From sum of two squares to arithmetic Siegel–Weil formulas
HTML articles powered by AMS MathViewer
- by Chao Li;
- Bull. Amer. Math. Soc. 60 (2023), 327-370
- DOI: https://doi.org/10.1090/bull/1786
- Published electronically: January 17, 2023
- HTML | PDF | Request permission
Abstract:
The main goal of this expository article is to survey recent progress on the arithmetic Siegel–Weil formula and its applications. We begin with the classical sum of two squares problem and put it in the context of the Siegel–Weil formula. We then motivate the geometric and arithmetic Siegel–Weil formula using the classical example of the product of modular curves. After explaining the recent result on the arithmetic Siegel–Weil formula for Shimura varieties of arbitrary dimension, we discuss some aspects of the proof and its application to the arithmetic inner product formula and the Beilinson–Bloch conjecture. Rather than being intended as a complete survey of this vast field, this article focuses more on examples and background to provide easier access to several recent works by the author with W. Zhang and Y. Liu.References
- Fabrizio Andreatta, Eyal Z. Goren, Benjamin Howard, and Keerthi Madapusi Pera, Faltings heights of abelian varieties with complex multiplication, Ann. of Math. (2) 187 (2018), no. 2, 391–531. MR 3744856, DOI 10.4007/annals.2018.187.2.3
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI 10.1007/BFb0078364
- Rolf Berndt and Ulf Kuehn, On Kudla’s Green function for signature $(2,2)$, part I, arXiv:1205.6417, 2012.
- Rolf Berndt and Ulf Kuehn, On Kudla’s Green function for signature $(2,2)$ Part II, arXiv:1209.3949, 2012
- Spencer Bloch, Algebraic cycles and values of $L$-functions, J. Reine Angew. Math. 350 (1984), 94–108. MR 743535, DOI 10.1515/crll.1984.350.94
- Spencer Bloch, Height pairings for algebraic cycles, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 119–145. MR 772054, DOI 10.1016/0022-4049(84)90032-X
- Richard E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), no. 2, 219–233. MR 1682249, DOI 10.1215/S0012-7094-99-09710-7
- Jan Hendrik Bruinier and Shaul Zemel, Special cycles on toroidal compactifications of orthogonal Shimura varieties, Math. Ann. 384 (2022), no. 1-2, 309–371. MR 4476226, DOI 10.1007/s00208-021-02271-x
- Jan H. Bruinier, José I. Burgos Gil, and Ulf Kühn, Borcherds products and arithmetic intersection theory on Hilbert modular surfaces, Duke Math. J. 139 (2007), no. 1, 1–88. MR 2322676, DOI 10.1215/S0012-7094-07-13911-5
- Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modularity of generating series of divisors on unitary Shimura varieties, Astérisque 421, Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura (2020), 7–125 (English, with English and French summaries). MR 4183376, DOI 10.24033/ast
- Jan Hendrik Bruinier, Regularized theta lifts for orthogonal groups over totally real fields, J. Reine Angew. Math. 672 (2012), 177–222. MR 2995436, DOI 10.1515/crelle.2011.163
- Jan Hendrik Bruinier and Benjamin Howard, Arithmetic volumes of unitary Shimura varieties, arXiv:2105.11274, 2021.
- Jan Hendrik Bruinier and Martin Westerholt-Raum, Kudla’s modularity conjecture and formal Fourier-Jacobi series, Forum Math. Pi 3 (2015), e7, 30. MR 3406827, DOI 10.1017/fmp.2015.6
- Jan Hendrik Bruinier and Tonghai Yang, Arithmetic degrees of special cycles and derivatives of Siegel Eisenstein series, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 5, 1613–1674. MR 4244514, DOI 10.4171/JEMS/1040
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI 10.1017/S1474748007000011
- Sungmun Cho and Takuya Yamauchi, A reformulation of the Siegel series and intersection numbers, Math. Ann. 377 (2020), no. 3-4, 1757–1826. MR 4126907, DOI 10.1007/s00208-020-01999-2
- Sungyoon Cho, Special cycles on unitary Shimura varieties with minuscule parahoric level structure, arXiv:2002.00172, 2020.
- Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Leonard Eugene Dickson, History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966. MR 245500
- Tuoping Du and Tonghai Yang, Arithmetic Siegel-Weil formula on $X_0(N)$, Adv. Math. 345 (2019), 702–755. MR 3901671, DOI 10.1016/j.aim.2019.01.015
- Stephan Ehlen and Siddarth Sankaran, On two arithmetic theta lifts, Compos. Math. 154 (2018), no. 10, 2090–2149. MR 3867297, DOI 10.1112/s0010437x18007327
- Tony Feng, Zhiwei Yun, and Wei Zhang, Higher Siegel–Weil formula for unitary groups: the non-singular terms, arXiv:2103.11514, 2021.
- Tony Feng, Zhiwei Yun, and Wei Zhang, Higher theta series for unitary groups over function fields, arXiv:2110.07001, 2021.
- Eberhard Freitag and Carl Friedrich Hermann, Some modular varieties of low dimension, Adv. Math. 152 (2000), no. 2, 203–287. MR 1764105, DOI 10.1006/aima.1998.1882
- Jens Funke and John Millson, The geometric theta correspondence for Hilbert modular surfaces, Duke Math. J. 163 (2014), no. 1, 65–116. MR 3161312, DOI 10.1215/00127094-2405279
- Wee Teck Gan, Theta correspondence: recent progress and applications, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 343–366. MR 3728618
- Wee Teck Gan and Atsushi Ichino, Formal degrees and local theta correspondence, Invent. Math. 195 (2014), no. 3, 509–672. MR 3166215, DOI 10.1007/s00222-013-0460-5
- Wee Teck Gan, Yannan Qiu, and Shuichiro Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no. 3, 739–831. MR 3279536, DOI 10.1007/s00222-014-0509-0
- Luis E. Garcia and Siddarth Sankaran, Green forms and the arithmetic Siegel-Weil formula, Invent. Math. 215 (2019), no. 3, 863–975. MR 3935034, DOI 10.1007/s00222-018-0839-4
- Joseph Gierster, Ueber Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante, Math. Ann. 21 (1883), no. 1, 1–50 (German). MR 1510185, DOI 10.1007/BF01442611
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562. MR 909238, DOI 10.1007/BF01458081
- Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), no. 2, 321–326. MR 833193, DOI 10.1007/BF01388810
- Benedict H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), no. 2, 287–313. MR 1474159, DOI 10.1007/s002220050186
- Benedict H. Gross, Heegner points and representation theory, Heegner points and Rankin $L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 37–65. MR 2083210, DOI 10.1017/CBO9780511756375.005
- Benedict H Gross, Incoherent definite spaces and Shimura varieties, arXiv:2005.05188, 2020.
- Benedict H. Gross and Kevin Keating, On the intersection of modular correspondences, Invent. Math. 112 (1993), no. 2, 225–245. MR 1213101, DOI 10.1007/BF01232433
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Jonathan Hanke, Quadratic forms and automorphic forms, Quadratic and higher degree forms, Dev. Math., vol. 31, Springer, New York, 2013, pp. 109–168. MR 3156556, DOI 10.1007/978-1-4614-7488-3_{5}
- Michael Harris, Stephen S. Kudla, and William J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941–1004. MR 1327161, DOI 10.1090/S0894-0347-96-00198-1
- Qiao He, Chao Li, Yousheng Shi, and Tonghai Yang, A proof of the Kudla-Rapoport conjecture for Krämer models, arXiv:2208.07988, 2022.
- Qiao He, Yousheng Shi, and Tonghai Yang, The Kudla-Rapoport conjecture at a ramified prime, arXiv:2011.01356, 2020.
- Qiao He, Yousheng Shi, and Tonghai Yang, Kudla-Rapoport conjecture at ramified primes, arXiv:2208.07992, 2022.
- Yumiko Hironaka, Local zeta functions on Hermitian forms and its application to local densities, J. Number Theory 71 (1998), no. 1, 40–64. MR 1631034, DOI 10.1006/jnth.1998.2237
- Yumiko Hironaka, Spherical functions on $U(2n)/(U(n)\times U(n))$ and Hermitian Siegel series, Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 120–159. MR 2908038, DOI 10.1142/9789814355605_{0}006
- F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113. MR 453649, DOI 10.1007/BF01390005
- Fritz Hörmann, The geometric and arithmetic volume of Shimura varieties of orthogonal type, CRM Monograph Series, vol. 35, American Mathematical Society, Providence, RI, 2014. MR 3244236, DOI 10.1090/crmm/035
- Benjamin Howard, Linear invariance of intersections on unitary Rapoport-Zink spaces, Forum Math. 31 (2019), no. 5, 1265–1281. MR 4000587, DOI 10.1515/forum-2019-0023
- Benjamin Howard and Keerthi Madapusi Pera, Arithmetic of Borcherds products, Astérisque 421, Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura (2020), 187–297 (English, with English and French summaries). MR 4183378, DOI 10.24033/ast
- Benjamin Howard and Georgios Pappas, On the supersingular locus of the $\textrm {GU}(2,2)$ Shimura variety, Algebra Number Theory 8 (2014), no. 7, 1659–1699. MR 3272278, DOI 10.2140/ant.2014.8.1659
- Adolf Hurwitz, Ueber Relationen zwischen Classenanzahlen binärer quadratischer Formen von negativer Determinante, Math. Ann. 25 (1885), no. 2, 157–196 (German). MR 1510301, DOI 10.1007/BF01446402
- Tamotsu Ikeda and Hidenori Katsurada, An explicit formula for the Siegel series of a quadratic form over a non-archimedean local field, J. Reine Angew. Math. 783 (2022), 1–47. MR 4373241, DOI 10.1515/crelle-2021-0061
- Carl Gustav Jacob Jacobi, Fundamenta nova theoriae functionum ellipticarum. auctore d. carolo gustavo iacobo iacobi…, sumtibus fratrum Borntræger, 1829.
- Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White, Endoscopic Classification of Representations: Inner Forms of Unitary Groups, arXiv:1409.3731, 2014.
- Hidenori Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), no. 2, 415–452. MR 1680317, DOI 10.1353/ajm.1999.0013
- Mark Kisin, Sug Woo Shin, and Yihang Zhu, Cohomology of certain Shimura varieties of abelian type, in preparation.
- Yoshiyuki Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92 (1983), 145–152. MR 726146, DOI 10.1017/S0027763000020626
- V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR 1106906
- L. Kronecker, Ueber die Anzahl der verschiedenen Classen quadratischer Formen von negativer Determinante, J. Reine Angew. Math. 57 (1860), 248–255 (German). MR 1579129, DOI 10.1515/crll.1860.57.248
- Stephen Kudla, Notes on the local theta correspondence, available online, http://www.math.toronto.edu/skudla/castle.pdf, unpublished notes, 1996,
- Stephen S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), no. 1, 39–78. MR 1427845, DOI 10.1215/S0012-7094-97-08602-6
- Stephen S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2) 146 (1997), no. 3, 545–646. MR 1491448, DOI 10.2307/2952456
- Stephen S. Kudla, Derivatives of Eisenstein series and arithmetic geometry, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 173–183. MR 1957031
- Stephen S. Kudla, Derivatives of Eisenstein series and generating functions for arithmetic cycles, Astérisque 276 (2002), 341–368. Séminaire Bourbaki, Vol. 1999/2000. MR 1886765
- Stephen S. Kudla, Special cycles and derivatives of Eisenstein series, Heegner points and Rankin $L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 243–270. MR 2083214, DOI 10.1017/CBO9780511756375.009
- Stephen S. Kudla, Remarks on generating series for special cycles on orthogonal Shimura varieties, Algebra Number Theory 15 (2021), no. 10, 2403–2447. MR 4377855, DOI 10.2140/ant.2021.15.2403
- Stephen S. Kudla and John J. Millson, The theta correspondence and harmonic forms. I, Math. Ann. 274 (1986), no. 3, 353–378. MR 842618, DOI 10.1007/BF01457221
- Stephen S. Kudla and John J. Millson, Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Inst. Hautes Études Sci. Publ. Math. 71 (1990), 121–172. MR 1079646, DOI 10.1007/BF02699880
- Stephen S. Kudla and Stephen Rallis, On the Weil-Siegel formula, J. Reine Angew. Math. 387 (1988), 1–68. MR 946349, DOI 10.1515/crll.1988.391.65
- Stephen S. Kudla and Stephen Rallis, On the Weil-Siegel formula. II. The isotropic convergent case, J. Reine Angew. Math. 391 (1988), 65–84. MR 961164, DOI 10.1515/crll.1988.391.65
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no. 1, 1–80. MR 1289491, DOI 10.2307/2118540
- Stephen S. Kudla and Michael Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155–244. MR 1717613, DOI 10.1515/crll.1999.076
- Stephen S. Kudla and Michael Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 695–756 (English, with English and French summaries). MR 1834500, DOI 10.1016/S0012-9593(00)01051-X
- Stephen S. Kudla and Michael Rapoport, Height pairings on Shimura curves and $p$-adic uniformization, Invent. Math. 142 (2000), no. 1, 153–223. MR 1784798, DOI 10.1007/s002220000087
- Stephen Kudla and Michael Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math. 184 (2011), no. 3, 629–682. MR 2800697, DOI 10.1007/s00222-010-0298-z
- Stephen Kudla and Michael Rapoport, Special cycles on unitary Shimura varieties II: Global theory, J. Reine Angew. Math. 697 (2014), 91–157. MR 3281653, DOI 10.1515/crelle-2012-0121
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, On the derivative of an Eisenstein series of weight one, Internat. Math. Res. Notices 7 (1999), 347–385. MR 1683308, DOI 10.1155/S1073792899000185
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161, Princeton University Press, Princeton, NJ, 2006. MR 2220359, DOI 10.1515/9781400837168
- Chao Li and Yifeng Liu, Chow groups and $L$-derivatives of automorphic motives for unitary groups, Ann. of Math. (2) 194 (2021), no. 3, 817–901. MR 4334978, DOI 10.4007/annals.2021.194.3.6
- Chao Li and Yifeng Liu, Chow groups and $L$-derivatives of automorphic motives for unitary groups, II, Forum Math. Pi 10 (2022), Paper No. e5, 71. MR 4390300, DOI 10.1017/fmp.2022.2
- Chao Li and Wei Zhang, Kudla-Rapoport cycles and derivatives of local densities, J. Amer. Math. Soc. 35 (2022), no. 3, 705–797. MR 4433078, DOI 10.1090/jams/988
- Chao Li and Wei Zhang, On the arithmetic Siegel-Weil formula for GSpin Shimura varieties, Invent. Math. 228 (2022), no. 3, 1353–1460. MR 4419634, DOI 10.1007/s00222-022-01106-z
- Yifeng Liu, Arithmetic theta lifting and $L$-derivatives for unitary groups, I, Algebra Number Theory 5 (2011), no. 7, 849–921. MR 2928563, DOI 10.2140/ant.2011.5.849
- Yifeng Liu, Arithmetic theta lifting and $L$-derivatives for unitary groups, II, Algebra Number Theory 5 (2011), no. 7, 923–1000. MR 2928564, DOI 10.2140/ant.2011.5.923
- Yifeng Liu, Theta correspondence for almost unramified representations of unitary groups, J. Number Theory 230 (2022), 196–224. MR 4327954, DOI 10.1016/j.jnt.2021.03.027
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- Keerthi Madapusi Pera, Integral canonical models for spin Shimura varieties, Compos. Math. 152 (2016), no. 4, 769–824. MR 3484114, DOI 10.1112/S0010437X1500740X
- Yota Maeda, The modularity of special cycles on orthogonal Shimura varieties over totally real fields under the Beilinson-Bloch conjecture, Canad. Math. Bull. 64 (2021), no. 1, 39–53. MR 4242991, DOI 10.4153/S000843952000020X
- Yota Maeda, Modularity of special cycles on unitary Shimura varieties over CM-fields, Acta Arith. 204 (2022), no. 1, 1–18. MR 4450277, DOI 10.4064/aa210202-12-4
- Andreas Mihatsch and Wei Zhang, On the Arithmetic Fundamental Lemma conjecture over a general $p$-adic field, arXiv:2104.02779, 2021.
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
- Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248. MR 3338302, DOI 10.1090/memo/1108
- James Newton and Jack A. Thorne, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. Inst. Hautes Études Sci. 134 (2021), 117–152. MR 4349241, DOI 10.1007/s10240-021-00126-4
- I. Piatetski-Shapiro and S. Rallis, $L$-functions of automorphic forms on simple classical groups, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 251–261. MR 803369
- Dipendra Prasad, Weil representation, Howe duality, and the theta correspondence, Theta functions: from the classical to the modern, CRM Proc. Lecture Notes, vol. 1, Amer. Math. Soc., Providence, RI, 1993, pp. 105–127. MR 1224052, DOI 10.1090/crmp/001/03
- Dipendra Prasad, A brief survey on the theta correspondence, Number theory (Tiruchirapalli, 1996) Contemp. Math., vol. 210, Amer. Math. Soc., Providence, RI, 1998, pp. 171–193. MR 1478492, DOI 10.1090/conm/210/02790
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439, DOI 10.1515/9781400882601
- Eugenia Rosu and Dylan Yott, Generating series of a new class of orthogonal Shimura varieties, Algebra Number Theory 14 (2020), no. 10, 2743–2772. MR 4190417, DOI 10.2140/ant.2020.14.2743
- Siddarth Sankaran, Unitary cycles on Shimura curves and the Shimura lift II, Compos. Math. 150 (2014), no. 12, 1963–2002. MR 3292291, DOI 10.1112/S0010437X14007507
- Siddarth Sankaran, Improper intersections of Kudla-Rapoport divisors and Eisenstein series, J. Inst. Math. Jussieu 16 (2017), no. 5, 899–945. MR 3709001, DOI 10.1017/S1474748015000109
- Siddarth Sankaran, Arithmetic special cycles and Jacobi forms, arXiv:2002.03499, 2020.
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216, DOI 10.1007/978-1-4684-9884-4
- Ananth N. Shankar, Arul Shankar, Yunqing Tang, and Salim Tayou, Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields, Forum Math. Pi 10 (2022), Paper No. e21, 49. MR 4490194, DOI 10.1017/fmp.2022.14
- Yousheng Shi, Special cycles on unitary Shimura curves at ramified primes, arXiv:2004.07158, 2020.
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, DOI 10.2307/1968644
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. II, Ann. of Math. (2) 37 (1936), no. 1, 230–263 (German). MR 1503276, DOI 10.2307/1968694
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2) 38 (1937), no. 1, 212–291 (German). MR 1503335, DOI 10.2307/1968520
- Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. I, Math. Ann. 124 (1951), 17–54 (German). MR 67930, DOI 10.1007/BF01343549
- Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. II, Math. Ann. 124 (1952), 364–387 (German). MR 67931, DOI 10.1007/BF01343576
- C. Soulé, Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. MR 1208731, DOI 10.1017/CBO9780511623950
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI 10.1090/pspum/055.1/1265523
- Ulrich Terstiege, Intersections of arithmetic Hirzebruch-Zagier cycles, Math. Ann. 349 (2011), no. 1, 161–213. MR 2753800, DOI 10.1007/s00208-010-0520-8
- Ulrich Terstiege, Intersections of special cycles on the Shimura variety for $\rm GU(1,2)$, J. Reine Angew. Math. 684 (2013), 113–164. MR 3181558, DOI 10.1515/crelle-2011-0006
- Foreword [Argos Seminar on Intersections of Modular Correspondences], Astérisque 312 (2007), vii–xiv. Held at the University of Bonn, Bonn, 2003–2004. MR 2340365
- Inken Vollaard and Torsten Wedhorn, The supersingular locus of the Shimura variety of $\textrm {GU}(1,n-1)$ II, Invent. Math. 184 (2011), no. 3, 591–627. MR 2800696, DOI 10.1007/s00222-010-0299-y
- Fu-Tsun Wei, On derivatives of Siegel-Eisenstein series over global function fields, J. Lond. Math. Soc. (2) 100 (2019), no. 2, 518–544. MR 4017153, DOI 10.1112/jlms.12222
- André Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1–87 (French). MR 223373, DOI 10.1007/BF02391774
- Jiacheng Xia, Some Cases of Kudla’s Modularity Conjecture for Unitary Shimura Varieties, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–Chalmers Tekniska Hogskola (Sweden). MR 4361096
- Hang Xue, Arithmetic theta lifts and the arithmetic Gan-Gross-Prasad conjecture for unitary groups, Duke Math. J. 168 (2019), no. 1, 127–185. MR 3909895, DOI 10.1215/00127094-2018-0039
- Shunsuke Yamana, L-functions and theta correspondence for classical groups, Invent. Math. 196 (2014), no. 3, 651–732. MR 3211043, DOI 10.1007/s00222-013-0476-x
- Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Kohnen-Zagier theorem over totally real fields, Compos. Math. 145 (2009), no. 5, 1147–1162. MR 2551992, DOI 10.1112/S0010437X08003734
- Zhiwei Yun and Wei Zhang, Shtukas and the Taylor expansion of $L$-functions, Ann. of Math. (2) 186 (2017), no. 3, 767–911. MR 3702678, DOI 10.4007/annals.2017.186.3.2
- Zhiwei Yun and Wei Zhang, Shtukas and the Taylor expansion of $L$-functions (II), Ann. of Math. (2) 189 (2019), no. 2, 393–526. MR 3919362, DOI 10.4007/annals.2019.189.2.2
- D. Zagier, Modular points, modular curves, modular surfaces and modular forms, Workshop Bonn 1984 (Bonn, 1984) Lecture Notes in Math., vol. 1111, Springer, Berlin, 1985, pp. 225–248. MR 797423, DOI 10.1007/BFb0084592
- Don Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 1–103. MR 2409678, DOI 10.1007/978-3-540-74119-0_{1}
- Shou-Wu Zhang, Gross-Zagier formula for $\textrm {GL}_2$, Asian J. Math. 5 (2001), no. 2, 183–290. MR 1868935, DOI 10.4310/AJM.2001.v5.n2.a1
- Shouwu Zhang, Linear forms, algebraic cycles, and derivatives of L-series, Sci. China Math. 62 (2019), no. 11, 2401–2408. MR 4028281, DOI 10.1007/s11425-019-1589-7
- Wei Zhang, Modularity of generating functions of special cycles on Shimura varieties, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Columbia University. MR 2717745
- Wei Zhang, The Birch–Swinnerton-Dyer conjecture and Heegner points: a survey, Current developments in mathematics 2013, Int. Press, Somerville, MA, 2014, pp. 169–203. MR 3307716, DOI 10.4310/CDM.2013.v2013.n1.a3
- W. Zhang, Weil representation and arithmetic fundamental lemma, Ann. of Math. (2) 193 (2021), no. 3, 863–978. MR 4250392, DOI 10.4007/annals.2021.193.3.5
Bibliographic Information
- Chao Li
- Affiliation: Columbia University, Department of Mathematics, 2990 Broadway, New York, New York 10027
- MR Author ID: 1175223
- Email: chaoli@math.columbia.edu
- Received by editor(s): October 18, 2021
- Published electronically: January 17, 2023
- Additional Notes: The author’s work is partially supported by the NSF grant DMS-2101157.
- © Copyright 2023 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 60 (2023), 327-370
- MSC (2020): Primary 11G18, 11G40; Secondary 11E25, 11F27, 14C25
- DOI: https://doi.org/10.1090/bull/1786
- MathSciNet review: 4588043
Dedicated: In loving memory of my mother, Xiaoping Mao (1965–2022)