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1. Motivation

Automorphic forms appear in many branches of mathematics and have espe-
cially important applications in number theory. To help motivate the subject for
beginners and outsiders to the area, this review will begin with some of these
applications. Garrett’s volumes focus mainly on the analytic issues surrounding
automorphic forms, and so in keeping with this theme, these applications will also
be analytic in nature. There is also great interest of automorphic forms in other
directions, such as in algebraic number theory or in spectral geometry, and to which
the reader may consult [1, 5, 6, 13] for some launching points.

A prototype for the analysis of automorphic forms is classical Fourier analysis
in Euclidean space. Fourier analysis has long had applications in number theory.
Many proofs of the evaluation of the Riemann zeta function at positive even inte-
gers, first performed by Euler, use some form of Fourier analysis. Riemann himself
used the Poisson summation formula to derive the functional equation of the zeta
function. Another line of thinking uses Fourier analysis to deduce accurate ap-
proximations to the number of integer lattice points in expanding regions, such as
in the Gauss circle problem, which asks for an estimate on the number of these
points inside a large circle in R

2 centered at the origin. In more modern terminol-
ogy, we may interpret these uses of Fourier analysis as applications of the spectral
decomposition of the Laplacian on L2(Z\R) or L2(R).

Some advanced applications use analysis on more exotic spaces, such as Γ\H,
where Γ is a discrete subgroup of SL2(R) (such as SL2(Z)), and H is the upper half-
plane acted on by Möbius transformations. A sample application in this direction
is to count asymptotically the number of integer matrices ( a b

c d ) with ad − bc = 1
and a2 + b2 + c2 + d2 ≤ X, as X → ∞. This is an instance of a hyperbolic lattice
point counting problem. A related variant of this problem concerns the shifted
divisor problem. This problem tasks us with developing an asymptotic formula for∑

n≤X d(n)d(n+ h), where d(n) is the divisor function, and h is a positive integer.
The shifted divisor problem is in turn vital for understanding the fourth moment

of the Riemann zeta function, that is,
∫ T

0
|ζ(1/2 + it)|4dt. The state of the art

on these problems relies on the spectral theory of the Laplacian on SL2(Z)\H. It
has long been hoped, but so far not yet achieved, that generalizations to SLd(Z)
should further our understanding of the 2d-th moment of zeta, for d ≥ 3. One
barrier (among many) to progress on this tantalizing problem is that automorphic
forms on SLd(Z) with d ≥ 3 are much more complicated than for d = 2.
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Euclidean harmonic analysis is also a powerful tool for understanding equidistri-
bution questions in number theory. The original version of Weyl’s criterion reduces
an equidistribution question of a sequence xj modulo 1 to a nontrivial bound on

the exponential sum
∑J

j=1 exp(2πinxj), for each nonzero integer n. A simple yet
fundamental example considers xj = αj with α irrational, in which case the expo-
nential sum is recognizable as a geometric series and is then easy to bound. Weyl’s
equidistribution criterion may be generalized to Γ\H, but the basic exponentials
must be replaced with a complete system of eigenfunctions of the Laplacian on the
space Γ\H.

Our final motivational example, the Selberg trace formula, has probably been the
most influential. Selberg’s trace formula gives a connection between spectral data
of Γ\H on the one side, and geometric data on the other. The formula is simpler
when the space Γ\H is compact, in which case the spectrum consists of a countably
infinite discrete sequence of eigenvalues. The trace formula then has an application
to count asymptotically the number of eigenvalues up to a given bound X, which is
called Weyl’s law. When Γ\H is not compact but has finite hyperbolic area, then
there is both a countable collection of eigenvalues as well as a continuous family
furnished by Eisenstein series. In this situation, the trace formula is not able to
directly separate the continuous spectrum from the discrete spectrum, but instead
gives an asymptotic formula for some measure of both spectra in a combined form.
Without further input, it is thus not even clear if the discrete spectrum is infinite
or finite (see [13] for more on this issue). However, for arithmetical groups Γ, such
as SL2(Z), Selberg directly showed that the continuous spectrum by itself does not
contribute enough to match the leading term on the geometric side of the trace
formula. Therefore, the discrete spectrum is infinite in these arithmetical cases,
and the trace formula recovers Weyl’s law.

The Selberg trace formula has a nice analogy to the explicit formula for the
Riemann zeta function, which connects the zeros of the zeta function on the one
side with primes on the other. We have much more information about the spectral
side of the Selberg trace formula, and for instance for SL2(Z), the analogue of
the Riemann hypothesis is known. It has long been hoped that one can prove the
Riemann hypothesis by finding a spectral interpretation of the zeros of the zeta
function, and Selberg’s trace formula has helped fuel this hope. See [3] for more
discussion.

2. Definitions, by example

A potential reader may have a different expectation of what constitutes an “ex-
ample” than what appears Garrett’s book. One might think that an example could
mean a particular automorphic form, such as the Ramanujan delta function or holo-
morphic Eisenstein series of small weight, but in fact Garrett’s examples consist of
the full infinite families of automorphic forms on some relatively simple spaces.
These example families themselves have been the complete scope of some other
textbooks.

2.1. The “small examples”. Garrett considers four spaces of the form Γ\X =
Γ\G/K where G is a group, K is a compact subgroup, and Γ is a discrete subgroup.
The two cases most easy to describe have G = SL2(R) and G = SL2(C). The
next two cases use matrices with elements in the Hamiltonian quaternions H =
{a+ bi+ cj + dk : a, b, c, d ∈ R}. The third case is a symplectic group G = Sp∗1,1 =

{g ∈ GL2(H) : g∗Sg = S}, where S = ( 0 1
1 0 ) and g∗ is the conjugate transpose of g.
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The fourth case takes G = SL2(H). For j = 1, 2, let Sp∗j = {g ∈ GLj(H) : g∗g = 1}.
The compact group K is defined as

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SO2(R), for G = SL2(R),

SU2, for G = SL2(C),

Sp∗1 × Sp∗1, for G = Sp∗1,1,

Sp∗2, for G = SL2(H).

Next we define Γ. For SL2(R) we have Γ = SL2(Z), and for SL2(C) we have
Γ = SL2(Z[i]), where Z[i] = {a + bi : a, b ∈ Z} is the set of Gaussian integers, a
Euclidean ring. Define the ring of Hurwitz integers o ⊂ H by

o = Z+ Zi+ Zj + Zk + Z · 1 + i+ j + k

2
.

The Hurwitz integers are also Euclidean of a sort (though noncommutative). For
G = Sp∗1,1 and G = Sp∗2, Γ consists of the elements of G with entries in o.

In these four examples, the space Γ\G/K is not compact, but it has finite G-
invariant (Haar-type) measure, and there is a single cusp. The Laplacian Δ is a
second-order differential operator that commutes with the action of the group G.

An automorphic function is a function on Γ\X, which can be viewed as a function
onG that is left-invariant by Γ and right-invariant byK. There is particular interest
in the automorphic functions that are also eigenfunctions of the Laplacian.

There is an important and pervasive dichotomy regarding the behavior of an
automorphic function f with respect to the cusp. This is measured most naturally
in terms of the constant term of f , defined as an integral

∫
(N∩Γ)\N f(n.x)dn, where

N ⊂ G is the subset of elements of the form {( 1 ∗
0 1 )}. A cusp form is an automorphic

function with vanishing constant term. The complementary notion to a cusp form
is that of an Eisenstein series, defined as

E(z, s) = Es(z) =
∑

γ∈Γ∞\Γ
η(γz)s,

where Γ∞ is the stabilizer of ∞, and η is a certain well-defined function on the
quotient. In the SL2(R) case, η(x+ iy) = y, and the definition for the other small
examples is similar. The Eisenstein series is an eigenfunction of Δ, with eigenvalue
s(s− 1), but it is not a cusp form.

2.2. The adelic example. Let k be a number field, and let Ak be the ring of
adeles over k. Tate [14] developed harmonic analysis on the adeles, and derived the
functional equation of the Dedekind zeta function. Since then, the adelic framework
of automorphic forms and their L-functions has flourished. One of the advantages
of the adelic approach is that it may treat all number fields in a relatively uniform
fashion. Garrett’s adelic example is the development of the theory of automorphic
forms on GL2(k)\GL2(Ak). His exposition proceeds in a parallel fashion with the
four small examples.

2.3. The “larger examples”. Garrett’s third family of examples consists of Γ =
SLn(Z), G = SLn(R), and K = SOn(R), with n ≥ 3. However, Garrett develops
much of the theory in greater generality, working adelically.

One of the main new issues arising in this third family of examples is the much
larger array of Eisenstein series. More general Eisenstein series may be induced
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from the various parabolic subgroups contained in G, via cuspidal automorphic
forms from lower-dimensional groups.

3. Main theorems

To get a feel for the focus and scope of Garrett’s books, we next highlight a few
of the most important results that are proved therein. For simplicity of this review,
consider the setting of the four small examples. Define L2

0(Γ\X), with X = G/K,
to be the space of square-integrable cusp forms. The following theorem says that
this space is discretely decomposed into Δ-eigenfunctions.

Theorem 3.1. The space L2
0(Γ\X) is a closed subspace of L2(Γ\X) and has an

orthonormal basis of Δ-eigenfunctions. Each eigenspace is finite dimensional, and
the number of eigenvalues below a given bound is finite.

The full spectral decomposition is harder and needs additional information about
the Eisenstein series:

Theorem 3.2. The Eisenstein series Es has meromorphic continuation to s ∈ C.
There are only finitely many poles in the region Re(s) ≥ 1/2, which all lie on the
segment (1/2, 1].

For the special case of SL2(Z), the meromorphic continuation may be derived
by an explicit calculation of the Fourier expansion, and it relies on the meromor-
phic continuation of the Riemann zeta function. However, this argument does not
generalize. Moreover, it is desirable to reverse this reasoning, and use properties of
the Eisenstein series to deduce facts about L-functions. This is the strategy of the
important Langlands–Shahidi method; see [6, Section 8] for a gentle introduction.
Garrett gives a thorough proof of the crucial Theorem 3.2.

Finally, we state the full spectral decomposition.

Theorem 3.3. Suppose f ∈ L2(Γ\X). Let φj run over a complete orthonormal
basis of Δ-eigenfunctions that are cusp forms. Then f has the expansion

f =
∑
j

〈f, φj〉+
1

4πi

∫ 1/2+i∞

1/2−i∞
〈f, Es〉Esds+

∑
s0

〈f,Ress0Es〉Ress0Es.

The above versions of the results were stated for the four smallest examples, but
Garrett also produces the analogues for the adelic example and the family of larger
examples.

4. Garrett’s books

4.1. Organization and prerequisites. Garrett’s system of presentation begins
by devoting the first three chapters to developing definitions and stating the main
results mentioned in Section 3 for the three families of examples. The proofs are
postponed to later in the book. The two volumes combined weigh in at over 700
pages, in part due to the extensive background that is provided in later chapters.
Even with this amount of background, it is inevitable that some readers may be
missing some implicit prerequisites. For instance, Garrett assumes familiarity with
the adeles over a general number field. The reader is also assumed to have some
familiarity with topological groups and, in particular, with the existence of Haar
measure on a locally compact group. Some experience with functional analysis
would be very helpful, though Volume 2 contains a streamlined presentation of the
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necessary background. The main prerequisite for the book is a level of maturity
that one might expect from more advanced graduate students.

The upshot of stating the main results early in the exposition is that it draws
attention to the main goals, and helps the reader avoid getting lost in the myriad
details. A downside is that it can be difficult to determine when a proof of one
of these results is complete. To highlight this problem, let’s consider a thought
experiment where a curious but inexperienced reader encounters a claim in Chapter
1.10, stating that an Eisenstein series is well approximated by its constant term.
Garrett refers to Chapter 8.1 for a proof of this fact. Browsing Chapter 8.1, the
reader finds a proof, but with references to some material from Chapter 14, on
vector-valued integrals. Perhaps Chapter 14 is an appendix that needs mastery
prior to reading Chapter 8? Now we imagine the curious reader begins reading
Chapter 14, which immediately begins with some previously undefined vocabulary,
such as “quasi-complete”, “locally convex topological vector space”, “Hahn–Banach
theorem”, etc. With some digging around in the index, one finds that the term
locally convex is defined in Chapter 13.11, the Hahn–Banach theorem is presented
in Chapter 14.A (an appendix itself), and quasi-complete is defined on p. 214, in
Chapter 13.8. Somewhat distressingly, the term quasi-complete appears on pages
188 and 211 as well, prior to its definition and without any indicator that a definition
is yet to appear. I would imagine that this hypothetical reader is left at a loss as to
what is the larger-scale logical order of the chapters. This problem could have been
at least partially alleviated with the inclusion of a logical dependency graph and
with more pointers to the location of definitions. On a local level, upon encountering
some new vocabulary, this reader would be uncertain about what is to be defined
later in the book and what is truly taken as a prerequisite.

4.2. Style. Garrett’s writing style is distinctive. He tends to use long sentences
with multiple clauses, and liberally uses italics for emphasis. How much one enjoys
or dislikes it is plainly a matter of taste. I personally found some of these stylistic
issues distracting, but not a serious barrier to reading the volumes.

4.3. Comparison and contrast to other books. The main attraction of Gar-
rett’s book(s) is its wealth of content that is difficult (if not impossible) to find
in other sources. A generation of researchers in analytic number theory have used
Iwaniec’s book [10] for the spectral theory of Γ\H, for Γ a discrete subgroup of
SL2(R). The book [4] treats Γ = SL2(Z[i]). I am not aware of similar references
for Garrett’s other two “small” examples. A nice feature of Garrett’s work is that
it typically presents arguments that can treat all four small examples at once.

For Garrett’s adelic example, Bump’s book [2] has been the standard reference
since it appeared in 1996. More recently, Goldfeld and Hundley’s volumes [8, 9]
have been a welcome addition to the literature. Both of these references are more
focused on L-functions and local representation theory than Garrett.

Garrett’s most difficult example of SLn(Z), n ≥ 3, has its closest comparison
with Goldfeld’s book [7]. Goldfeld’s work is a more gentle introduction, and focuses
more on the construction of L-functions. I think many students will prefer to read
Goldfeld’s book, and turn next to Garrett for a more serious and thorough treatment
of the spectral decomposition, which is not treated in full detail by Goldfeld. Indeed,
Goldfeld states the spectral decomposition carefully only for SL3(Z), and the proof
is light on details compared to Garrett. On the other hand, compared to [11] and
[12], Garrett’s exposition has fewer prerequisites and provides more details.
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It should also be pointed out that Garrett does not treat some important topics,
such as L-functions, automorphic representations, and the Arthur–Selberg trace
formula, each of which may be found in some of the other sources that are more
limited in scope in other respects. Considering the length of Garrett’s volumes,
these omissions are not objectionable.

4.4. Conclusion. Garrett’s volumes fill an important void in the literature of au-
tomorphic forms. Their main weakness may be the organizational issues highlighted
earlier in this review. Nevertheless, a dedicated and mature student can overcome
these issues and will surely find these volumes invaluable.
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