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Hydrodynamics is a vast field with long history and enormous literature, includ-
ing excellent treatises and monographs devoted to this beautiful and challenging
subject; see, e.g., [Bir50], [CM93], [LL59], [Lic68], [MB02], [MP94], and also the
more recent surveys [Con07], [DE], [KMS] and references therein. And yet the
book of Arnold and Khesin is truly unique because of its deliberate, consistently
geometric approach and because of the way in which it manages to combine the
best qualities of an original research monograph and an inspiring graduate text-
book. In fact, the first edition of this book has already become a classic right after
its publication in 1998, and the second, extended, edition under review here will
surely strengthen its landmark position in the area of geometric hydrodynamics.

Perhaps the opening paragraph of the Preface to the first edition describes best
how the authors view their subject:

Hydrodynamics is one of those fundamental areas in mathematics
where progress at any moment may be regarded as a standard to
measure the real success of mathematical science.

From its very beginnings (thanks to the pioneering work of Euler), hydrody-
namics developed two parallel but distinct perspectives on the motion of an ideal,
that is, incompressible and inviscid, fluid in a fixed domain M (typically, Rn or
T
n or a bounded domain in R

n with smooth boundary ∂M and n = 2, 3). In the
first of these, referred to as Eulerian, the fluid is described from the viewpoint of a
fixed observer. Its main object of study is the familiar system of nonlinear partial
differential equations, the incompressible Euler equations

∂u

∂t
+ u · ∇u+∇p = 0, div u = 0 in M,(0.1)

where u = u(t, x) is the velocity of the fluid particle which at time t is at x ∈ M
and p = p(t, x) is the pressure function at the same time and position. In the
boundary case the fluid is not allowed to penetrate the boundary, which introduces
an additional condition

(0.2) u · n = 0 on ∂M,
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where n is the outward unit normal to ∂M . The first equation in (0.1) corresponds
to conservation of momentum and the second represents incompressibility. Both
equations make perfect sense on a general n-dimensional Riemannian manifold, in
which case u · ∇ is interpreted as the covariant derivative in the direction of the
vector field u. Although not immediately apparent, the equations are also nonlocal
in the sense that the gradient term ∇p at time t cannot be determined from the
information around x alone. In fact, applying divergence to the first equation in
(0.1) leads to the Neumann problem Δp = − div(u·∇u) with ∂p/∂n = −(u·∇u) ·n.

The second approach is called Lagrangian.1 In this case the fluid is described
by an observer who follows the trajectories of fluid particles. Given a velocity field
u(t, x) the solution of the Cauchy problem

dγ

dt
(t, x) = u(t, γ(t, x)), γ(0, x) = x,(0.3)

defines the particle flow map with γ(t, x) representing the position at time t of
that fluid particle which at time t = 0 was at x. Assuming that particles do
not fuse or split, a natural configuration space of an ideal fluid is thus the group of
diffeomorphisms SDiff(M) preserving the volume form μ of the domainM . One can
regard SDiff(M) as a smooth manifold modeled on a Fréchet space and an infinite-
dimensional Lie group under composition and inversion of diffeomorphisms.2 Its
tangent space at the identity map e serves both as the modeling space of SDiff(M)
and its Lie algebra TeSDiff(M) = SVect(M). It consists of smooth divergence-free
vector fields on M and is equipped with the commutator given by (minus) the
Lie–Poisson bracket of vector fields

(0.4) [v, w] = −{v, w}, v, w ∈ SVect(M),

and defined using the Lie derivative by L{v,w} = LvLw − LwLv.
Absent any external forces, the dynamics of an ideal fluid is determined by

the incompressibility constraint and, according to the least action principle, any
motion of an ideal fluid in M traces out a geodesic path t �→ γ(t) in SDiff(M) of
the Riemannian metric defined by the fluid’s kinetic energy. This metric is right-
invariant as is easily verified by the change of variables formula. Furthermore, at
the identity it coincides with the L2 inner product

〈v, w〉L2 =

∫
M

v · w dμ, v, w ∈ SVect(M),(0.5)

and establishes a correspondence between SVect(M) and (the “smooth part” of)
the dual SVect(M)∗ � Ω1(M)/dΩ0(M) of 1-forms modulo differentials of functions

A : SVect(M) → SVect(M)∗, (Av,w) = 〈v, w〉L2 ,(0.6)

called the inertia operator.
The geodesic equations of the L2 metric in SDiff(M) can be derived explicitly

from the first Riemannian principles (e.g., by computing the first variation formula).

1An unfortunate though convenient misnomer since both descriptions are due to Euler; see
[Tru54].

2See, e.g., [EM70], [Ham82].
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Alternatively, differentiating the flow equation (0.3) and using (0.1), we find

d2γ

dt2
(t) = −∇p ◦ γ(t)(0.7)

(suppressing the dependence on x) subject to the initial conditions

(0.8)
dγ

dt
(0) = u0 and γ(0) = e.

In particular, (0.7) shows that the acceleration vector of γ must be L2 orthogonal
to the space of divergence-free vector fields on M .

While some early ideas go back to the XIX century work of Helmholtz, Kelvin,
and Poincare, the above picture was first explained and presented in a clear group
theoretic and differential geometric language by Arnold [Arn66] in the 1960s. This
beautiful picture lies at the heart of the book under review.

The motivation for its development can be traced back to Kolmogorov’s Sem-
inar at Moscow State University in 1958/59 and the early efforts to understand
the phenomenon of turbulence; see [AM]. Kolmogorov proposed to study turbu-
lence in low-viscosity regimes hoping to find hydrodynamic attractors by means
of ideal fluids. In the Lagrangian setting turbulence could be then rationalized if
these attractors were chaotic, in particular, highly sensitive to changes in initial
conditions. This provides at least one important reason for the appeal of the geo-
metric approach: since fluid flows correspond to geodesics in SDiff(M), curvature
calculations should help identify regions where such attractors may be located.

But even a closer examination of the geometry and the group structure of
SDiff(M) already reveals valuable information about ideal fluids. Thus, at the
infinitesimal level the Lie algebra SVect(M) and its dual provide the setting for a
Hamiltonian reformulation of (0.1) as the so-called Euler–Arnold equations

∂[α]

∂t
= −LA−1[α][α], [α] ∈ Ω1(M)/dΩ0(M),(0.9)

while their structure determines the well-known conservation laws of ideal hydro-
dynamics involving enstrophy

∫
M2 f(curlu) dμ and helicity

∫
M3 curlu · u dμ. Here,

curlu is obtained from the vorticity 2-form associated with u by identification with
a function if n = 2 and with a vector field if n = 3 and f is any smooth function.
The coadjoint orbits of SDiff(M) have an elegant description in terms of isovortic-
ity, even though when n = 3 their geometry is known to be extremely complicated
and its precise description remains an intriguing open problem (n.b., a pair of ve-
locity fields v, w is said to be isovortical if there is an axisymmetric diffeomorphism
η on M such that the circulation of v around any closed contour c in M and the
circulation of w around η ◦ c are equal).

At the local level, investigating the equations of geodesic deviation in SDiff(M)
leads naturally to problems of hydrodynamic stability under small perturbations
of initial data. Here, the situation turned out to be somewhat more challenging
than had been originally hoped. Although SDiff(M) is negatively curved in “most
directions” it also has regions of strictly positive sectional curvature which con-
tain conjugate points. The latter are the singular values of the exponential map
expe(tu0) = γ(t) of the L2 metric (0.5), where γ is the unique solution of (0.7)–(0.8)
defined at least for small t. Roughly speaking, they indicate the presence of config-
urations of “relative” Lagrangian stability in the sense that a family of fluid flows
starting at e with different velocities, after initially diverging, will eventually come
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together due to positive curvature near a conjugate point. Such behaviour is of
course very different from that typical of solutions on chaotic hyperbolic attractors
(think of geodesic flows on negatively curved spaces).

Last but not least, there are results involving global properties of the group of
volume-preserving diffeomorphisms, especially those which bring out the difference
between two-dimensional and three-dimensional hydrodynamics. For example, it
turns out that the L2 diameter of SDiff(M), where M is a simply connected 3-
manifold, is finite while that of a 2-manifold is infinite. This surprising result seems
to depend ultimately upon the fact that in a 3-manifold fluid particles have “more
room” to move around each other. A related result states that finding a shortest
path connecting a pair of diffeomorphisms in SDiff(M) may not be possible in
general if the fluid domain is three dimensional. Furthermore, the L2 exponential
map on SDiff(M) is a nonlinear Fredholm map (of index zero) if n = 2 but not
if n = 3. An interesting consequence of this is the noninjectivity of expe near
conjugate points. Its hydrodynamic interpretation is that every neighbourhood of
a conjugate point in SDiff(M) (in any “reasonable” topology) must contain fluid
configurations that can be reached from e by (at least) two distinct fluid flows in the
same time. Another result is that SDiff(M) has no self-intersecting geodesics unless
they are periodic (i.e., smooth images of a circle). Note that this is a property of
bi-invariant metrics on Lie groups.

Hydrodynamical implications of results like these are yet to be fully worked
out. They may help us to better understand the behaviour of fluids over long time
intervals and will provide a strong motivation for future research.

The geometric framework described above is very flexible. It can be developed
in the setting of general Lie groups equipped with one-sided invariant metrics and
include numerous examples of great interest in mathematical physics. In particular,
the Euler top, Kirchhoff’s equations of motion of a rigid body in an ideal fluid, the
equations of magneto-hydrodynamics, a number of completely integrable PDEs in
1+1 (space-time) dimensions, or the family of generalized surface quasi-geostrophic
equations can all be (with minor adjustments) expressed as geodesic equations on
a suitable (infinite-dimensional) Lie group and then reduced to its Lie algebra as
the corresponding Euler–Arnold equations.

Most of the topics above are found already in the first edition of the book, which
also covers topological obstructions to energy relaxation problems leading to the
notion of helicity and its ergodic interpretation as the asymptotic linking number,
a detailed discussion of conservation laws in ideal fluid dynamics including higher-
dimensional analogues of enstrophy and helicity, applications to the problem of
hydrodynamic stability, and the famous Arnold’s criterion for Liapunov stability
of two-dimensional fluids, various ramifications of the fast dynamo problem, gen-
eralized flows of Y. Brenier and their application to the shortest path problem
(the whole Section IV.7 was contributed by A. Shnirelman) and bi-Hamiltonian
structures of nonlinear evolution equations arising in various hydrodynamical ap-
proximations. The second edition retains the structure and all the virtues of the
original text (as well as its updated 2007 Russian version) and, in addition, includes
a 40-page long Appendix with its own bibliography. It is a real treasure trove of
ideas presented clearly and lucidly in the best tradition of the Russian mathemat-
ical school. It is also a testament to the authors’ lifelong fascination and interest
in the challenging mathematics of fluid dynamics, closely intertwined as it is with
geometry, topology, and analysis. The book lays down the foundations of a new
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field of mathematics with important contributions made by both authors as well
as other mathematicians, and it includes many open problems at the frontier of
current research. It has already helped educate a whole generation of graduate
students and scholars, young and old. In light of this, the second author’s decision
to keep the text of the first edition essentially unchanged, supplementing it with
an Appendix structured in roughly the same order as the original text, is entirely
justified and should be applauded. The Appendix is written in a similarly clear
and engaging manner and does an excellent job of outlining new approaches and
developments in the field as well as surveying the enormous literature from the two
decades since the publication of the first edition. Among the topics we find here a
generalization of the Euler–Arnold equations to the setting of groupoids which in-
cludes fluids with moving boundaries as well as vortex sheets and generalized flows,
a description of invariant knots and tubes with arbitrary topology in steady Euler
flows, and a discussion of the relation between Lagrangian and Eulerian instabili-
ties. The two hundred or so new references make it easy for a reader to follow up
on any of these topics.

I have no doubt that this milestone monograph will serve as a classic reference
and an invaluable guide for all those interested in group theoretic, differential geo-
metric, or topological aspects of hydrodynamics. It will also surely continue to
attract new generations of students and researchers to the field.
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