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NIRENBERG’S CONTRIBUTIONS

TO LINEAR PARTIAL DIFFERENTIAL EQUATIONS:

PSEUDO-DIFFERENTIAL OPERATORS AND SOLVABILITY

NILS DENCKER

Abstract. This article is a survey of Louis Nirenberg’s contributions to linear
partial differential equations, focusing on his groundbreaking work on pseudo-
differential operators and solvability.

1. Introduction

One cannot overestimate Louis Nirenberg’s impact on twentieth century math-
ematics, especially on the analysis of both linear and nonlinear partial differential
equations. In this article, we shall concentrate on Nirenberg’s achievements in
linear PDEs, in particular his development (with Kohn) of the calculus of pseudo-
differential operators and microlocal analysis. These ΨDOs were developed as tools
for the analysis of PDEs, but they have now become indispensible both for analysis
and for other areas of mathematics. In connection with this, we shall also treat
Nirenberg’s work (with Treves) on the solvability of partial and pseudo-differential
operators.

As a graduate student, I read Nirenberg’s papers [25] and [26] on pseudo-
differential operators to learn the subject, and they have been a great inspiration to
me. I also heared about Nirenberg’s work with Treves [28] about solvability, espe-
cially their famous conjecture which came to play an important role in my research.
Later I met Nirenberg several times, including at his Abel Prize celebration, but
we never had any collaborations.

2. Background

To appreciate Nirenberg’s contributions in the development of ΨDOs, one has
to know the background which presented the need for these operators. The de-
velopment of the theory of distributions by Laurent Schwartz [29] at the end of
the 1940’s revolutionized the analysis of PDEs. Distributions are generalizations
of generalized functions, which extend the notion of functions and had been used
as weak solutions of PDEs. By defining distributions as functionals on classes of
smooth test functions, one could simplify the theory of PDEs and be relatively un-
restricted in their use of the Fourier transform. For example, one could now define
a fundamental solution to any linear PDE.
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Distributions were not appreciated by all; see for example Bochner’s review [3] of
Schwartz’s book. In spite of the opposition, distributions lead to a quick develop-
ment of the theory of PDEs and many new results. One example is the proof of ex-
istence of fundamental solutions to any constant coefficient PDEs by Ehrenpreis [7]
and Malgrange [24] in 1954–55. By using distributions and Fourier transformation,
the study of constant coefficient PDEs is often reduced to the study of polynomials
and their zeros.

But nonconstant coefficient PDEs presented a more difficult problem. Here sin-
gular integral operators became a useful tool, which for example Calderón [4] used
to prove the uniqueness of the Cauchy problem in 1958. Singular integral operators
on Rn have the form:

(2.1) Su(x) = a(x)u(x) + lim
ε→0

∫
|x−y|>ε

h(x, x− y)u(y) dy,

where a(x) ∈ C∞, h(x, y) is homogeneous of degree −n in y,
∫
|y|=1

h(x, y) dy = 0

with appropriate conditions on the regularity of h(x, y). The operator is then
given by the principal values of the improper integral in (2.1); a one-dimensional
example is the Hilbert transform. These operators are useful tools in analysis,
but the calculus is complicated. For example, the composition of two operators
involves a mysterious symbol σ(S)(x, ξ) of the operator; see Seeley’s interesting
exposition [30].

By work of Calderón and Zygmund, Horwath and Kohn, the symbol turned out
to involve the partial Fourier transform of h(x, y) in the y variables:

(2.2) σ(S)(x, ξ) = a(x) + lim
ε→0

∫
ε<|y|<1/ε

h(x, y)e−iyξ dy,

which is then homogeneous of degree 0 in the ξ variables; see [30]. This is due to
the fact that convolutions correspond to multiplications of the Fourier transforms.

3. Pseudo-differential operators

Kohn and Nirenberg [17] defined pseudo-differential operators in 1965 as

(3.1) p(x,D)u(x) = (2π)−n

∫
ei〈x−y,ξ〉p(x, ξ)u(y) dy,

where the symbol p(x, ξ) is an asymptotic sum of homogeneous terms:

(3.2) p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ).

Here pk(x, ξ) is homogeneous of degree k in ξ, and the highest order term pm is
called the principal symbol. Note that D = 1

i ∂ is the imaginary derivative which is
a symmetric operator. This generalized the partial differential operators, where the
symbols are polynomials in ξ. For singular integal operators the order m = 0, and
the generalization to arbitrary order simplifies the calculations. The asymptotic
expansion (3.2) is formal, but a result by Whitney [31] gives that there exists a
symbol q(x, ξ) such that

(3.3)

∣∣∣∣∣∣q(x, ξ)−
k∑

j≥0

pm−j(x, ξ)

∣∣∣∣∣∣ ≤ C(1 + |ξ|)m−k−1 ∀ k.

These operators are called classical (or polyhomogeneous) ΨDOs.
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Kohn and Nirenberg’s paper also gave the calculus of ΨDOs, where the compo-
sition is done by the Leibnitz formula but now with infinitely many terms. The
formulas for adjoints and change of variables were also given, similar to those of
PDOs. Also, the principal symbol transforms as a function on the cotangent space
T ∗Rn under changes of coordinates.

With ΨDOs one loses the local property, since the support (where the distribu-
tion is nonzero) could be increased by the operators. But ΨDOs retain the pseudo-
local property, that the singular support (where the distribution is not smooth)
is not increased. The pseudo-local property is important, e.g., for the study of
singularities and solvability.

The simpler calculus and the easy use of symbols made ΨDOs more convenient to
use than the singular integral operators. For example, the order of a fundamental
solution to an elliptic equation of order m is a ΨDOs of order −m. One could
now also localize in cones in the ξ variables using homogeneous symbols, called
microlocalization.

Kohn and Nirenberg immediately used the techniques of [17] to study elliptic
boundary problems in [18]. There were also many properties of ΨDOs to explore,
for example (semi)boundedness of operators having (semi)bounded symbols. In
1966 Nirenberg together with Lax [19] proved a G̊arding type of lower bound for
matrix valued ΨDOs with semidefinite principal symbols.

Kohn and Nirenberg’s highly influential paper started a revolution in the analysis
of PDEs and initiated the field ofmicrolocal analysis, where one can localize in cones
in T ∗Rn. The singular support sing supp(u) ⊆ Rn was refined by Hörmander [13]
to the wave front set WF(u) ⊆ T ∗Rn. This set indicates the directions where the
localized Fourier transform does not decay of arbitrary order.

Hörmander [13] also proved that for pseudo-differential operators with real prin-
cipal symbols that are of principal type, the wave front sets of the solutions propa-
gate along the bicharacteristics of the principal symbol, which generalizes geomet-
rical optics. Principal type means that the principal symbol vanishes of first order
at its zeros, called characteristics. The bicharacteristics are the flow-out of the
Hamilton vector field of the principal symbol on the characteristics; see (4.2).

This refinement simplifies the study of singularities of solutions to ΨDOs since
the bicharacteristics foliate the characteristics and never intersect. Results on prop-
agation of singularities lead to results on solvability by duality. In fact, the propaga-
tion of singularities to solutions to the homogeneous adjoint equation could prohibit
singular solutions from having compact support.

Fourier integral operators were developed by Hörmander [12] to obtain symplectic
coordinate transformations of ΨDOs on the cotangent space. With these operators,
ΨDOs developed into a powerful tool making it possible to have natural invariant
microlocal conditions on the symbols of the operators.

But the development was also towards more general classes of pseudo-differential
operators. The classical ΨDOs by Kohn and Nirenberg are sufficient to invert
elliptic PDOs, for example, the Laplacian Δ, but not for inverting hypoelliptic
PDOs, such as the heat equation ∂t+Δx. In order to treat those cases, Hörmander
[11] generalized the calculus in 1966 to the symbol classes Sm

�,δ defined by

(3.4) |Dα
xD

β
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m+|α|δ−|β|� ∀α, β ∈ Nn,

where � > 0, δ ≥ 0, and |α| = α1 + · · ·+ αn for the multi-index α = (α1, . . . , αn) ∈
Nn. When � > δ we get an asymptotic expansion in powers of 〈ξ〉δ−� of the compo-
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sitions, and � ≥ δ corresponds to the uncertainty principle in quantum mechanics.
It is easy to see that the class of classical symbols by Kohn and Nirenberg is con-
tained in Sm

1,0. It is not hard to show that the symbol of the inverse of the heat

equation is (iτ − |ξ|2)−1 ∈ S1
1/2,0. But, as we shall see, these symbol classes were

not enough for studying some of the harder problems in analysis, like the solvability
of PDEs.

4. Solvability

One area where microlocal analysis had a great impact is the solvability of PDOs
and ΨDOs of principal type, where Nirenberg together with Treves revolutionized
the field. This development started in 1957 when Hans Lewy [23] created a sensation
when he found a first order complex vector field that was not solvable anywhere in
R3:

(4.1) L(x,D) = Dx1
+ iDx2

+ 2i(x1 + ix2)Dx3
.

This means that the equation Lu = f has no local solution for almost all smooth
f . Observe that the Cauchy–Kowalevska theorem gives analytic solutions for any
analytic f , which is a dense set. Actually, the vector field L is in suitable coordinates
the tangential Cauchy-Riemann operator of the boundary of the strictly pseudo-
convex domain

{(z1, z2) : Im z2 ≥ |z1|2} ⊂ C2.

Thus, it has an important role in complex analysis in several variables.
The tangential Cauchy–Riemann operators always have a large kernel contain-

ing any analytic function of the coordinates z = (z1, . . . , zn) ∈ Cn. But Nirenberg
[26] showed in 1972 that there exist arbitrarily small smooth perturbations of (4.1)
whose kernels only contain the constant functions. Thus the perturbed vector fields
cannot be a tangential Cauchy–Riemann operator of any domain. This was gener-
alized in 1982 by Jacobowitz and Treves [16], showing that there exist arbitrarily
small smooth perturbations of any given smooth vector field in R3 whose kernels
only contain the constant functions.

After Lewy’s example, Hörmander [9] took up the quest for solvability in 1960
by showing that the lack of solvability is generic for PDEs. In fact, if P (x,Dx) is
of order m with principal symbol pm, then the commutator [P ∗, P ] of the operator
and its adjoint is of order 2m − 1 and has principal symbol equal to the Poisson
bracket
(4.2)

2iC2m−1 = 2i
∑
j

∂ξj Re pm∂xj
Im pm − ∂xj

Re pm∂ξj Im pm = 2iHRe pm
Im pm,

where HRe pm
is the Hamilton vector field of Re pm. Hörmander showed that if

this bracket does not vanish on the characteristics, which is a generic condition,
then P (x,Dx) is not locally solvable. (In his thesis [8], Hörmander had to assume
C2m−1 ≡ 0 in order to prove solvability.)

The condition that C2m−1 �= 0 on pm = 0 means that the operator is of principal
type and that the imaginary part of pm switches sign on the bicharacteristics of the
real part, which are the flow-out of the Hamilton vector field HRe pm

.
If P is of principal type and C2m−1 is a linear combination of pm and pm, then

the operator is principally normal and Hörmander [10] showed that these operators
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are locally solvable. One could also have special conditions on the repeated brackets
when studying solvability, but then the situation gets rather complicated.

By using microlocal analysis and preparation theorems, one can reduce a classical
ΨDOs of principal type to a first order operator with principal symbol on the normal
form

(4.3) p1(x, ξ) = τ + if(t, x, ξ),

where f ∈ S1
1,0 is a real and homogeneous symbol and (t, x; τ, ξ) ∈ T ∗(R × Rn).

In this case, the Poisson bracket (4.2) becomes 2i ∂tf(t, x; ξ). Principally normal
means that ∂tf = c · f for some homogeous c(t, x; ξ), a differential equation which
preserves both signs and zeros of f(t, x; ξ) as t changes.

5. The Nirenberg–Treves conjecture

But Nirenberg and Treves [27] in 1963 changed the perspective and introduced
conditions on the sign changes of the imaginary part of the principal symbol of a
PDO. The most important is condition (P ), which says that the imaginary part of
the principal symbol cannot change sign on the bicharacteristics of the real part.
For example, for the normal form (4.3) this means that t → f(t, x; ξ) does not
change sign as t varies.

Nirenberg and Treves showed that condition (P ) was sufficient for solvability of
first order analytic PDOs of principal type, and they conjectured that this condition
was both necessary and sufficient for solvability of first order PDOs of principal type.

Armed with the tools of pseudo-differential operators, Nirenberg and Treves [28]
in 1970 took up the study of the solvability of PDOs and ΨDOs of principal type.
For ΨDOs condition (P ) is not the relevant condition. Instead it is condition (Ψ)
which prohibits sign changes from − to + of the imaginary part of the principal
symbol on the oriented bicharacteristics of the real part. For the normal form (4.3)
this condition means that t → f(t, x, ξ) does not change sign from − to + as
t increases. For PDO conditions (P ) and (Ψ) are equivalent, since the Poisson
bracket in (4.2) has odd order.

Nirenberg and Treves conjectured that condition (Ψ) is necessary and sufficient
for solvability of ΨDOs of principal type. They proved sufficiency for PDOs with
analytic principal symbols and necessity in the case where the sign changes are of
finite order (e.g., for analytic principal symbols).

When the principal symbol is analytic satisfying condition (P ), Nirenberg and
Treves used microlocal tools and reduced the operator to the normal form,

(5.1) P = Dt + iA(t)B,

where t → A(t) ≥ 0 is uniformly continuous and bounded, B = B∗ is constant in
t, and the commutators [B,A(t)] and [B, [B,A(t)]] are bounded. The commutator
conditions fit well into the calculus if A is operator of order zero and B is an
operator of first order.

Under these conditions, Nirenberg and Treves [28] proved the following L2 esti-
mate:

(5.2) ‖u‖ ≤ CT‖Pu‖

if u ∈ C∞
0 has support where |t| ≤ T � 1. This estimate may then be perturbed

with L2 bounded terms in P for sufficiently small T . But the reduction to the
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normal form relies on analyticity; for example, it does not work when the imaginary
part vanishes of infinite order.

But in 1973, Beals and Fefferman [1] proved the sufficiency of condition (P )
for solvability of smooth PDOs of principal type. In the proof, they used more
refined symbol classes adapted to the operator to reduce it to the normal form (5.1)
microlocally. This made it possible to use the Nirenberg–Treves lemma to obtain
L2 estimates from (5.2). Beals and Fefferman [2] in 1974 developed the calculus
for these more general symbols, having symbol classes where 1 + |ξ| is replaced by
other suitable weights in the symbol estimates (3.4).

Hörmander [14] developed this calculus further in 1979 into the Weyl calculus,
defining symbols to be uniformly smooth with respect to suitable metrics on T ∗Rn.
These metrics, called Hörmander metrics, have to satisfy conditions on local equiv-
alence, temperatedness, and the uncertainty principle. By using the Weyl quan-
tization, this calculus has the additional advantages of symplectic invariance and
that real symbols correspond to symmetric operators.

The necessity of condition (Ψ) for solvability of pseudo-differential operators of
principal type was then established by Hörmander [15] in 1981 by microlocally
reducing the operator to the normal form (4.3) and constructing pseudo modes,
i.e., localized approximate solutions to the homogeneous adjoint equation.

It was in general assumed that condition (Ψ) would also be sufficient for solv-
ability of ΨDOs of principal type, and Lerner [20] proved this 1988 in dimension 2.
There even appeared false proofs of sufficiency in any dimension, claiming estimates
like (5.2) where one loses one derivative.

But a counterexample of Lerner [21] in 1994 shows that in general condition (Ψ)
does not give the expected solvability with a loss of one derivative, which one has
in the case when condition (P ) holds. Thus, the estimate (5.2) in general does not
hold, and solvability could depend on lower order terms. This example questioned
the validity of the Nirenberg–Treves conjecture, whether it is sufficient to have
conditions only on the principal symbol.

But in 2004 the sufficiency of condition (Ψ) was proven by the author in [6], giving
solvability of principal type operators with a loss of two derivatives, thus finally
resolving the Nirenberg–Treves conjecture. The proof uses a multiplier estimate
adapted to the operator that can handle lower order terms.

The estimate was then improved in [5] to a loss of 3/2 + ε derivatives, for any
ε > 0. Lerner [22] obtained the solvability with a loss of 3/2 derivatives with a
similar multiplier estimate. This is currently the best result, but there still remains
a gap since the counterexample in [21] only gives a loss of 1 + ε derivatives for any
ε > 0.

In closing, the insights of Nirenberg led to a revolution in the analysis of PDEs,
to the development of microlocal analysis, and to breakthroughs in the solvability
of PDOs and ΨDOs.

About the author

Nils Dencker is professor of mathematics at Lund University, working in microlo-
cal analysis and spectral theory of partial differential operators. He is a member
of the Royal Swedish Academy of Sciences and received the G̊arding Prize in 2003
and the Clay Research Award in 2005 for his resolution of the Nirenberg–Treves
conjecture.



NIRENBERG’S CONTRIBUTIONS TO LINEAR PDE 165

References

[1] R. Beals and C. Fefferman, On local solvability of linear partial differential equations, Ann.
of Math. (2) 97 (1973), 482–498, DOI 10.2307/1970832. MR352746

[2] R. Beals and C. Fefferman, Spatially inhomogeneous pseudodifferential operators. I, Comm.
Pure Appl. Math. 27 (1974), 1–24, DOI 10.1002/cpa.3160270102. MR352747
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