, some trajectories may be neither periodic nor
dense (see Figure 3.2), and even dense trajectories may be unevenly distributed.

Unfolding. A polygon is rational if its angles lie in πQ. To relate billiards to
Teichmüller theory, we first explain how a rational polygon P ⊂ C determines a
holomorphic 1-form (X,ω)P .

Suppose P is a regular pentagon. The construction of (X,ω) is described in
Figure 3.3. The idea is that, when a billiard trajectory τ strikes an edge of P ,
rather than reflecting τ , we can reflect P . The result is an adjacent polygon P ′,
and τ continues into P ′ along a straight line.

Now when τ strikes an edge of P ′, we could add yet another polygon P ′′; but
P ′′ would simply be a translate of P . So instead of adding new polygons, we glue
the edges of P ′ to parallel edges of P . Since P ∪ P ′ is combinatorially an octagon,
the result is a 1-form

(X,ω) = (P ∪ P ′, dz)/∼
of genus two; and billiard trajectories in P go over to geodesics on the flat surface
(X, |ω|).
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Figure 3.4. Unfolding an L-shaped polygon.

A similar construction can be carried out for any rational polygon P . The
rationality condition means the group G ⊂ O2(R) generated by reflections in the
sides of P is finite. Let H be the subgroup that stabilizes P up to translation. The
associated 1-form is then given by

(3.1) (X,ω)P =

⎛⎝ ⊔
[g]∈G/H

(gP, dz)

⎞⎠/∼ .

Two examples. (i) If P is a regular 2n-gon, then (X,ω)P is simply (P, dz) with
opposite edges identified.

(ii) The polygon P = L(a, a) unfolds to give a Swiss cross with its sides identified;
the resulting form (X,ω)P is isomorphic to L(a, a)/∼ up to a factor of two (see
Figure 3.4).

From billiards to Teichmüller curves. We say P is a lattice polygon if
SL(X,ω)P is a lattice in SL2(R); equivalently, if (X,ω)P generates a Teichmüller
curve V . For brevity, we also say P generates V . The connection between billiards
and Teichmüller curves is summed up by the following general statement.

Theorem 3.2. The billiard flow in a lattice polygon P has optimal dynamics.

With this result in hand, Theorem 3.1 follows from:

Theorem 3.3. Every regular polygon P generates a primitive Teichmüller curve.
In particular, P is a lattice polygon.

Corollary 3.4. Every moduli space Mg, g > 0, contains a primitive Teichmüller
curve.

The invariants of these first examples of primitive Teichmüller curves are listed
in Table 3.1. Note that SL(X,ω)P is always a triangle group, that ω has just one
or two zeros, and that every g occurs.

We will sketch the proof of Theorem 3.2 at the end of this section.

Algebraic models. One of the remarkable properties of a regular polygon P is
that we have an explicit algebraic model for the Teichmüller curve

f : V → Mg

it generates, to complement the flat model coming from the SL2(R) orbit of its
unfolding. Recall that Tn(x) denotes the degree n Chebyshev polynomial (see
equation (1.1)).
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Table 3.1. Invariants of Teichmüller curves generated by n-sided
regular polygons.

Sides Stratum SL(X,ω) Trace field

n = 2g + 1
ΩMg(2g − 2)

Δ(2, n,∞)

Q(cos(2π/n))n = 4g
Δ(n/2,∞,∞)

n = 4g + 2 ΩMg(g − 1, g − 1)

Theorem 3.5. For n = 2g + 1 odd, the Teichmüller curve generated by a regular
n-gon is given by f(t) = [Xt], where Xt is the hyperelliptic curve defined by

y2 = Tn(x)− t,

and t ranges in the space

V = (P1 − {t : t2 = 1})/(t∼ −t).

The curves Xt and X−t are isomorphic, since Tn(x) is odd, and thus f is well–
defined on V .

The limiting curve X∞ is defined by y2 = xn − 1. Indeed, the unfolding of P
yields the 1-form (X∞, dx/y) generating V .

To take into account the symmetries of X0 and X∞, we regard V as the (2, n,∞)
orbifold; the unique cusp comes from t = ±1. Thus V is natural uniformized by
Δ(2, n,∞) as indicated in Table 3.1.

Even polygons. When n is even, a slightly different family is required. In this
case Tn(x) is also even, and we define Xt by the polynomial equation

y2 = x(Tn(
√
x)− t)

for t ∈ V = P1 − {t : t2 = 1}. The unfolding of P gives the form dx/y on the
curve X∞ defined by

y2 = x(xn/2 − 1).

In brief, these formulas arise from the close relationship between the family of
curves Xt, and the family of hyperelliptic curves Ys branched over orbits D2n · s of
the dihedral group D2n ⊂ AutP1.

The hidden symmetries of the pentagon. The fact that regular polygons
generate Teichmüller curves (Theorem 3.3) can be verified by a direct calculation.
To indicate the idea, we will show that

SL(X,ω)P = Δ(5, 2,∞)

when P is a regular pentagon. (This group is conjugate to Δ(2, 5,∞).)
First, referring to Figure 3.3, observe that Aut(X) contains a symmetry of order

2 that exchanges P and P ′, and a symmetry of order 5 that rotates each. Their
product φ gives an element of order 10 in SL(X,ω)P , namely

S = Dφ =

(
cos(π/5) sin(π/5)

− sin(π/5) cos(π/5)

)
.
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Y

Figure 3.5. The Teichmüller curve f : V = H/Δ(2, 5,∞) → M2

generated by the golden L and the regular pentagon P .

Second, observe that X decomposes into a pair of horizontal cylinders of equal
modulus m. One of these cylinders is obtained by gluing the top two edges of P
to the bottom two edges of P ′; it is built from 2 isosceles triangles with angles
π(1, 1, 3)/5. It follows readily that m = tan(π/5)/2. Thus, by Proposition 2.3, the
affine group of (X,ω) contains a product of Dehn twists τ with

T = Dτ =

(
1 2 cot(π/5)

0 1

)
∈ SL(X,ω)P .

Noting that tr(ST ) = 0, we find

〈S, T 〉 = Δ(5, 2,∞) ⊂ SL(X,ω)P

(see Appendix A). Since this triangle group is a lattice, so is SL(X,ω)P . (In fact
equality holds above, since Δ(5, 2,∞) is a maximal discrete subgroup of SL2(R).)

Its trace field K = Q(
√
5) is quadratic, so the corresponding Teichmüller curve in

M2 is primitive.

The golden table. Let γ = (1 +
√
5)/2 = 2 cos(π/5) denote the golden ratio.

It can be shown by elementary geometry that the polygon L = L(γ, γ) and the
regular pentagon P generate the same Teichmüller curve. In fact, L corresponds to
the orbifold point of order 2 on V , while P corresponds to the point of order 5 (see
Figure 3.5). As an alternative to the calculation above, one can readily check that
SL(X,ω)L = Δ(2, 5,∞), using the fact that (X,ω)L decomposes into 2 horizontal
cylinders of modulus 1/γ. (The similar case of L(2, 2) was discussed in §2.)

Aside: Is the Veech dichotomy effective? Although Theorem 3.2 clearly sep-
arates the slopes in a lattice polygon P into two classes, it is an open problem to
distinguish between them, even in the case of a regular polygon.

To make this precise, let Pn ⊂ C be a regular n-sided polygon resting on the real
axis, let Sn ⊂ R be its set of periodic slopes, and let L(s) be the maximum number
of times that a trajectory with slope s ∈ Sn hits the sides of Pn before returning
to its starting point.

It is easy to see that Sn ⊂ Kntn, where Kn = Q(cos(2π/n)) and tn = tan(2π/n).
Equality holds when deg(Kn/Q) ≤ 2, and in fact

logL(stn) = O(h(s)2),
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where h(s) denotes the height of s [Mc10]. Otherwise, Sn 	= Knt [AS], and one can
ask:

Question 3.6. Is there an algorithm to determine, given s ∈ Kn, if a trajectory
with slope stn in Pn is periodic?

Equivalently:

Question 3.7. Is there a computable function F such that L(stn) ≤ F (s) whenever
stn is a periodic slope?

The first open case occurs when n = 7. In this case, an unexpected phenomenon
arises: experimentally, many slopes that are not periodic are fixed by hyperbolic
elements in the Veech group.

Question 3.8. Is every point x ∈ Q(cos(π/7)) the fixed point of a parabolic or
hyperbolic element of Δ(2, 7,∞)?

A positive answer would yield an algorithm for recognizing the periodic slopes
in the heptagon.

Lattice triangles. For a more systematic enumeration of lattice polygons, it is
natural to start with triangles.

To summarize what is known, let us say a triangle T has type (a1, a2, a3) if its
internal angles are proportional to the integers ai ≥ 1. The type of T determines
T up to similarity.

Theorem 3.9. Triangles of the following types generate Teichmüller curves:

A. (1, 1, n), (2, n, n) and (2, n, n+ 2), n ≥ 1;
B. (1, 2, n), n ≥ 5 odd;
C. (2, 3, 4), (3, 4, 5) and (3, 5, 7); and
D. (1, 4, 7).

Any other lattice triangle must be scalene and obtuse, like examples B and D above.

Corollary 3.10. All acute, right–angled, and isosceles lattice triangles are known.

Series A, discovered by Veech, produces the same Teichmüller curves as the reg-
ular polygons. Series B, discovered by Vorobets and studied by Ward, is genuinely
new. These two series are special cases of the Bouw–Möller examples, to be dis-
cussed in §7. The three triangles in series C, discovered by Vorobets, Veech and
Kenyon–Smillie, will be related to the exceptional Coxeter groups in §6. Exam-
ple D, found by Hooper, generates a Teichmüller curve in the Weierstrass series
WD ⊂ M4 to be discussed in §5, namely W12.

Question 3.11. Is the list of lattice triangles above complete?

Dynamics on moduli space. To conclude, we outline the proof of the Veech
dichotomy, Theorem 3.2. The proof pivots on the following important result.

Theorem 3.12 (Masur). If the Teichmüller geodesic ray generated by (X,ω) is
recurrent in Mg, then every horizontal geodesic in (X, |ω|) is uniformly distributed.

The ray in question, defined by equation (2.5), shrinks the horizontal geodesics
on X. This process accelerates the horizontal geodesic flow; indeed, the special
properties of lattice polygons can be traced to the role played by SL(X,ω) as a
renormalization group for the dynamics of billiards in P .
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V

Figure 3.6. An escaping geodesic must converge to a cusp.

Sketch of the proof. Masur’s original proof appears in [Mas2]; see also [Mc7].
Here we sketch a cohomological argument from [Mc8].

Let P (ω) be the cone of closed, positive de Rham currents carried by the foliation
F(ω) of X by horizontal geodesics. The long–term behavior of any horizontal
geodesic is described by such a current. Using the Hodge norm on H1(X,R), one
can measure the size of P (ω) by the diameter d ≤ 2 of its intersection with the unit
sphere.

Let γ : [0,∞) → Mg be the Teichmüller ray generated by (X,ω). By contraction
of the complementary period mapping, which records the Hodge structure on the
part of H1(X,R) orthogonal to ω, every time the geodesic ray γ(t) returns to a
fixed compact set K ⊂ Mg, one can improve the estimate on d by a factor of
λK < 1. Thus if γ is recurrent, we have d = 0 and P (ω) reduces to the ray through
Imω. This means the horizontal foliation F(ω) is uniquely ergodic, and hence every
horizontal geodesic is uniformly distributed. �

Proof of Theorem 3.2. Suppose P is a lattice polygon. Let

γ : [0,∞) → V = H/ SL(X,ω)P → Mg

be the Teichmüller geodesic generated by (X,ω)P .
The Veech dichotomy reflects the following alternative for the behavior of a

geodesic ray on a finite–volume hyperbolic surface such as V : either γ is recurrent,
or γ converges to a cusp (see Figure 3.6). Recurrence implies every horizontal
geodesic on (X,ω) is uniformly distributed, by Theorem 3.12; while convergence to a
cusp implies every horizontal geodesic is periodic, by Proposition 2.3. Consequently,
billiard trajectories in P with initial slope zero are either periodic or uniformly
distributed as well. The same reasoning applies to other slopes, by rotating ω. �

Remark: Billiards that hit vertices. The proof of the Veech dichotomy also
shows that any infinite billiard trajectory starting at a vertex of P is uniformly
distributed. However, a trajectory that joins a pair of vertices need not have peri-
odic slope. A counterexample in the (2, 5, 7) lattice triangle is shown in Figure 3.7:
the first trajectory joins a pair of vertices, while the second, parallel trajectory is
aperiodic (cf. [Bo]).

Question 3.13. Must every edge of a lattice polygon have periodic slope?

A positive answer for quadratic trace fields is given in [Mc10, Cor. 6.3].
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Figure 3.7. A billiard path joining two vertices need not have
periodic slope; the parallel trajectory at the left is aperiodic.

4. Genus 2

The regular polygons provide only three examples of Teichmüller curves in Mg

for g = 2: those generated by the regular pentagon, octagon and decagon.
It is thus natural to ask: are there infinitely many primitive Teichmüller curves

V ⊂ M2? In this section we will see the answer is yes. In fact, we will present a
complete classification of such curves, following the development in [Mc1] and its
sequels. These curves were also discovered, from another perspective, in [Ca].

Real multiplication. Where should one look for Teichmüller curves V ⊂ Mg?
It turns out that membership in V is reflected, not by the automorphism group

of X, but by the endomorphism ring of its Jacobian.
To describe this connection, recall that the Jacobian of X ∈ Mg is the compact

complex torus

Jac(X) = Ω(X)∗/H1(X,Z) ∼= Cg/L.

An endomorphism T : Jac(X) → Jac(X) is a holomorphic group homomorphism;
it is self-adjoint if its action on H1(X,Z) satisfies

[T (C1), C2] = [C1, T (C2)]

with respect to the symplectic intersection pairing on 1–cycles. Equivalently, the
action of T ∗ on Ω(X) ∼= Ω(Jac(X)) is self-adjoint for the inner product

〈ω1, ω2〉 =
i

2

∫
X

ω1 ∧ ω2.

Let K be a totally real number field of degree g over Q. We say Jac(X) admits
real multiplication by K if there is an inclusion

ι : K → End(Jac(X))⊗Q

and every T ∈ ι(K) is self-adjoint. Then Ω(X) admits an orthonormal basis of
eigenforms (ω1, . . . , ωg), satisfying K · ωi ⊂ Cωi for each i.

Taking into account the integral structure, one can say more precisely that
Jac(X) admits real multiplication by the order O ⊂ K characterized by

ι(O) = ι(K) ∩ End(Jac(X)).
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The Weierstrass curves. Now suppose g = 2. Then K is a real quadratic field,
and an order

O = OD
∼= Z[x]/(x2 + bx+ c) ⊂ K = Q(

√
D)

is uniquely determined by its discriminant D = b2 − 4c. Any integer with D > 0,
D = 0 or 1mod 4 can occur, provided D is not a square.

For each such D, the Weierstrass curve WD ⊂ M2 is defined to be the locus of
X ∈ M2 such that

(i) Jac(X) admits real multiplication by OD, and
(ii) one of its eigenforms ω has a double zero.

(This double zero lies at one of the six Weierstrass points of X, hence the termi-
nology.)

The first condition implies that X lies on a surface in M2, birational to the
Hilbert modular surface

(4.1) XD = H×H/ SL(OD ⊕O∨
D).

(This surface describes the possibilities for Jac(X).) The additional requirement
that ω has a double zero, rather than two simple zeros, reduces WD to an algebraic
curve.

Classification. We can now state the classification of primitive Teichmüller curves
in genus two.

Theorem 4.1. Each component of WD is a primitive Teichmüller curve.

Theorem 4.2. The curve WD is irreducible unless D ≡ 1mod 8, in which case it
has two components.

In the second case the components W ε
D are distinguished by a spin invariant

ε = 0 or 1.

Theorem 4.3. Every Teichmüller curve in
⋃
WD is generated by billiards in an

explicit L-shaped table.

For example, when D is even, WD is generated by L(a, a+1), where a =
√
D/4.

Corollary 4.4. There are infinitely many primitive Teichmüller curves in M2.

The oasis. When the infinite sequence of curvesWD was first discovered, it seemed
like we might be standing on the edge of a jungle, with many more curves to be
found in the larger stratum ΩM2(1, 1). A fruitless computer search, however, began
to suggest that we had stumbled upon, not a jungle, but an oasis in a vast desert.
This perception is confirmed by:

Theorem 4.5. The regular decagon generates the only other primitive Teichmüller
curve in M2.

The proof will be sketched at the end of this section.

Classification and synthesis. Taken together, the above results give a classi-
fication of the primitive Teichmüller curves in genus 2, in the following sense:
(i) there is an explicit construction of all examples (e.g. using L-shaped tables);
and (ii) there are readily computable invariants (D, ε) that allow one to test when
two constructions yield the same Teichmüller curve. For example, the regular pen-
tagon and octagon generate W5 and W8, respectively.



BILLIARDS AND TEICHMÜLLER CURVES 213

Figure 4.1. An orbifold point on WD.

In contrast to the case of regular polygons, the definition of WD is synthetic: it is
an abstractly defined algebraic curve, whose properties remain to be investigated.
There is no known general algebraic formula for WD, although many particular
cases have been treated. An understanding of the corresponding Veech groups is
equally elusive.

Topology of WD. Despite these mysteries, the following results provide a complete
description of topology of WD.

Theorem 4.6 (Bouw–Möller). If WD has two components, they are homeomorphic
as orbifolds.

Theorem 4.7 (Bainbridge). We have χ(WD) = −(9/2)χ(XD).

The Euler characteristic of the Hilbert modular surface XD defined by (4.1) is
well–studied and related to the coefficients of a modular form. Writing D = f2D0

where D0 is a fundamental discriminant, it is given by

(4.2) χ(XD) = 2f3ζ
Q(

√
D)(−1)

⎛⎝∑
r|f

(
D0

r

)
μ(r)

r2

⎞⎠ .

(The summands involve the Jacobi symbol for (D0, r) and the Möbius function
μ(r).)

Theorem 4.8 (Mukamel). For D > 8, the orbifold points on WD all have order 2.
Their their total number e2(D) is a weighted sum of class numbers of the quadratic
imaginary orders with discriminants −D, −4D and −D/4.

These orbifold pointsX ∈ WD can be described as octagonal pinwheels with their
opposite sides identified (see Figure 4.1); they cover elliptic curves with complex
multiplication, allowing one to give explicit equations for X. For example, the
unique orbifold point X ∈ W13 is defined by

y2 = (x2 − 1)(x4 − ax2 + 1),

where a = 2594 + 720
√
13.

There is a simple combinatorial method to enumerate the cusps of WD. Com-
bining these results, one can also compute the genus of its components. As a con-
sequence, it is known that all components of WD have genus g ≥ 1 when D > 41,
and that the genus grows roughly like D3/2. Appendix C gives a table of invariants
of WD ⊂ M2 for all D ≤ 60.
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From affine maps to the Jacobian. Let us return to the definition of WD, and
sketch the proof of Theorem 4.1.

Where does real multiplication on Jac(X) come from? To answer this question,
suppose SL(X,ω) contains an element A = Dφ with irrational trace λ ∈ R. Here
φ : X → X is an affine automorphism. Since X has genus two, λ is quadratic over
Q; we denote its Galois conjugate by λ′.

Typically, the action of A on R2 ∼= C is only real linear. However, the trans-
formation A + A−1 = λ · I is always complex linear. Thus the formally defined
map

(4.3) T = φ+ φ−1

preserves the holomorphic form ω up to a constant factor; in fact, in view of equation
(2.7) we have:

(4.4) T ∗(ω) = φ∗(ω) + (φ−1)∗(ω) = λω.

To make rigorous sense of T , we first linearize φ by letting it act on L = H1(X,Z).
Then equation (4.3) gives a well–defined endomorphism of T of L. Since φ preserves
the intersection form, T is self-adjoint. Moreover, T immediately extends to an
endomorphism of the real Lie group

(L⊗ R)/L ∼= Jac(X).

We claim the action of T on Jac(X) is holomorphic. To see this, consider the
isomorphism

(4.5) Ω(X) ∼= H1(X,R)

defined by η �→ [Re(η)]. Extend ω to an orthogonal basis (ω, ω′) for Ω(X); then
the splitting

Ω(X) = Cω ⊕ Cω′

corresponds, under the isomorphism (4.5), to the splitting

(4.6) H1(X,R) = S ⊕ S⊥ = Re(Cω)⊕ Re(Cω′).

Here S⊥ is defined using the (purely topological) intersection form on H1(X,R).
Since T ∗ preserves H1(X,Z), the multiplicities of its eigenvalues λ and λ′ must

be the same. By equation (4.4), T ∗(S) = S and T ∗|S is multiplication by λ. Since
T ∗ is self-adjoint, T ∗(S⊥) = S⊥; and hence T ∗|S⊥ is multiplication by λ′. It follows
that T ∗|Ω(X) is a complex linear mapping, with eigenvectors ω and ω′, and hence
T itself gives a holomorphic endomorphism of the Jacobian of X.

Summing up, we have shown:

Theorem 4.9. Suppose (X,ω) is a form of genus two and the trace field K of
SL(X,ω) is quadratic. Then Jac(X) admits real multiplication by K, with ω as an
eigenform.

The eigenform locus. For each discriminant D, define the eigenform locus in
ΩM2 by

ΩED = {(X,ω) : w is an eigenform for real multiplication by OD}.
Theorem 4.9 shows that, if we are looking for forms that generate primitive Te-
ichmüller curves, we can restrict attention to the 3–dimensional eigenform loci
inside the 5–dimensional space ΩM2. This fact motivates the definition of WD.
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Proof of Theorem 4.1. Using the splitting in equation (4.6), one can check that
ΩED is SL2(R)–invariant. Thus the same is true for the 2–dimensional variety

ΩWD = ΩED ∩ ΩM2(2).

But the projection of this locus to M2 is exactly WD. Thus each component V of
WD is a Teichmüller curve, generated by a form (X,ω) ∈ ΩWD lying above it; and

V is primitive, because its trace field Q(
√
D) is irrational. �

Using Theorem 4.9, we obtain:

Corollary 4.10. If (X,ω) ∈ ΩM2(2) and the trace field of SL(X,ω) is irrational,
then SL(X,ω) is a lattice.

Taking into account Proposition 2.3 and Theorem 3.2, we also find:

Corollary 4.11. An L-shaped billiard table L(a, b) is a lattice polygon if and only
if ab− a and ab− b are both rational.

For example, L(a, a) is a lattice polygon if and only if a = (1 +
√
b)/2 for some

b ∈ Q, b > 1.

Irreducibility: Computer-assisted proof. Next we indicate the proof of Theo-
rem 4.2. Suppose for simplicity that D is even. We wish to show WD is connected.

Let ΓD denote the graph whose vertices correspond to the cusps of WD, and
whose edges join vertices that are related by a ‘butterfly move’. The graph ΓD

is easily computed: its vertices correspond roughly to the L-shaped polygons that
generate WD, and its edges join cusps that are guaranteed, by an elementary argu-
ment, to lie in the same component.

To complete the proof, it suffices to show that ΓD is connected for all even D.
This is first verified computationally for all D < 2000. The remaining cases are
handled using about 11,000 different connection strategies, related to the primes
3, 5 and 7. These strategies are also generated and verified by computer, and shown
to cover all cases.

The exceptional decagon. Finally, we describe the proof of Theorem 4.5: the
regular decagon generates the only remaining primitive Teichmüller curve in M2.

By construction, the Weierstrass curves have generators in ΩM2(2), and they
account for all the primitive Teichmüller curves with generators in this stratum.
Why does the larger stratum ΩM2(1, 1) yield only one more example? The answer
is contained in the following result, which applies to all ΩMg.

Theorem 4.12 (Möller). Suppose SL(X,ω) is a lattice with trace field K. Then
there is a surjective map from Jac(X) to a compatibly polarized Abelian variety A
such that

(1) ω corresponds to an eigenform for real multiplication by K on A; and
(2) the difference of any two zeros of ω is torsion in A.

Corollary 4.13. If (X,ω) generates a primitive Teichmüller curve in M2, and
Z(ω) = {p, q}, then p− q is torsion in Jac(X).

Equivalently, there is a meromorphic function f on X whose only zeros and poles
are at p and q.
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Sketch of the proof of Theorem 4.5. Let V be a primitive Teichmüller curve
generated by (X,ω) ∈ ΩM2(1, 1). By Theorem 4.9, (X,ω) ∈ ΩED for some D.

Consider the closure of V in the compactified moduli space M2. On the bound-
ary, one obtains a stable 1-form (Y, η) with Y ∈ M0,4 and Jac(Y ) ∼= (C∗)2. The
real multiplication and torsion conditions persist in the limit, and give a pair of
rational numbers α, β such that sin(πα)/ sin(πβ) ∈ Q(

√
D). The are 15 possible

values for (α, β). The pair (1/5, 2/5) gives rise the to regular decagon, and the
remaining 14 values are ruled out by a computer–assisted calculation. �

What is the shape of WD? Perhaps the main open question concerning
Teichmüller curves in genus two is the structure of their Veech groups. It is re-
markable that results like Corollary 4.10 allow one to certify that SL(X,ω) is a
lattice, without even revealing the volume of its quotient. We conclude by stating:

Problem 4.14. Give a direct construction of the Veech groups of the Weierstrass
curves WD ⊂ M2.

Remark: Square discriminant. One can also define Weierstrass curves Wd2 for
square discriminant, by replacing K with Q ⊕ Q. The corresponding Teichmüller
curves are not primitive, but many results (such as Theorem 4.2) naturally gener-
alize to this case.

5. Genus 3 and 4

In this section we will use Prym varieties, which are variants of the Jacobian, to
construct infinitely many primitive Teichmüller curves in genus 3 and 4, following
[Mc3].

Eigenforms in higher genus. One natural approach to generalizing the con-
struction of WD ⊂ M2 is to consider the locus of eigenforms for real multiplication
in ΩMg. Unfortunately, for g > 2, this locus is generally not SL2(R)–invariant
[Mc1, Thm. 7.5].

On the other hand, Theorem 4.12 shows that along a Teichmüller curve, one
should only expect real multiplication on a factor of Jac(X). If we arrange that
this factor is 2–dimensional, then the arguments from genus two will apply; and
if, moreover, we require that ω has only one zero, then the torsion condition in
Theorem 4.12 will be vacuously satisfied.

The Weierstrass curves WD ⊂ Mg. These considerations motivate the following
definition. Fix g ≥ 2, and let D > 0 be a real quadratic discriminant. The
Weierstrass locus ΩWD ⊂ ΩMg consists of those (X,ω) such that:

(1) the form ω has a single zero, of multiplicity 2g − 2;
(2) there exists a (unique) involution ρ ∈ Aut(X) such that ρ∗(ω) = −ω;
(3) the genus of X/ρ is g − 2; and
(4) the differential ω is an eigenform for real multiplication by OD on the Prym

variety

Prym(X, ρ) = (Ω(X)−)∗/H1(X,Z)−.

The Prym variety is the polarized Abelian subvariety of Jac(X) corresponding to
the (−1)–eigenspace of ρ|Ω(X). In the case above, it is 2–dimensional by the
condition that g(X/ρ) = dimΩ(X)+ = g − 2.
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The Weierstrass curve WD ⊂ Mg is the projection of ΩWD to Mg. It is
sometimes denoted byWD(2g−2) to emphasize the fact that (X,ω) ∈ ΩWD(2g−2).

By arguments similar to those for genus 2, we find:

Theorem 5.1. For any g and D, the Weierstrass curve WD ⊂ Mg is a finite
union of primitive Teichmüller curves.

Genus 2, 3 and 4. For g = 2, ρ is the hyperelliptic involution on X, so we recover
the definition of WD from §4. As we will see in §6, it is straightforward to give
explicit examples of forms in ΩWD for g = 3 and 4, and thereby establish:

Corollary 5.2. There are infinitely many primitive Teichmüller curves in M3 and
M4.

However, WD is empty for g ≥ 5. For example, when g = 5, the map X → X/ρ
must be a covering map, contradicting the fact that ρ fixes the unique zero of ω.

Classification. The analogue of Theorem 4.2 in higher genus is:

Theorem 5.3 (Lanneau–Nguyen). For genus 3, WD is irreducible if D is even; it
has two components if D ≡ 1mod 8; and otherwise, it is empty.

For genus 4, WD is irreducible for all D.

Near completeness in genus 3. In genus three, only three additional primitive
Teichmüller curves are known.

Problem 5.4. Do the regular polygons with 7 and 14 sides, and the (2, 3, 4) trian-
gle, generate all the primitive Teichmüller curves in genus 3 outside the Weierstrass
series WD?

Although this problem remains open, the works of several authors, including
Aulicino, Nguyen and Wright, combine to yield notable progress.

Theorem 5.5. The Weierstrass curves WD account for all but finitely many prim-
itive Teichmüller curves in genus 3.

The proof is sketched in §10.
As we will see in §9, the situation is surprisingly different in genus 4: two addi-

tional infinite families of primitive Teichmüller curves are now known. We remark
that the (1, 4, 7) triangle (from §3) generates the curve W12 ⊂ M4.

Topology of the Weierstrass curves. Write D = f2D0 where D0 is a funda-
mental discriminant, and let ξ(D) = 1 if f is odd and 3/2 if f is even. Let en(V )
denote the number of orbifold points of order n on V .

The next three results, on components, Euler characteristic and orbifold points,
lead to a complete description of the topology of WD in genus 3 and 4.

Theorem 5.6 (Zachhuber). In genus 3, whenever WD has two components they
are homeomorphic orbifolds.

Theorem 5.7 (Möller). In genus 3, each component V of WD satisfies

χ(V ) = (−5/2)ξ(D)χ(XD).

In genus 4, we have χ(WD) = −7χ(XD).

Theorem 5.8 (Torres–Zachhuber). We have e4(W8) = e6(W12) = 1 in genus 3,
and e5(W5) = e6(W12) = 1 in genus 4. Otherwise, only orbifold points of orders
n = 2 and 3 occur, and en(WD) can be calculated by elementary means for both
g = 3 and g = 4.
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For example, in genus 3, if D > 12 is an even fundamental discriminant, then

e2(WD) = |{(a, b, c) ∈ Z3 : a2 + b2 + c2 = D and gcd(a, b, c) = 1}|/24.

There is also a combinatorial method to enumerate the cusps of WD, used in
the proof of Theorem 5.3, and thus the genus (of its components) can be routinely
computed as well. Appendix C gives a table of these invariants of WD for D ≤ 60
and g = 2, 3 and 4.

Comparison to genus 2. The strategy for proving the results above is similar
to the case g = 2; for example, Theorem 5.3 is established via a computer–assisted
study of elementary moves connecting cusps ofWD. However several new challenges
arise in higher genus. For example, when g = 3, a new invariant is required to
distinguish the components ofWD, D ≡ 1mod 8; the Prym variety is not principally
polarized, leading to the factor of ξ(D) in Theorem 5.7; and the combinatorial
complexities grow substantially as g increases.

6. Multicurves and Coxeter diagrams

In this section we turn to topology, to address the following question:

How can one describe a Teichmüller curve by a finite amount of
combinatorial data?

We will see that one such description is provided by a weighted system of simple
closed curves (A,B,m) on a topological surface Σg of genus g.

The intersection pattern between A and B is recorded by a Coxeter diagram
Γ(A,B). As observed by Leininger, the spherical diagrams give rise to Teichmüller
curves. In particular, the exceptional spherical diagrams E6, E7 and E8 correspond
to the sporadic lattice triangles from §3. We will also see that suitably chosen
curve systems yield explicit examples of Weierstrass curves WD in Mg for g = 2, 3
and 4. Finally, curve systems whose Coxeter diagrams are grid graphs will play an
important role in §7.

Multicurves. A multicurve A ⊂ Σg is a union of disjoint, essential, simple closed
curves, no two of which bound an annulus. A pair of multicurves (A,B) bind the
surface Σg if they meet only in transverse double points, and each component of
Σg − (A ∪B) is a polygonal region with at least 4 sides (running alternately along
A and B).

Index the components of A and B so that A =
⋃a

1 Ci and B =
⋃b

a+1 Ci. We can
then form the symmetric matrix

Qij = |Ci ∩ Cj |,

with Qii = 0. It is convenient to record this matrix by a Coxeter diagram Γ(A,B)
with a+ b vertices and Qij edges from vertex i to vertex j.

We say (A,B) is orientable if the curves Ci can be oriented so their algebraic
intersection numbers satisfy Ci · Cj = Qij for all i < j.

Next, assign a positive integral weight mi to each curve Ci (or equivalently, to
each vertex of Γ(A,B)). Let

μ = μ(A,B,m) = ρ(miQij)
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denote the spectral radius of the matrix on the right. Let τi denote a right Dehn
twist around Ci, and let

τA = τm1
1 ◦ · · · ◦ τma

a , τB = τ
ma+1

a+1 ◦ · · · ◦ τma+b

a+b .

We then have:

Theorem 6.1 (Thurston). An orientable curve system (A,B,m) canonically de-
termines a holomorphic 1-form (X,ω) ∈ ΩMg, unique up to a real scale factor,
such that the multitwists τA and τB are realized by affine automorphisms satisfying

DτA =

(
1 μ

0 1

)
, DτB =

(
1 0

−μ 1

)
.

The trace field of SL(X,ω) is given by K = Q(μ2), and (X,ω) inherits the symme-
tries of the data (A,B,m).

Sketch of the proof. By the Perron–Frobenius theorem, there is a positive eigen-
vector (hi), unique up to scale, such that

(6.1) μhi = mi

a+b∑
1

Qijhj .

Take one rectangle Rp = [0, hi] × [0, hj ] ⊂ C for each p ∈ Ci ∩ Cj , i < j, and glue
(Rp, dz) to (Rq, dz) whenever p and q are joined by an edge of the one–complex⋃
Ci = A ∪ B. The result is a holomorphic 1-form (X,ω) such that each Ci is

represented by a horizontal or vertical cylinder of height hi, circumference ci =
μhi/mi, and modulus mi/μ. It follows that the twists τmi

i |Ci fit together to give
a pair of globally defined affine automorphisms, τA and τB, with the indicated
derivatives. To compute the trace field, observe that TrD(τAτ

−1
B ) = 2 + μ2 and

apply equation (2.9). �

Remarks.

(1) The stratum ΩMg(p) containing (X,ω) can also be read off from the topo-
logical data (A,B): the zeros of ω of order p correspond to components of
Σg − (A ∪B) with 4p+ 4 sides.

(2) Every Teichmüller curve V can be specified by a multicurve system
(A,B,m). To see this, let (Y, η) be a generator of V , and let (A,B,m)
be the multicurve system coming from two different cylinder compositions
of Y and their moduli. The corresponding 1-form (X,ω) is then affinely
isomorphic to (Y, η), so it also generates V .

(3) Conversely, if μ(A,B,m) ≤ 2, then (X,ω) generates a Teichmüller curve.
Indeed, the finite volume region in H defined by |Re(z)|, |Re(1/z)| ≤ μ/2
meets every orbit of the subgroup generated by DτA and DτB, so these two
elements already generate a lattice in SL2(R).

(4) The fact that μ is an eigenvalue of a real symmetric matrix shows that the
trace field of any Teichmüller curve is totally real, as mentioned in §2.

Relation to Coxeter groups. Suppose Qij ≤ 1 for all i, j; in other words, sup-
pose that any pair of loops in the multicurve system meet at most once. Then
the graph Γ = Γ(A,B) is a traditional Coxeter diagram, describing a reflection
group W acting on RC and preserving the quadratic form 2I − Q. This diagram
is spherical if 2I −Q is positive–definite, or equivalently, if ρ(Q) < 2. In this case
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An

Dn

E6

E7

E8

Figure 6.1. Spherical Coxeter diagrams and their corresponding
curve systems.

μ(A,B, I) < 2, where I means we set all weights mi = 1; so by Remark (3) above,
we have:

Theorem 6.2 (Leininger). Whenever Γ(A,B) is a spherical Coxeter diagram, the
1-form associated to (A,B, I) generates a Teichmüller curve V .

In brief, we say Γ(A,B) generates V .

Regular polygons revisited. The (simply–laced) spherical Coxeter diagrams are
well–known and shown in Figure 6.1, together with their corresponding curve sys-
tems (A,B) (which are uniquely determined).

Note that An and Dn are infinite series, and Dn violates our assumptions in a
minor way, since it has two parallel curves. We have already seen the corresponding
series of Teichmüller curves: they come from the regular polygons with k sides. In
fact, Dn corresponds to k = 2n− 2, and An corresponds to k = n+ 1. (When n is
odd, the An form is not primitive, and a double covering also intervenes.)

The three sporadic Teichmüller curves. As Leininger shows, the exceptional
diagrams are also related to billiards in the triangles listed in Theorem 3.9(C).

Theorem 6.3. The Coxeter diagrams E6, E7 and E8 generate the same Teich-
müller curves as the three sporadic triangles. All three curves are primitive.

The invariants of these sporadic Teichmüller curves are summarized in Table 6.1.
The notation Δ− indicates that the Veech groups for E7 and E8 do not contain
−I (see Appendix A); no other primitive Teichmüller curves are known with this
property. The absence of −I can be traced to the asymmetry of the E7 and E8

diagrams.
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Table 6.1. The sporadic Teichmüller curves.

Diagram Triangle SL(X,ω) Stratum Trace Field

E6 (3, 4, 5) Δ(6,∞,∞) Ω3(4) Q(
√
3)

E7 (2, 3, 4) Δ−(9,∞,∞) Ω3(1, 3) Q(cosπ/9)

E8 (3, 5, 7) Δ−(15,∞,∞) Ω4(6) Q(cosπ/15)

We note that the numbers 6, 9 and 15, describing the Veech groups in Table
6.1, are simply half the Coxeter numbers h = 12, 18 and 30 for the corresponding
diagrams.

It is also easy to give algebraic generators for the sporadic Teichmüller curves. In
general, the unfolding (X,ω)P of an (a, b, c) triangle gives, up to a complex factor,
the 1-form

ω =
y dx

x(x− 1)

on the curve X defined by

ya+b+c = xa(x− 1)b

(assuming gcd(a, b, c) = 1). For E6 we obtain y12 = x3(x − 1)4, and similarly for
E7 and E8.

Weierstrass curves in genus 3 and 4. To conclude, we will show how Cox-
eter diagrams can be used to construct explicit 1-forms generating infinitely many
primitive Teichmüller curves V ⊂ Mg for g = 2, 3 and 4.

Let P be one of the three polygons shown in Figure 6.2. By gluing together
parallel sides of P , we obtain a closed surface Y = P/∼ of genus g = 2, 3 or 4,
depending on the shape of P .

The surface Y decomposes into horizontal and vertical cylinders, which define a
multicurve system (A,B) whose Coxeter diagram is shown below P . The numeric
labels indicate the correspondence between the cylinders of Y and the vertices of
Γ(A,B).

Note that the L and S shaped polygons gives diagrams Γ(A,B) isomorphic to
A4 and E6; we will denote the final diagram by X8. Rotation of P through 180◦

gives an involution ρ : Y → Y inducing an automorphism of Γ(A,B). A system of
weights (mi) on the vertices of Γ(A,B) is symmetric if it is invariant under ρ. We
can now state:

Theorem 6.4. Let m be a set of symmetric weights on the A4, E6 or X8 diagram,
such that μ2 = μ(A,B,m)2 is quadratic over Q. Then the corresponding 1-form
(X,ω) generates a Teichmüller curve

V ⊂ WD ⊂ Mg

for some D, with trace field K = Q(
√
D) = Q(μ2).

Proof. Due to the symmetry of m, there is an involution ρ ∈ Aut(X) such that
ρ∗(ω) = −ω. It is readily verified that g(X/ρ) = g(X)− 2 and that ω has a unique
zero. By Theorem 6.1, SL(X,ω) has trace field K. A generalization of Theorem
4.9 then implies that ω is an eigenform for real multiplication by K on Prym(X, ρ),
and hence (X,ω) ∈ ΩWD for some D as above. �
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Figure 6.2. Polygons of shapes L, S and X yields surfaces of genus
2, 3 and 4.

Note that a solution to the eigenvalue equation (6.1) gives explicit lengths for the
edges of P such that P/∼ generates a component of WD. By varying the weights m,
we obtain infinitely many fields K, and hence infinitely many Teichmüller curves
in genus 2, 3 and 4.

Remark: Three views of the pentagon curve. As a particular case, we now
have three different constructions of the Teichmüller curve W5 ⊂ M2: it arises from
the golden L-shaped table; from the regular pentagon; and from the A4 Coxeter
diagram.

7. Higher genus

In this section we describe the Bouw–Möller series of primitive Teichmüller
curves Vpq ⊂ Mg, indexed by pairs of integers p, q ≥ 2 with pq ≥ 6. We refer to
Vpq as a vertical series, since g → ∞ as max(p, q) → ∞. The curve Vpq depends
only on the unordered pair (p, q); however each curve has two natural generators,
(X,ω)pq and (X,ω)qp.

For g ≥ 5, the only know primitive Teichmüller curves in Mg come from the
Bouw–Möller series. The regular polygons, and the infinite series of lattice triangles
of type (1, 2, n) (see Theorem 3.9), correspond to Vpq with p = 2 and p = 3 respec-
tively. We will see that every Vpq is generated by billiards in a generalized polygon
Tpq, and that the corresponding Veech group is commensurable to a triangle group.

Semiregular polygons. The original approach of Bouw and Möller emphasized
algebraic geometry. Here we will define Vpq using polygons, following Hooper. The
two definitions coincide, as can be seen by comparing algebraic expressions for their
generating 1-forms.

A semiregular polygon Rq(a, b) ⊂ C is a 2q-sided polygon, with equal internal
angles, whose sides alternate in length between the values a and b. We also allow
a or b to equal zero, in which case Rq(a, b) becomes a regular q-sided polygon. A
polygon is semiregular iff all its angles are equal, and its vertices lie on a circle.
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Figure 7.1. Each row shows the polygons used to construct
(X,ω)5q, q = 2, 3, 4, 5. The top row gives L(γ, γ)/∼.

Figure 7.2. For (p, q) = (8, 4), only the first 4 polygons are used
to construct (X,ω)pq.

Polygonal generators for Vpq. Let p, q ≥ 2 be integers with pq ≥ 6. The Teich-
müller curve Vpq is generated by a form (X,ω)pq constructed by gluing together a
sequence of semiregular 2q-gons Pk, k = 1, 2, . . . , p.

To define these, let ak = sin(πk/p), k = 0, 1, . . . , p. Let Pk be a copy of
Rq(ak−1, ak), for k = 1, 2, . . . , p. Note that P1 and Pp are regular polygons with q
sides.

We aim to glue Pk to Pk+1 for each k, so we rotate these polygons to make the
corresponding sides of length ak parallel. We then define

(X,ω)pq =

( p⊔′

k=1

(Pk, dz)

)/
∼ .
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The prime indicates that, as in the unfolding process (3.1), we identify Pk with P�

if they are equal up to translation. Equivalently, if p = q = 0mod 2, we only take
the union from k = 1 to p/2; otherwise, we take the union from k = 1 to p. The
form (X,ω)pq is well–defined up to a complex multiple.

Let Gpq denote the (p, q) grid graph, whose vertices coincide with the integral
points inside [1, p − 1] × [1, q − 1] ⊂ R2, and whose edges connect points that are
distance one apart.

Theorem 7.1 (Hooper). The forms (X,ω)pq and (X,ω)qp generate the same Teich-
müller curve Vpq ⊂ Mg.

The curve Vpq can also specified by a multicurve system (A,B, I) on Σg whose
Coxeter diagram Γ(A,B) is the grid graph Gpq.

Theorem 7.2 (Bouw–Möller). The Veech group of Vpq is commensurable to
Δ(p, q,∞), and Vpq is primitive provided (p, q) 	= (6, 6).

A sketch of the proofs is deferred to the end of this section. See Theorem 7.6 for
a more precise statement of Theorem 7.2.

Examples. The polygons (P1, . . . , Pp) are shown in several cases in Figure 7.1.
Figure 7.2 illustrates an example where both p and q are even.

The Teichmüller curves generated by r-sided regular polygons coincide with V2r.
Indeed, (X,ω)2r is just the usual unfolding of a regular r-gon. On the other hand,
these curves are also generated by the forms (X,ω)r2, which are built out of rect-
angles. For example, the top row in Figure 7.1 gives the form L(γ, γ)/∼ which, as
we have seen in §3, generates the same curve as the regular pentagon.

Algebraic generators. We now turn an algebraic description of (X,ω)pq. Re-
call that Tm(x) denotes the Chebyshev polynomial of degree m, characterized by

equation (1.1). We let T̃m(x) denote the unique polynomial satisfying

T2m+1(x)− 1 = T̃m(x)2(x− 1)

and having positive leading coefficient. Let

z =

{
Tm(x) if p = 2m is even, and

T̃m(x) if p = 2m+ 1 is odd.

Theorem 7.3. The form (X,ω)pq is given by

ω =
y dx

z(x− 1)

on the curve X defined by

y2q = z2(x− 1) if p is odd,

y2q = z2(x− 1)q if p is even and q is odd, and

yq = z(x− 1)q/2 if both p and q are even.

Note that the automorphism y �→ −y shows that −I ∈ SL(X,ω)pq for all p and
q. Observing that the zeros of ω lie over x = ∞, we obtain:

Corollary 7.4. The form (X,ω)pq lies in the stratum ΩMg(a
b), where

b = gcd(p, q) and a =
pq − p− q

b
− 1
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T54

Figure 7.3. Construction of the billiard table T54.

if p or q is odd, and

b =
gcd(p+ q, p− q)

2
and a =

pq − p− q

2b
− 1

if both p and q are even. In either case, 2g − 2 = ab.

Billiards. Let us say a polygon P has type (a1, . . . , an) if its internal angles, in
order, are proportional to these values. By inspecting the algebraic formulas for
(X,ω)pq, we also obtain:

Corollary 7.5. The form (X,ω)pq is the unfolding of a generalized polygon Tpq of
type

(a1, . . . , an) =

{
(q, 2, 2, . . . , 2, pq − p− q) when p is even, and

(1, 2, 2, . . . , 2, pq − p− q) when p is odd,

where n = 2 + �p/2�. The billiard flow in Tpq has optimal dynamics.

Example. The quadrilateral T54, of type (1, 2, 2, 11), can be assembled from four
pie-slices taken out of the semiregular polygons (P1, . . . , P5); see Figure 7.3. This
construction is used in the proof of both Theorem 7.3 and its Corollary 7.4 above.

Generalized polygons. Let us now explain the statement of Corollary 7.5 for
general (p, q) in more detail.

The explicit formulas in Theorem 7.3 allow one to regard ω as a multi-valued
form on the Riemann sphere with coordinate x; for example, when p = 2m + 1 is
odd, we have

ω = (x− 1)1/2q−1
m∏
1

(x− bi)
1/q−1 dx,

where b1, . . . , bm are the roots of T̃m(x). Since the roots bi are real, we can choose
a single–valued branch of ω on H.

Intrinsically, we can regard

Tpq = (H, |ω|)
as an abstract compact surface, with a flat Riemannian metric and piecewise–
geodesic boundary. Topologically, Tpq is a disk; metrically, it can be constructed
by gluing together finitely many Euclidean triangles.

We refer to any such metrized disk as a generalized polygon. By solving the
equation df = ω on H, we obtain a locally isometric developing map

f : Tpq → C.

Since f∗(dz) = ω, we can regard (X,ω)pq as the unfolding of Tpq. Geodesics
reflecting off the boundary define a billiard flow in Tpq, which has optimal dynamics
by a generalization of Theorem 3.2.
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Figure 7.4. The generalized billiard tables Tpq for (p, q) ∈
[2, 11]× [2, 7].
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Now if f is injective, the expression f(x) =
∫
ω(x) dx is simply an instance of

the Schwarz–Christoffel formula. Thus its image f(H) ⊂ C is a polygon isometric
to Tpq. In general, f |H is only locally injective; but in either case, the exponents
appearing in the formula for ω in Theorem 7.3, determine the internal angles of
Tpq, yielding Corollary 7.5.

A sampler. One can visualize Tpq as an immersed polygon by drawing the image
of its boundary under the developing map; see Figure 7.4. We emphasize that
Tpq and Tqp both generate Vpq. For example, the first row in Figure 7.4 generates
the same Teichmüller curves as the regular polygons; the same is true of the first
column.

The generalized billiard table Tpq for (p, q) = (60, 40) is shown in Figure 1.2.

Three–dimensional billiards. One can imagine an immersed polygon as describ-
ing a traditional billiard table not in 2 dimensions, but in 3: a table that is nearly
flat, but with some parts of table passing above or below other parts.

The Veech group. The following more precise version of Theorem 7.2 completes
our description of the Bouw–Möller series.

Theorem 7.6. Provided g > 1, the Veech group of Vpq ⊂ Mg is given by

SL(X,ω)pq ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ(p, q,∞) if p 	= q and p or q is odd;

Δ̃(p/2, q/2,∞,∞) if p 	= q and both are even;

Δ(2, p,∞) if p = q is odd; and

Δ(p/2,∞,∞) if p = q is even.

The trace field of Vpq is the same as the invariant trace field of Δ(p, q,∞), which is
given in Appendix A. Invariants of the Bouw–Möller curves in Mg for g = 2, 3, 4, 5
and 6 are tabulated in Appendix D

Sketch of the proof of Theorems 7.1 and 7.2. We conclude by explaining why
the forms constructed from biregular polygons generate Teichmüller curves.

Fix (p, q). We can assume that at least one of the polygons among (P1, . . . , Pp)
has a horizontal edge, as in Figure 7.1. It is then straightforward to compute the
cylinder decomposition of (X,ω)pq at angles θ = 0 and θ = π/q. The resulting
multicurve system, of the form (A,B, I)pq, uniquely determines the SL2(R) orbit
of (X,ω)pq.

It turns out that the associated Coxeter diagram Γ(A,B) ∼= Gpq is a rectangular
grid, and the isomorphism Gpq

∼= Gqp is reflected by an isomorphism (A,B, I)pq ∼=
(A,B, I)qp. Thus reversing the roles of p and q does not change the SL2(R) orbit
of (X,ω)pq. In particular, we obtain an isomorphism

ι : SL(X,ω)qp ∼= SL(X,ω)pq.

Clearly, SL(X,ω)pq contains an element Spq of order q, coming from the rota-
tional symmetry of the polygons (P1, . . . , Pp). Similarly, the isomorphism above
provides an element ι(Sqp) ∈ SL(X,ω)pq of order p. These two elements nearly
generate the Δ(p, q,∞) triangle group. A more precise analysis leads to Theorems
7.2 and 7.6. �
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Figure 8.1. Polygonal models for forms in ΩGD and ΩAD.

8. Gothic curves and the flex locus

Do the horizontal Weierstrass series and the vertical Bouw–Möller series account
for all the primitive Teichmüller curves (apart from a few sporadic examples)?

In this section we will see the answer is no. To do so, we will describe the
sequence of gothic curves GD ⊂ M4, and their relationship to the remarkable flex
locus F ⊂ M1,3.

The flex locus gives the first example of a primitive Teichmüller surface, i.e. a
totally geodesic variety of dimension two. The curves GD and the surface F are
intertwined by the algebraic geometry of cubic curves in the plane and space curves
of genus four. This section follows the development by Mukamel, Wright and the
author in [MMW].

In the next section we will present the last known family of primitive Teichmüller
curves, the arabesque series AD ⊂ M4. The terminology for GD and AD is inspired
by their polygonal models shown in Figure 8.1.

Curves and surfaces. Let Mg,n denote the moduli space of compact Riemann
surfaces A of genus g with n unordered marked points P ⊂ A. We will begin by
constructing the flex locus

F ⊂ M1,3,

the gothic locus

ΩG ⊂ ΩM4(2
3),

and the gothic curves GD ⊂ M4. We will then sketch the proof of the following
results.

Theorem 8.1. The flex locus F is a primitive, totally geodesic surface in M1,3.

The fact that F is totally geodesic will follow from:

Theorem 8.2. The gothic locus ΩG is SL2(R)–invariant.

Theorem 8.3. Each component of GD ⊂ M4 is a primitive Teichmüller curve.

Explicit examples of gothic curves coming from billiards in quadrilaterals will
be given in §9. Since these curves are generated by forms in ΩM4(2

3), rather than
ΩM4(6), we obtain:
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Table 8.1. Euler characteristics of gothic curves.

D ND χ(Gε
D)

12 1 −1/2

24 1 −7/6

28 2 −5/3

33 2 −8/3

40 2 −19/6

48 1 −5

52 2 −13/2

57 2 −6

D ND χ(Gε
D)

60 1 −16/3

72 1 −26/3

73 4 −29/3

76 2 −49/6

84 1 −13

88 2 −59/6

96 1 −16

97 4 −44/3

Corollary 8.4. There exist infinitely many primitive Teichmüller curves in genus
4 that are not accounted for by the Weierstrass series WD ⊂ M4.

The gothic locus ΩG ⊂ ΩM4 is an analogue, in genus four, of the stratum
ΩM2(2) in genus two. Each of these 4–dimensional varieties provides a substrate
on which one can impose the additional constraint of real multiplication, to obtain
the Teichmüller curves GD and WD respectively.

Topology. The following result describes when GD is nonempty, gives a lower
bound ND on its number of components, and computes its Euler characteristic.

Theorem 8.5 (Möller–Torres-Teigell). The gothic curve GD is nonempty iff D
is a square mod 24. It falls into ND = 1, 2 or 4 subcurves Gε

D of equal Euler
characteristic, and one can express χ(Gε

D) in terms of χ(XD) and an elementary
sum.

Here ε runs from 1 to ND, which is the number of ideals of norm 6 in OD. Explic-
itly, we have ND = 1, 2 or 4 for Dmod 24 ∈ {0, 12}, {4, 9, 16} or {1}, respectively;
otherwise ND = 0. See Table 8.1 for a table of invariants of the gothic curves with
D ≤ 100. It is unknown at present if Gε

D is irreducible.

Plane cubics. We now turn to the construction of the flex locus F ⊂ M1,3.
First we recall some classical constructions in projective geometry. Every Rie-

mann surface of genus 1 can be realized, in an essentially unique way, as a smooth
cubic curve A ⊂ P2. Algebraically, A = Z(f) is the zero locus of a homogeneous
cubic polynomial f : C3 → C.

Given a point S = [s0, s1, s2] ∈ P2, the polar conic of A with respect to S is
defined by

Pol(A,S) = Z

(∑
si

df

dxi

)
.

Projection from S to a line defines a rational map

πS : A → P1,

and

A ∩ Pol(A,S) = {critical points of πS}.
Provided S 	∈ A, πS has degree 3 and 6 critical points.
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Let TxA ⊂ P2 denote the tangent line to A at x. The polar conic picks out the
six points x ∈ A such TxA passes through S. For each such x, there is a unique
cocritical point x′ such that

TxA ∩ A = {x, x′}.
Equivalently, {x, x′} is a fiber of πS . The six cocritical points of πS lie on the
satellite conic Sat(A,S).

The Hessian. The cubic curve A canonically determines a second cubic, its Hes-
sian HA = Z(detD2f). The intersection A ∩HA coincides with the 9 flexes of A.
Classically, one picks a flex to serve as the origin for the group law on A; then the
set of all flexes corresponds to the subgroup A[3] of points of order 3.

Dusk and dawn. The Hessian can also be related to the polars of A: we have

HA = {S ∈ P2 : the polar conic Pol(A,S) is singular}.
When S ∈ HA, both the polar conic and the satellite conic degenerate to a pair

of lines:

Pol(A,S) = L1 ∪ L2 and Sat(A,S) = L′
1 ∪ L′

2.

To better visualize this solar configuration, imagine that the cubic A represents
a (strangely shaped) planet, illuminated by rays from the sun S. The sun lies on
the horizon, as seen from x ∈ A, exactly when the tangent line to A at x passes
through S; equivalently, when x ∈ Pol(A,S). Thus it is twilight at six points of A.

In the solar configuration, we can naturally divide these six points into two
groups of three, L1 ∩ A and L2 ∩ A, which we call dawn and dusk. The 3 rays of
dawn also meet A at three other points, namely L′

1 ∩ A, which we call the codawn
points; see Figure 8.2.

The flex locus. The flex locus F ⊂ M1,3 records the set of all possible configu-
rations of codawn points P ⊂ A. More precisely,

F =

{
(A,P ) ∈ M1,3 :

P = A ∩ L for some point S ∈ HA

and line L ⊂ Sat(A,S)

}
.

The terminology comes from the fact that detD2f = 0 at S. Since there are two
choices for L, the fiber of F over A ∈ M1 is actually parameterized by a double
cover CA → HA, classically called the Cayleyan of A. Thus F is the image of an
elliptic surface; however the map CA → F is not injective, and F itself is birational
to P2.

The gothic locus. We now turn to the construction of the space ΩG from F .
Recall that any Riemann surface X ∈ Mg which is not hyperelliptic admits a

canonical embedding

X ↪→ PΩ(X)∗ ∼= Pg−1

of degree 2g − 2. This embedding is characterized by the property that its hyper-
plane sections H ∩X coincide with the zero sets of holomorphic 1-forms 0 	= ω ∈
Ω(X). In the case g = 4, there exist quadric and cubic hypersurfaces Q and C such
that

X = Q ∩ C ⊂ P3.
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Figure 8.2. The solar configuration.

To facilitate the passage between two and three dimensions, choose an involution
J on P3 such that

Fix(J) = P2 ∪ P0.

Now consider a solar configuration as above: a cubic curve A ⊂ P2, a point
S ∈ HA − A, and a codawn line D with P = D ∩ A. Choose a second line L
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Q

P2
A

D

L
S

Figure 8.3. The canonical curve X of genus 4 is the intersection
of Q and the cone over A.

through S, transverse to A. We can then find quadric and cubic surfaces Q, C in
P3, such that:

• J(Q) = Q and J(C) = C;
• Q ∩ P2 = D ∪ L; and
• C is the cone over A with vertex P0.

In this way a solar configuration, together with an additional line L through S,
naturally determines a curve of genus 4, namely

X = Q ∩ C.

See Figure 8.3.
There is a unique hyperplane H tangent to Q along L, and hence a 1-form ω on

X such that (ω) = H ∩L. Because of the tangency, the zeros of ω have multiplicity
two.

The gothic locus ΩG ⊂ ΩM4(2
3) consists of all forms (X,ω) arising as above.

Since X is determined by the solar configuration plus a line through S, and ω is
unique up to a scale factor, we have dimΩG = dimF + 2 = 4. We also have a
natural degree two map

p : X → A,

obtained by projection from P0; and a natural map ΩG → F , forgetting ω and the
extra line L.

The Abelian surface carrying ω. We need to introduce one more key player
before we can define the gothic curves GD.

Note that the composition πS ◦ p : X → P1 has degree 6. The target P1 of πS

can be naturally identified with the space of lines through S.
Let B → P1 be the elliptic curve obtained as a 2-fold covering of P1 branched

over the three lines of dusk and the extra line L determining X. One can then
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verify that there is a unique degree three map q : X → B making the diagram

(8.1) X
p

2����
��
��
�� q

3 ���
��

��
��

�

A

πS

3

���
��

��
��

B

2

����
��
��
��

P1

commute. One also check that

(8.2) p∗(ω) = q∗(ω) = 0.

By pulling back line bundles from A and B to X, we obtain an exact sequence

(8.3) Jac(A)⊕ Jac(B) → Jac(X) → C → 0,

with dimC = dimJac(X) − 2 = 4. We refer to C as the hidden Abelian surface
attached to (X,ω). Identifying Ω(C) with a subspace of Ω(X), equation (8.2)
implies:

We have ω ∈ Ω(C) for all forms (X,ω) in the gothic locus.

The gothic curves. Let ΩGD ⊂ ΩG denote the 2–dimensional locus where ω is
an eigenform for real multiplication by OD on C. The gothic curve GD is defined,
finally, as the projection of ΩGD to M4.

Sketch of the proofs. To conclude, we sketch the proofs of Theorems 8.1, 8.2
and 8.3. The main point is:

1. ΩG is SL2(R)–invariant. Note that the gothic locus is 4–dimensional, and
that the gothic forms satisfy

[ω] ∈ H1(C) ⊂ H1(X,Z(ω)).

Since dimH1(C) = 4 as well, ΩG is locally defined by the condition above, which
is given by real linear equations in period coordinates. Invariance under SL2(R)
follows.

2. F is totally geodesic. The SL2(R) orbits in ΩG project to complex geodesics
in F . Since dimΩG = 4 and dimF = 2, there is a pencil of geodesics through every
point of F , and hence F is totally geodesic.

3. GD is a finite union of Teichmüller curves. We have seen that ΩG is SL2(R)–
invariant, and by invariance of quadratic real multiplication, so is ΩGD. Thus its
projection to M4 is a totally geodesic curve GD.

9. Quadrilaterals

In this section we will see that the gothic curves, and the flex locus, belong to a
suite of examples naturally associated to six types of quadrilaterals.

This suite yields:

(1) six examples of SL2(R)–invariant 4-folds in ΩMg, for various g;
(2) three examples of primitive, totally geodesic surfaces in Mg,n, for various

(g, n);
(3) two distinct series of Teichmüller curves in M4; and
(4) two families of quadrilateral billiard tables with optimal dynamical prop-

erties.
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In particular, the quadrilaterals of type (1, 1, 2, 8) will yield our last family of Teich-
müller curves, the arabesque series AD ⊂ M4. We follow the development in
[EMMW].

Cyclic forms. It is convenient to describe the type of a quadrilateral by a quadru-
ple of integers a. We require that the integers a = (a1, a2, a3, a4) are positive and
relatively prime, that

2m = a1 + a2 + a3 + a4

is even, and that ai 	= m for all i.
Each quadruple a determines a family of cyclic forms ΩZa ⊂ ΩMg. Such a

form can be specified by four distinct branch points (bi) in C; it is then given by
ω = dx/y on the curve X defined by

(9.1) ym =
4∏
1

(x− bi)
m−ai .

The cyclic forms contain the unfoldings of every quadrilateral with internal angles
θi = π(ai/m), in any order; the quadrilateral’s vertices correspond to the branch
points bi ∈ R.

Let ζm = exp(2πi/m). Note that r(x, y) = (x, ζ−1
m y) gives an automorphism of

X of order m, satisfying r∗(ω) = ζmω. Thus the symmetric correspondence

Y = {(p, q) : q = r±1(p)} ⊂ X ×X

determines a self-adjoint endomorphism T of Jac(X), satisfying

(9.2) T ∗(ω) = (ζm + ζ−1
m )ω.

Action of SL2(R). The smallest closed invariant set containing the cyclic forms
of type a is its saturation

ΩGa = SL2(R) · ΩZa ⊂ ΩMg.

Our first result describes this space.

Theorem 9.1. For each of the six values of a listed in Table 9.1, the saturation of
the cyclic forms gives a primitive, irreducible, 4–dimensional invariant subvariety
ΩGa ⊂ ΩMg.

The remarkable feature of these six cases is that, while the action of SL2(R)
destroys the cyclic symmetry of forms in ΩZa, it merely deforms the correspondence
Y ⊂ X × X as an algebraic cycle. The relation (9.2) persists under deformation,
and the original cyclic symmetries of X are replaced by an action of the dihedral
group

D2m = 〈r, f : rm = f2 = (rf)2 = id〉

on Y , satisfying X = Y/〈f〉. The main step in the proof of Theorem 9.1 is to
show the resulting variety of dihedral forms is 4–dimensional; its closure must then
coincide with ΩGa. The requirement that dimΩGa = 4 singles out the six values
of a in Table 9.1.
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Table 9.1. Six types of quadrilaterals and their associated varieties.

(a1, a2, a3, a4) m Stratum of ΩGa Fa ⊂ Mg,n

(1, 1, 1, 7) 5 ΩM4(6)

(1, 1, 1, 9) 6 ΩM4(2
3) M1,3

(1, 1, 2, 8) 6 ΩM4(3
2)

(1, 1, 2, 12) 8 ΩM5(2
4) M1,4

(1, 2, 2, 11) 8 ΩM6(10)

(1, 2, 2, 15) 10 ΩM6(2
5) M2,1

Teichmüller curves. By equation (9.2), [ω] is an eigenvector for T |H1(X) with
eigenvalue λm = ζm + ζ−1

m = 2 cos(2π/m). Let H1(C) = Ker(T − λmI) denote
the full eigenspace. Provided λm is rational, this subspace is of geometric origin:
namely, it comes from a map to an Abelian surface,

Jac(X) → C.

Let ΩGa,D denote the locus where ω is an eigenform for real multiplication by OD

on C, and let Ga,D denote its projection to Mg. As in §8, we then obtain:

Theorem 9.2. For a = (1, 1, 1, 9) or (1, 1, 2, 8), locus Ga,D ⊂ M4 is a finite union
of primitive Teichmüller curves for each discriminant D.

These curves come from the two entries in Table 9.1 where m = 6; for the other
entries, cos(2π/m) is irrational.

The arabesque series AD. The gothic locus ΩG coincides with ΩGa for a =
(1, 1, 1, 9), and thus GD = Ga, D as well. But the curves in the arabesque series,
defined by

AD = Ga,D with a = (1, 1, 2, 8),

are new; they constitute the last known series of primitive Teichmüller curves. At
present, neither GD nor AD is as well–understood as the Weierstrass curves.

Determine the number of components of the curves AD and GD. Are any two
components of the same curve homeomorphic? What are their topological invari-
ants?

Billiards. Using the relation with cyclic forms, one can readily give explicit gen-
erators for gothic and arabesque Teichmüller curves; see Figure 9.1.

Theorem 9.3. Billiards in the quadrilateral Q1119(1,
√
3y) has optimal dynam-

ics, and the associated cyclic 1-form generates a gothic Teichmüller curve in M4,
provided y > 0 is irrational and

y2 + (3c+ 1)y + c = 0

for some c ∈ Q. The quadrilateral Q1128(1, y) similarly generates an arabesque
curve, provided y2 + (2c+ 1)y + c = 0.

Problem 9.4. The cases c = −1/4 and c = −1 are shown at the left and right,
respectively, in Figure 9.1. An unfolding of the polygon on the right appears Figure
8.1.
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s s
t t

Figure 9.1. Closed billiard paths in Q1119(s, t) and Q1128(s, t).

Teichmüller surfaces. Finally we describe generalizations of the flex surface. We
will see that the perspective of quadrilaterals leads to a unified construction of three
remarkable and unexpected Teichmüller surfaces in moduli space.

First suppose that m is even. We then have a natural map π from ΩGa ⊂ ΩMg

to a variety Fa in a moduli of lower dimension. The point (A,P ) = π(X,ω) is
constructed by first forming the quadratic differential (A, q) = (X,ω)/〈rm/2〉, and
then marking the poles P of q.

The fibers of π are 2–dimensional exactly whenm/2 divides one of (a1, a2, a3, a4).
To see why this might be the case, observe that for (X,ω) ∈ ΩZa the curve A is
defined by equation (9.1) with ym replaced by ym/2. If m/2 divides ai, then A is
only branched over the three points bj , j 	= i. Since a configuration of three points
on P1 has no moduli, π sends the entire 2–dimensional locus ΩZa to a single point
(A,P ) ∈ Fa.

When the fibers of π are 2–dimensional, the SL2(R)–invariance of ΩGa shows
Fa is a totally geodesic surface, just as in the proof of Theorem 8.1. Summarizing,
the final result is:

Theorem 9.5. The locus Fa ⊂ Mg,n is a primitive, irreducible, totally geodesic
surface for the three cases indicated in Table 9.1.

The case a = (1, 1, 1, 9) gives the flex surface in M1,3; the other two examples
reside in M1,4 and M2,1. In each case, the cyclic locus ΩZa projects to the unique
point in Mg,n with a cyclic symmetry of order m/2 = 3, 4 or 5.

Local geodesic flatness. Here is an indication of why a primitive, totally geodesic
variety F ⊂ Mg,n of dimension greater than one is so unusual—even more unusual
than a Teichmüller curve.

For each (A,P ) ∈ F , let

Q(A,P ) ∼= T ∗
(A,P )Mg,n

denote the space of holomorphic quadratic differentials on A − P with at worst
simple poles at P . This finite–dimensional vector space is endowed with a natural
L1–norm, given by ‖q‖ =

∫
A
|q|.

Let F ⊂ Mg,n be a totally geodesic variety of dimension d. Given (A,P ) ∈ F ,
the cotangent vectors that annihilate T(A,P )F give a natural subspace N ⊂ Q(A,P )
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of codimension d. Let

QF (A,P ) =

{
q ∈ Q(A,P ) :

∫
A

nq

|q| = 0 ∀n ∈ N

}
.

The quadratic differentials in QF (A,P ) are those which generate geodesics in F
through (A,P ). By convention, we include q = 0 in QF (A,P ).

Despite its nonlinear definition, the coneQF (A,P ) is a linear subspace of Q(A,P )
in all known examples, including those in Theorem 9.5.

The linearity of QF (A,P ) is automatic when dimF = 1, but for d > 1 it
reflects an unusual property of N inside the normed vector space Q(A,P ). Indeed,
QF (A,P ) records the supporting hyperplanes for the unit ball in Q(A,P )∗ along
its intersection with N⊥. This ball is a complicated convex body, and for most N ,
the locus QF (A,P ) defined above is not even a real–analytic set.

It is true that isometric symmetries of Q(A,P ) may force QF (A,P ) to be linear.
But these symmetries are typically ruled out by the assumption that F is primitive.
It is thus remarkable that F exists at all. As a complement to the problem of
classifying Teichmüller curves, we conclude with:

Problem 9.6. Construct and classify all primitive totally geodesic varieties F ⊂
Mg,n with dim(F ) > 1.

It seems likely we are still in the age of discovery.

10. Notes and references

§1. Introduction. For an algebraic perspective on Mg, and the realization of its
Deligne–Mumford compactification as a projective variety, see [ACG].

The dilatation K(A) ≥ 1 of a real–linear map A : C → C is given by the
ratio M/m between the major and minor axes of the image of a circle under A.
The dilatation of an orientation–preserving diffeomorphism f : X → Y between
Riemann surfaces is given by supx K(Dfx), and the Teichmüller metric on Mg is
given by

d(X,Y ) =
1

2
inf
f

logK(f).

This metric also comes from the natural norm ‖q‖ =
∫
X
|q| on the cotangent space

T ∗
XMg, which can be identified with the space of holomorphic quadratic differentials

q = q(z) dz2 on X. For background in Teichmüller theory, see, e.g. [Ga], [Nag] and
[Hub].

Figure 1.2 shows the generalized polygon T60,40 discussed at the end of §7.
The five known horizontal series of Teichmüller curves all involve real multipli-

cation by an order OD in a real quadratic field. According to [EFW, Thm. 1.5],
any horizontal series must have this feature. The proof that these curves are totally
geodesic relies on an argument in §4, showing that quadratic real multiplication is
SL2(R)–invariant.

§2. Moduli spaces and Teichmüller curves. For a proof of Theorem 2.2 with
P ⊂ C embedded and connected, see [Vi, Cor. 3.34].

Every complex geodesic f : H → C is generated by a quadratic differential (X, q).
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We have concentrated on the case where q = ω2 arises from a 1-form, for several
reasons:

(1) Any quadratic differential (X, q) becomes the square of a 1-form after pass-
ing to a 2–fold branched covering of X.

(2) Therefore, every Teichmüller curve generated by a quadratic differential is
a close relative of one generated by a primitive 1-form.

(3) Finally, a holomorphic 1-form represents a cohomology class [ω] ∈ H1(X)
and a differential on the Jacobian of X, providing a bridge to Hodge theory.

For the stated properties of the trace field K, see [GJ, Thm. 5.5], [KS, Thm. 28],
[Ho2, Thm. 10.2] and [HL, Thm. 1.1].

The mild twisting of the action of SL(X,ω), mentioned after equation (2.6),
arises as follows. Let K = SO2(R) ⊂ G = SL2(R). The isometric action of G on
H gives an isomorphism G/K ∼= H sending A to A(i). The linear action of G on
R2 ∼= C gives a second isomorphism, K\G ∼= H, sending A to A(i)/A(1). One can
then readily check that the bijection G/K ∼= K\G, given by A �→ A−1, induces the
map t �→ −t from H to itself. One must conjugate by this map to convert the linear
action of SL(X,ω) into an action by Möbius transformations on H. See [Mc1, Prop.
3.2].

As a complement to Proposition 2.3, we remark that the conditionDφ =
(
1 1/m
0 1

)
,

m > 0, does not imply that m divides mod(Ci) for all horizontal cylinders Ci. For
example, φ may effect a fractional Dehn twist on some Ci, or even permute these
cylinders.

Smillie has shown that (X,ω) generates a Teichmüller curve if and only if SL2(R)·
(X,ω) is closed in ΩMg [V2, §6].

§3. Billiards. The fundamental result on the Veech dichotomy, Theorem 3.2,
appears in [V1, Prop. 2.11]. The proof using [Mas2] presented here (see also [HS2,
§1.4]) bridges a gap in the original argument, noted in [Mc1, §2].

The polygon in Figure 3.2 is a square S with a generic rectangle R attached.
The trajectory shown, with starting slope 1, would be periodic if R were absent.

Rational polygons have special properties. For example, it is unknown if every
triangle has a periodic billiard trajectory; cf. [Sch1]. On the other hand, if P has
angles in πQ, then it has a dense set of periodic slopes and a full measure set of
uniformly distributed directions [Mas1], [KMS]. (These two papers are among the
first to use Teichmüller theory to address the dynamics of billiards.)

The algebraic description of the Teichmüller curves generated by regular poly-
gons originates in [Loch]; see also [Mc4, §5] and [EMMW, Appendix A].

For more on relations between the golden table and the regular pentagon, see
[Mc1, §9 and Fig. 4] and [DL]. Periodic slopes on general Teichmüller curves are
studied in [Mc10].

Question 3.8 is implicit in [HMTY], and stated explicitly in [Bo] as Conjecture
1.4; see these works for more on periodic slopes in the regular heptagon. Winsor
has shown that Δ(2, 7,∞) has more than two orbits in Q(cos(π/7))∪{∞}, contrary
to a conjecture in [HMTY, §4.1]; e.g. x = 671 lies outside the previously known
orbits. Experimentally, x = 2 is not fixed by any hyperbolic or parabolic element
in Δ(2, p,∞) when p ≥ 11 is odd.
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The discovery and classification of the lattice triangles appearing in Theorem 3.9
is contained in the work of several authors. Series A, along with the series of regular
polygons, is discussed in [V1]. For series B, see [Vo2, Thm. 4.4] and [Wa]. Two
of the three sporadic triangles in C also appear in [Vo2]; for the (2, 3, 4) example,
see [KS]. Example D is from [Ho1]. The proof that this list of lattice triangles is
complete, apart from the obtuse, scalene case, is given in [KS], [Pu1] and [Pu2].

For recent work on Question 3.11, see [LNZ].
The lattice polygons of genus two are classified in [Mc4].
Despite the Veech dichotomy, long, periodic trajectories in a lattice polygon can

be unevenly distributed; see [DL], [Mc9].

§4. Genus 2. Every form (X,ω) of genus two can be presented, in infinitely many
ways, as the connect sum (E1, ω1)#

I
(E2, ω2) of a pair of forms of genus one. This

perspective plays a central role in the proof of Theorems 4.1, 4.2 and 4.5, in [Mc2],
[Mc1] and [Mc4], respectively; it also leads to an explicit classification of the orbit
closures and the ergodic invariant measures for SL2(R) acting on ΩM2 [Mc5].

Veech groups for several WD are shown in [Mc1, Fig. 5] and [Mc4, Fig. 2].
Theorem 4.3 is given in detail in [Mc2, Cor. 1.3]. Theorem 4.5 leads to many
simple examples of 1-forms such that SL(X,ω) is an infinitely generated group
[Mc4, Thm. 1.3]. For related work, see [HS1].

Theorem 4.7 and formula (4.2), appear in [Ba, Thms. 1.1 and 2.12]. In [MZ, Thm.
9.1], Möller and Zagier show WD ⊂ XD is the zero locus of an explicit Hilbert
modular form of weight (3, 9), namely

(10.1) fD(z) =
∏

(m,m′) odd

D2θ(m,m′)(z1, z2).

The Euler characteristic of WD is directly related to the weights of this form; in
brief, dz1 and dz2 give line bundles L1, L2 over XD, and

χ(WD) = −〈c1(L1),WD〉 = −(9/2)〈c1(L1), c1(L2)〉 = −(9/2)χ(XD),

since 2[WD] = 3c1(L1) + 9c1(L2) up to boundary terms.
For Theorem 4.8 on elliptic points, and the remarks on g(WD) that follow, see

[Mu1]. Algebraic models for WD with D = 13 and 17 are given in [BM1], and for
all fundamental discriminants D < 100 in [KM2].

Theorem 4.6 can be deduced from the fact thatW 0
D andW 1

D are Galois conjugate
[BM1, Thm. A]. It also follows directly from the calculations in [Mc2], [Ba] and
[Mu1], which show the topological invariants of W ε

D do not depend on ε.
Theorem 4.12 is contained in [Mo1] and [Mo2].
The classification of nonprimitive Teichmüller curves in M2 is still an open prob-

lem; see [Du] for the conjectural answer and recent progress. Integral polynomials
defining Wd2 , given in [Mu2], behave well mod p and suggest an arithmetic theory
of Teichmüller curves remains to be developed.

§5. Genus 3 and 4. The definition of WD using Prym varieties, and the proof of
Theorem 5.1, appear in [Mc3]. Examples of Veech groups for Weierstrass curves in
genus g = 3 and 4 are shown in [Mc3, Fig. 2].
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The classification of Weierstrass curves given in Theorem 5.3 appears in [LN1]
and [LN2].

The finiteness Theorem 5.5 appears to be stated here for first time. It follows
from two known results. First, by [EFW, Thm. 1.5], all but finitely many primitive
Teichmüller curves in Mg are obtained by imposing quadratic real multiplication
on a 4–dimensional, rank 2, SL2(R)–invariant subvariety M ⊂ ΩMg, defined over
Q in period coordinates. Second, the classification of such M in genus three is now
known; see [AN, Thm. 1.1] and the references therein. There are three examples;
but two of them are contained in the hyperelliptic locus, and consist of forms pulled
back from genus two, so the associated Teichmüller curves are not primitive. The
one remaining possibility for M gives rise to the Weierstrass curves WD ⊂ M3.

For progress toward making Theorem 5.5 more effective, see [BaM, Thm. 1.6]
and [LM]. A related result, [EFW, Cor. 1.6], states that for each g there are only
finitely many Teichmüller curves in Mg with trace field of degree 3 or more. For
general finiteness results in hyperelliptic strata, see [Ap].

The formulas for χ(WD) in Theorem 5.7 appear in [Mo5, Thm. 0.2]; their cal-
culation uses theta functions and Hilbert modular forms (for the case g = 2, see
equation (10.1)).

See [Za] for Theorem 5.6, and [TZ1] and [TZ2] for Theorem 5.8.

§6. Multicurves and Coxeter diagrams. Thurston’s multicurve construction
appears in [Th]. Our presentation follows [Mc3, §4], which also proves Theorem 6.4.
The set of all multicurve systems encoding a given Teichmüller curve is described
in [Mc9, §10].

Coxeter groups and their diagrams appear in many fields of mathematics, ranging
from Lie groups and sphere packings to singularity theory; useful references include
[Bou] and [Hum]. Theorem 6.2, with different terminology, is contained in [Lei,
Thm. 7.1]. The formulation and short proof we present here emphasize the direct
connection with Coxeter groups. Theorem 6.3, relating the sporadic lattice triangles
to the En diagrams, was proposed in [Mc11] and proved in [Lei, §7.5].

We remark that the Coxeter element ρAρB for Γ(A,B), and the multitwists τA
and τB, both act on RA ⊕ RB and are related by

−ρAρB = −
(
−I M

0 I

)(
I 0

M t −I

)
=

(
I M

0 I

)(
I 0

−M t I

)
= τAτB.

This explains why Coxeter numbers (which give the order of ρAρB) appear in Table
6.1 (up to a factor of two).

We note that the E6 triangle unfolds to a Riemann surface X ∈ M3 which lies
on the unique Shimura–Teichmüller curve V ⊂ M3. Indeed X, initially defined
by y12 = x3(x − 1)4, is isomorphic to v3 = u4 − 1 (by the change of variables
(x, y) = (u4, uv)), and the latter curve represents a point on V by [Mo4, Thm. 5.1].

The E7 Teichmüller curve is studied in [CK].

§7. Higher genus. The original construction of Vpq appears in [BM2]. Its re-
formulation in terms of semiregular polygons was discovered independently by
Mukamel and Hooper. We follow [Ho2] for much of this section; see also [Wr1].
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Both Tm(x) and T̃m(x) are separable polynomials of degree m with integral
coefficients. In terms of the Chebyshev polynomials Um(x) of the second kind, we
have

T̃m(x) = U2m(
√
(1 + x)/2) = Um(x)− Um−1(x).

The roots of Tm(x) occur when x = cos θ and cosmθ = 0; those of T̃m(x) occur
when cos(2m+ 1)θ = 1, but cos θ 	= 1.

For Theorem 7.3, see [BM2, Thm. 6.14] and [Ho2, Thm. 4.9]. We have stream-
lined the formulas by using the intermediate variable z and Chebyshev polynomials,
to better display the integrality of the coefficients.

Theorem 7.6 is based on [Ho2, Thm. 4.1].
Note that Tpq gives an explicit, embedded lattice polygon for all p ≤ 5. As can

be seen in Figure 7.4, Tpq is also embedded for 8 other values of (p, q), and its
interior is embedded for 2 more values. This list of lattice polygons broadens that
appearing in [BM2, §8].

The rectilinear cousin (X,ω)p,2 of the p-sided regular polygon is discussed in
detail in [Mc6, §13], from the perspective of braid groups and the Ap−1 diagram.

§8. Gothic curves and the flex locus. Theorems 8.1, 8.2, 8.3, and Corollary
8.4 are taken from [MMW]. For Theorem 8.5, see [MT, Thm. 11.1]; Table 8.1 is
an excerpt of Table 1 in the same reference. We note that GD can also be defined

by imposing real multiplication on the dual Abelian surface Ĉ ⊂ Jac(X); this
equivalent perspective is adopted in [MT].

For the classical theory of plane cubics, their polars, the Hessian and related
topics, see [Sal].

§9. Quadrilaterals. All theorems stated in this section appear in [EMMW, §1].
The totally geodesic surface Fa ⊂ M2,1, a = (1, 2, 2, 15), is also studied in [KM1].
Regarding Problem 9.6, Wright has shown [Wr4] that for each g, there are only
finitely many totally geodesic subvarieties F ⊂ Mg with dim(F ) > 1. For more on
QF (A,P ) in the case of the flex locus, see [MMW, §4].
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Appendix A. Triangle groups

Let p, q be positive integers with 1/p+ 1/q < 1. We define the (p, q,∞) triangle
group by

Δ(p, q,∞) = 〈S, T 〉 ⊂ SL2(R),

where

S =

(
cos(π/p) sin(π/p)

− sin(π/p) cos(π/p)

)
and T =

(
1 τ

0 1

)
,

and τ is chosen so that Tr(ST ) = −2 cos(π/q). Its invariant trace field is given by:

Kpq = Q(Tr(g2) : g ∈ Δ(p, q,∞))

= Q(cos(2π/p), cos(2π/q), cos(π/p) cos(π/q)).

This field is a commensurability invariant.
The quotient space X = H/Δ(p, q,∞) is an orbifold isometric to the double of

the unique hyperbolic triangle with internal angles π/p, π/q and π/∞ = 0. We
also allow q = ∞, in which case Tr(ST ) = −2 and X has two cusps.

The groups Δ(p, q,∞) and Δ(q, p,∞) are conjugate in SL2(R). When p and q
are both even, we have a natural subgroup of index two

Δ̃(p/2, q/2,∞,∞) ⊂ Δ(p, q,∞),

corresponding to the orbifold covering space Y → X branched over the points of
X of orders p and q. As indicated by the notation, Y has two cusps. (Note that

Δ̃(p, 1,∞,∞) is isomorphic to Δ(p,∞,∞).)
When p is odd, we let

Δ−(p,∞,∞) = 〈−S, T 〉.
This group has index two in Δ(p,∞,∞), and it does not contain −I. All the other
groups above do contain −I, because Sp = −I.

The group Δ(p, q,∞) is commensurable to SL2(Z) if and only if Kpq = Q. The
remaining triangle groups are nonarithmetic. For more on triangle groups, see [Tak]
and [MR, Ex. 4.9]).

Appendix B. Accidental isomorphisms

This supplement describes all overlaps between the series of known primitive
Teichmüller curves.

Theorem B.1. The only overlaps between the three series WD, the two series AD

and GD, the series Vpq and the sporadic series (E6, E7, E8) are the following:

(1) in genus g = 2, W5 = V2,5 and W8 = V2,8;
(2) in genus g = 3, W8 = V3,4 and W12 = E6; and
(3) in genus g = 4, W5 = V3,5 and G12 = V3,6.

Proof. The curves in the five horizontal series indexed by D are all different, since
they are generated by forms in different strata. Moreover E7 and E8 belong to no
other series, since their Veech groups do not contain −I while the others do. Thus
we are reduced to identifying overlaps involving E6, and coincidences between the
vertical series Vpq and one of the 5 horizontal series.

In fact, the proof of Theorem 6.4 already shows that E6 is the same as the
Weierstrass curve W12 in genus 3; see Figure 6.2. The value D = 12 can be checked
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C

A

B

Figure B.1. A folded triangle that tiles a symmetric pyramid.

using the fact that the order 12 element in the Veech group Δ(6,∞,∞) of E6 has

trace 2 cos(2π/12) =
√
3, which generates the maximal order in Q(

√
3).

Next we consider overlaps betweenWD and Vpq. A coincidence occurs here if and
only if the curve Vpq has quadratic trace field, its stratum has the form ΩMg(2g−2),
and g(X/ρ) = g − 2. Examining Table D.1, we find the 5 cases listed above; in all
cases, the traces of elliptic elements in the Veech group show D is a fundamental
discriminant. This argument also shows that E6 = W12 does not occur in the series
Vpq.

Finally, considerations of strata and trace field show there is a unique remaining
candidate for an accidental isomorphism: G12

∼= V3,6. And in fact this isomorphism
can easily be seen geometrically: if we cut a symmetric (1, 1, 1, 9) quadrilateral in
half, we obtain two copies of the (1, 2, 9) triangle, which generates V3,6.

This shows V3,6 is at least a component of G12. To see they are equal, one can
use, for example, the fact that their Euler characteristics are both −1/2 (cf. Table
8.1). �
Remark on E8. It is also known that the unfolding of the E8 triangle lies in ΩZa

for a = (1, 1, 1, 7); see [EMMW, Rmk. 5 in §5].
This fact can be seen geometrically as follows. Consider the cyclic form ω = dx/y

of type (1, 1, 1, 7) on the curve X defined by y5 = (x3 − 1)4. The flat metric |ω|
makes P1

x into a symmetric pyramid P , whose base is an equilateral triangle. The
cone angles of P are 2π/5 at the vertices of its base, and 14π/5 at its remaining
vertex C.

Let T ⊂ P be the geodesic triangle with vertices (A,B,C), where A is a vertex
of the base of P , and B is its barycenter (see Figure B.1). It is readily verified that
T is a (3, 5, 7) triangle, that P is tiled by six copies of T , and that the unfolding of
T gives the form (X,ω).
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Appendix C. Tables of Weierstrass curves

Tables C.1, C.2 and C.3, based on [Mu1], [TZ1] and [TZ2], give the topological
invariants of WD in Mg for real quadratic discriminants D ≤ 60 and g = 2, 3, 4.
More complete tables can be found in these references. The listed topological
invariants are the genus g, the number of elliptic points of order n, denoted en, the
number of cusps c, and the Euler characteristic χ.

A few points should be kept in mind:

(1) In genus 2 and 3, WD has two components when D ≡ 1mod 8. The given
invariants are those for one of these components.

(2) In genus 2, besides the listed orbifold points of order 2, we have e5(W5) =
e4(W8) = 1.

(3) Similarly, in genus 3, we have e5(W5) = e6(W12) = 1, and in genus 4 we
have e5(W5) = e6(W12) = 1.

(4) For any component V ofWD, the trace field isK = Q(
√
D) and the stratum

of a generator is ΩMg(2g − 2).

Table C.1. The Weierstrass curves WD in M2.

D g(WD) e2(WD) c(WD) χ(WD)

5 0 1 1 −3/10

8 0 0 2 −3/4

12 0 1 3 −3/2

13 0 1 3 −3/2

17 0 1 3 −3/2

20 0 0 5 −3

21 0 2 4 −3

24 0 1 6 −9/2

28 0 2 7 −6

29 0 3 5 −9/2

32 0 2 7 −6

33 0 1 6 −9/2

37 0 1 9 −15/2

40 0 1 12 −21/2

41 0 2 7 −6

44 1 3 9 −21/2

45 1 2 8 −9

48 1 2 11 −12

52 1 0 15 −15

53 2 3 7 −21/2

56 3 2 10 −15

57 1 1 10 −21/2

60 3 4 12 −18
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Table C.2. The Weierstrass curves WD in M3.

D g(WD) e2(WD) e3(WD) c(WD) χ(WD)

8 0 0 1 1 −5/12

12 0 0 0 2 −5/6

17 0 0 1 3 −5/3

20 0 1 0 4 −5/2

24 0 1 0 4 −5/2

28 0 0 2 4 −10/3

32 0 0 0 7 −5

33 0 0 0 7 −5

40 0 1 2 6 −35/6

41 0 0 1 8 −20/3

44 0 1 2 6 −35/6

48 1 0 0 10 −10

52 1 1 0 12 −25/2

56 1 2 2 6 −25/3

57 1 0 1 11 −35/3

60 2 0 0 8 −10

Table C.3. The Weierstrass curves WD in M4.

D g(WD) e2(WD) e3(WD) c(WD) χ(WD)

5 0 0 1 1 −7/15

8 0 1 1 2 −7/6

12 0 1 0 3 −7/3

13 0 0 2 3 −7/3

17 0 0 1 6 −14/3

20 0 2 1 5 −14/3

21 1 0 1 4 −14/3

24 1 2 0 6 −7

28 1 2 2 7 −28/3

29 1 0 3 5 −7

32 1 2 2 7 −28/3

33 2 0 0 12 −14

37 1 0 4 9 −35/3

40 2 2 2 12 −49/3

41 3 0 1 14 −56/3

44 3 4 2 9 −49/3

45 4 0 0 8 −14

48 4 2 1 11 −56/3

52 4 2 2 15 −70/3

53 4 0 5 7 −49/3

56 6 4 2 10 −70/3

57 7 0 1 20 −98/3

60 8 4 0 12 −28
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Appendix D. Table of Bouw–Möller curves

Invariants of the Bouw–Möller curves Vpq ⊂ Mg, for 2 ≤ g ≤ 6, are given in
Table D.1.

This table is organized into groups by genus, with (p, q) increasing within each
group. We note that Vpq gives the trivial curve in M1 for (p, q) = (2, 3), (2, 4), (2, 6),
(3, 3) and (4, 4), and that V6,6 is not primitive; the remaining curves are. For each
form (X,ω) generating Vpq, there is a unique involution ρ satisfying ρ∗(ω) = −ω;
the last column gives the genus of X/ρ.

The topological invariants of Vpq can be read off from its Veech group; for ex-
ample, every curve has genus zero, and one or two cusps. We use the notation for
triangle groups given in Appendix A.

Table D.1. The Bouw–Möller curves Vpq ⊂ Mg with 2 ≤
g(Vpq) ≤ 6.

(p, q) Stratum SL(X,ω) Trace field g(X/ρ)

(2, 5) ΩM2(2) Δ(2, 5,∞) Q(
√
5) 0

(2, 8) ΩM2(2) Δ(4,∞,∞) Q(
√
2) 0

(2, 10) ΩM2(1
2) Δ(5,∞,∞) Q(

√
5) 0

(2, 7) ΩM3(4) Δ(2, 7,∞) Q(cosπ/7) 0

(2, 12) ΩM3(4) Δ(6,∞,∞) Q(
√
3) 0

(2, 14) ΩM3(2
2) Δ(7,∞,∞) Q(cos(π/7)) 0

(3, 4) ΩM3(4) Δ(3, 4,∞) Q(
√
2) 1

(2, 9) ΩM4(6) Δ(2, 9,∞) Q(cosπ/9) 0

(2, 16) ΩM4(6) Δ(8,∞,∞) Q(cosπ/8) 0

(2, 18) ΩM4(3
2) Δ(9,∞,∞) Q(cosπ/9) 0

(3, 5) ΩM4(6) Δ(3, 5,∞) Q(
√
5) 2

(3, 6) ΩM4(2
3) Δ(3, 6,∞) Q(

√
3) 1

(4, 6) ΩM4(6) Δ̃(2, 3,∞,∞) Q(
√
6) 1

(6, 6) ΩM4(1
6) Δ(3,∞,∞) Q 1

(2, 11) ΩM5(8) Δ(2, 11,∞) Q(cosπ/11) 0

(2, 20) ΩM5(8) Δ(10,∞,∞) Q(cosπ/10) 0

(2, 22) ΩM5(4
2) Δ(11,∞,∞) Q(cosπ/11) 0

(4, 8) ΩM5(4
2) Δ̃(2, 4,∞,∞) Q(sinπ/8) 1

(2, 13) ΩM6(10) Δ(2, 13,∞) Q(cosπ/13) 0

(2, 24) ΩM6(10) Δ(12,∞,∞) Q(cosπ/12) 0

(2, 26) ΩM6(5
2) Δ(13,∞,∞) Q(cosπ/13) 0

(3, 7) ΩM6(10) Δ(3, 7,∞) Q(cosπ/7) 3

(4, 5) ΩM6(10) Δ(4, 5,∞) Q(
√

3 +
√
5) 2

(5, 5) ΩM6(2
5) Δ(2, 5,∞) Q(

√
5) 2
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Lanneau, M. Möller, R. Mukamel and K. Winsor for many useful and informative
discussions.

References

[Ap] P. Apisa, GL2R orbit closures in hyperelliptic components of strata, Duke Math. J. 167
(2018), no. 4, 679–742, DOI 10.1215/00127094-2017-0043. MR3769676

[ACG] E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves. Volume
II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph
Daniel Harris, DOI 10.1007/978-3-540-69392-5. MR2807457

[AS] P. Arnoux and T. A. Schmidt, Veech surfaces with nonperiodic directions in the trace
field, J. Mod. Dyn. 3 (2009), no. 4, 611–629, DOI 10.3934/jmd.2009.3.611. MR2587089

[AN] D. Aulicino and D.-M. Nguyen, Rank 2 affine manifolds in genus 3, J. Differential
Geom. 116 (2020), no. 2, 205–280, DOI 10.4310/jdg/1603936812. MR4168204

[Ba] M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol.
11 (2007), 1887–2073, DOI 10.2140/gt.2007.11.1887. MR2350471
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[MZ] M. Möller and D. Zagier, Modular embeddings of Teichmüller curves, Compos. Math.
152 (2016), no. 11, 2269–2349, DOI 10.1112/S0010437X16007636. MR3577896

[Mu1] R. E. Mukamel, Orbifold points on Teichmüller curves and Jacobians with complex
multiplication, Geom. Topol. 18 (2014), no. 2, 779–829, DOI 10.2140/gt.2014.18.779.
MR3180485

[Mu2] R. E. Mukamel, Polynomials defining Teichmüller curves and their factorizations
mod p, Exp. Math. 30 (2021), no. 1, 19–31, DOI 10.1080/10586458.2018.1488156.
MR4223280

[Nag] S. Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical
Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New
York, 1988. A Wiley-Interscience Publication. MR927291

[Pu1] J.-C. Puchta, On triangular billiards, Comment. Math. Helv. 76 (2001), no. 3, 501–505,
DOI 10.1007/PL00013215. MR1854695

[Pu2] J.-C. Puchta, Addendum to “On triangular billiards”, Preprint, 2021.

https://www.ams.org/mathscinet-getitem?mr=1928530
https://www.ams.org/mathscinet-getitem?mr=1992827
https://www.ams.org/mathscinet-getitem?mr=2169830
https://www.ams.org/mathscinet-getitem?mr=2228463
https://www.ams.org/mathscinet-getitem?mr=2242630
https://www.ams.org/mathscinet-getitem?mr=2299738
https://www.ams.org/mathscinet-getitem?mr=3020148
https://www.ams.org/mathscinet-getitem?mr=3065179
https://www.ams.org/mathscinet-getitem?mr=4168686
https://www.ams.org/mathscinet-getitem?mr=4292865
https://www.ams.org/mathscinet-getitem?mr=4419633
https://www.ams.org/mathscinet-getitem?mr=3664815
https://www.ams.org/mathscinet-getitem?mr=2242629
https://www.ams.org/mathscinet-getitem?mr=2188128
https://www.ams.org/mathscinet-getitem?mr=2497782
https://www.ams.org/mathscinet-getitem?mr=2787595
https://www.ams.org/mathscinet-getitem?mr=3245185
https://www.ams.org/mathscinet-getitem?mr=4157552
https://www.ams.org/mathscinet-getitem?mr=3577896
https://www.ams.org/mathscinet-getitem?mr=3180485
https://www.ams.org/mathscinet-getitem?mr=4223280
https://www.ams.org/mathscinet-getitem?mr=927291
https://www.ams.org/mathscinet-getitem?mr=1854695


250 CURTIS T. MCMULLEN

[Sal] G. Salmon, Higher Plane Curves, Hodges, Foster and Figgis, Dublin, 1879.
[Sch1] R. E. Schwartz, Obtuse triangular billiards. II. One hundred degrees worth of periodic

trajectories, Experiment. Math. 18 (2009), no. 2, 137–171. MR2549685
[Sch2] R. Schwartz, Billiards from the square to the stadium, ICM Proceedings, 2022, to ap-

pear.
[Tak] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), no. 1, 91–106,

DOI 10.2969/jmsj/02910091. MR429744

[Th] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull.
Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431, DOI 10.1090/S0273-0979-1988-
15685-6. MR956596

[TZ1] D. Torres-Teigell and J. Zachhuber, Orbifold points on Prym-Teichmüller curves in
genus 3, Int. Math. Res. Not. IMRN 4 (2018), 1228–1280, DOI 10.1093/imrn/rnw277.
MR3801461

[TZ2] D. Torres-Teigell and J. Zachhuber, Orbifold points on Prym-Teichmüller
curves in genus 4, J. Inst. Math. Jussieu 18 (2019), no. 4, 673–706, DOI
10.1017/s1474748017000196. MR3963516

[V1] W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an ap-
plication to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583, DOI
10.1007/BF01388890. MR1005006

[V2] W. A. Veech, Geometric realizations of hyperelliptic curves, Algorithms, fractals, and
dynamics (Okayama/Kyoto, 1992), Plenum, New York, 1995, pp. 217–226. MR1402493

[Vi] M. Viana, Dynamics of interval exchange transformations and Teichmüller flows,
Preprint, 2008.

[Vo1] Ya. B. Vorobets, Plane structures and billiards in rational polygons: the Veech
alternative (Russian), Uspekhi Mat. Nauk 51 (1996), no. 5(311), 3–42, DOI
10.1070/RM1996v051n05ABEH002993; English transl., Russian Math. Surveys 51
(1996), no. 5, 779–817. MR1436653

[Vo2] Ya. B. Vorobets, Plane structures and billiards in rational polyhedra (Russian), Uspekhi
Mat. Nauk 51 (1996), no. 1(307), 145–146, DOI 10.1070/RM1996v051n01ABEH002769;
English transl., Russian Math. Surveys 51 (1996), no. 1, 177–178. MR1392678

[Wa] C. C. Ward, Calculation of Fuchsian groups associated to billiards in a ratio-
nal triangle, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 1019–1042, DOI
10.1017/S0143385798117479. MR1645350

[Wr1] A. Wright, Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-
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