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F. S. MACAULAY:

FROM PLANE CURVES TO GORENSTEIN RINGS

DAVID EISENBUD AND JEREMY GRAY

Abstract. Francis Sowerby Macaulay began his career working on Brill and
Noether’s theory of algebraic plane curves and their interpretation of the
Riemann–Roch and Cayley–Bacharach theorems; in fact it is Macaulay who
first stated and proved the modern form of the Cayley–Bacharach theorem.
Later in his career Macaulay developed ideas and results that have become im-
portant in modern commutative algebra, such as the notions of unmixedness,
perfection (the Cohen–Macaulay property), and super-perfection (the Goren-
stein property), work that was appreciated by Emmy Noether and the people
around her. He also discovered results that are now fundamental in the theory
of linkage, but this work was forgotten and independently rediscovered much
later. The name of a computer algebra program (now Macaulay2) recognizes
that much of his work is based on examples created by refined computation.

Though he never spoke of the connection, the threads of Macaulay’s work
lead directly from the problems on plane curves to his later theorems. In this
paper we will explain what Macaulay did, and how his results are connected.
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1. Introduction

By 1850 a theory of algebraic curves in the complex projective plane was being
developed. Riemann’s work in 1857 introduced a radical new point of view: the
central object of his theory was a (topological) finite branched cover of the sphere,
carrying many possible complex structures, each of which could be represented as an
algebraic plane curve (with singular points). A central result, connecting the topol-
ogy of the covering space with the analytic properties of the meromorphic functions
defined on it, is now called the Riemann–Roch theorem. Among other applications,
it is the key to understanding maps from an algebraic curve to projective space,
and its generalizations still have a central place in algebraic geometry.

However, Riemann’s theory depended on what he named the “Dirichlet princi-
ple”.1 This asserts that the solution to a certain differential equation is a minimizer
of an appropriate energy function. Riemann, however, asserted the existence of a
minimizer, though this actually fails in some other cases, and this was regarded
with suspicion. In the 1870s, 1880s, and 1890s, Alexander Brill and Max Noether,
the leading German algebraic geometers of the day, set out to re-interpret the
Riemann–Roch theorem and the closely related Cayley–Bacharach theorem in the
context of an algebraic curve C in the complex projective plane without reference
to the branched coverings. Their project necessarily involved the study of singu-
lar plane curves, and they encountered many difficulties associated with what they
thought of as the “point groups” that arise when curves intersect at singular points,
objects that would now be treated as finite subschemes of the plane.

From his first paper [Mac95] until 1904, Macaulay sought to extend this work,
apparently without direct contact with the group around Brill and Noether. He
did subtle and partly definitive work on the problems that arose in this theory,
which we will describe in some detail below. One of the high points of his work was
a result in [Mac00, §4] that he called the “Generalized Riemann–Roch theorem”,
and which is now well-known as the Cayley–Bacharach theorem (misattributed
to Bacharach in [EGH96]); we give Macaulay’s statement, in Theorem 1, below.
Macaulay’s work in this period was recognized with an invitation to speak at the
Heidelberg International Congress of Mathematicians in 1904 where he laid out
conjectures that would have greatly extended some of Noether’s work, but which
were incorrect because of the possibilities of what would soon be understood as
embedded primes in a primary decomposition.

The appearance of Lasker’s paper [Las05] introducing primary decomposition
(and much else) changed the landscape of the theory of polynomial rings, and
the possibilities for extending Macaulay’s ideas. The second period of Macaulay’s
research began with a ground-breaking paper published in 1913 in which Macaulay
took full account of these possibilities. It is there that the concept of a perfect ideal
(now Cohen–Macaulay ideal) was introduced, and many results that now belong to
the theory of linkage were proven.2

1See [Mon75] and [Bot86].
2In 1972 the first author of this note was in Oberwolfach, when he happened to meet Alexander

Ostrowski, who was already active in Göttingen at the time of the First World War. Ostrowski,
who worked on number theory, said that he’d originally been interested in commutative alge-
bra, and indeed Macaulay cites some of his work (see §8, below). Such was the originality of
Macaulay’s work that, hearing about it during the war with little chance of having direct contact
with Macaulay, Ostrowski said he felt that he had better switch fields.



F. S. MACAULAY: FROM PLANE CURVES TO GORENSTEIN RINGS 373

By the time of Macaulay’s last paper [Mac34] he had introduced and explored
several of the central concepts of modern commutative algebra and was in contact
with the Göttingen school; he was the first to write about Emmy Noether’s work
in English.

At least three of Macaulay’s contributions are well known today: the definition
of perfect ideals (roughly, those defining Cohen–Macaulay rings); the proof that
ideals of maximal minors of a matrix are perfect if they have generic codimension;
and the characterization of Hilbert functions (all in the context of homogeneous
polynomial ideals). Other results, such as those on Gorenstein ideals and linkage,
were forgotten and subsequently discovered independently, and Macaulay’s insight
there is rarely credited. Macaulay’s only well-known work today was published as
the Cambridge Tract in Mathematics No. 19 [Mac16], to which we will refer as
the Tract. Unlike the work of Hilbert before him or Noether after him, the style
and language now seem old-fashioned, and the book is quite difficult for a modern
algebraist to read.

Part of the difficulty in reading Macaulay’s work comes from his extensive use
of a method for representing an ideal3 by a sorted vector space basis that could be
thought of as an early version of a Gröbner basis. His name is now known to many
through the computer program Macaulay2 [GS93], which makes such computations
vastly easier. Though Macaulay did not himself point to the connections, the results
and ideas of his later work seem from a modern point of view to be direct responses
to the problems with which he and others had struggled many years before. The
purpose of this note is to explain what we see as the long arc of Macaulay’s work,
and to show how his later work can be seen as responding to—and solving—the
problems he encountered as a beginner. In [EG] (in preparation) we trace the
historical development in more detail.

Macaulay’s career. Born in 1852, Macaulay was educated at St John’s College,
Cambridge, graduating 8th wrangler in January 1883 (this means he graduated 8th
in order of merit). In 1891 he got a B.Sc. from the University of London, and a
D.Sc. in 1898 on the strength of his first published paper.

Macaulay became a highly successful and professionally active high-school teach-
er at the prestigious public school—to use the British term—St. Paul’s in London.
Several of his students were outstanding, among them J. E. Littlewood, who com-
pared Macaulay’s teaching favorably with what he later received in Cambridge. In
the early period of his research, up to 1904, Macaulay worked on matters related to
the Riemann–Roch and Cayley–Bacharach theorems in the theory of possibly sin-
gular plane algebraic curves, building on the work of the group around Alexander
Brill and Max Noether. When Macaulay was unexpectedly passed over for the post
of Head of Mathematics at his school, he retired in 1911 at age 49, and devoted
himself to research.

Macaulay had begun his research career under the guidance, as he tells us near
the start of his first paper, of Charlotte Angas Scott, who had famously done well

3A note on terminology: In the period under discussion what we would call an “ideal” was
generally called a “module”; outside of quotations, we have replaced the term “module”, by
“ideal”.
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in the Cambridge Tripos Examinations in 1880, and they kept in correspondence
about her work and his for some time.4

Macaulay’s recognition in England was slight. After his retirement from St.
Paul’s he eventually moved to Cambridge, but probably did not become a member
of the circle around Henry Frederick Baker, the leading English algebraic geometer
of the time. Macaulay’s work went in a different direction from Baker’s, and Baker
wrote a somewhat dismissive obituary [Bak38] when Macaulay died.

Macaulay was better appreciated by Emmy Noether and her school. Van der
Waerden reports [vdW75, p. 33] that when he arrived in Göttingen to work with
Emmy Noether, Macaulay’s Cambridge Tract was one of three sources he had to
study in addition to Noether’s own work, and he credits sections of Macaulay’s
book as the sources of his treatment of parts of ring theory and elimination theory.

2. Early work: The Riemann–Roch theorem

and the Clebsch–Brill–Noether program

The work of Bernard Riemann in the 1850s and 1860s changed the direction
of the theory of algebraic curves, replacing curves in the complex projective plane
with branched coverings of the complex projective line—the Riemann sphere—and
questions about tangents and secants by questions about spaces of meromorphic
functions with bounded pole orders. Riemann’s starting point was the existence of
two independent functions, s, z on the covering space, where z is the coordinate on
the Riemann sphere and s is a multivalued function on the sphere, connected by an
algebraic equation f(s, z) = 0. From a modern point of view, the Riemann surface

is then the normalization C̃ of the closure C ⊂ P
2 of the affine plane curve defined

by f .
However, Riemann’s work, depending on the then-unproven “Dirichlet prin-

ciple”, was far from completely accepted. First Alfred Clebsch and then, af-
ter Clebsch’s death in 1872, Alexander Brill and Max Noether set out to re-
prove the Riemann–Roch theorem algebraically, within the theory of plane curves.
Macaulay’s later work was closely related to what Max Noether called the Funda-
mental Theorem (stated in [Noe73]) and reproved and named in [Noe87, p. 410],
and Macaulay contributed importantly to the crucial question of residuation, as
well, work that would reappear in a much wider context in Macaulay’s later pa-
pers.

4Scott was ranked between the 7th and the 8th students in order of merit in the Cambridge
Tripos of 1880, but only unofficially because Cambridge at that time did not allow women to read
for a degree. This sufficiently embarrassed the University authorities that they allowed women to
sit the exams officially in future (but not to take a degree, not until 1945!). Scott then obtained a
D.Sc. from the University of London in 1885, but unable to get a job in Britain she left for America,
and became one of the first professors at the new, women’s College of Bryn Mawr, Pennsylvania
in September 1885 (the college opened officially on 23 September that year). She went on to
have a distinguished career. She was the dissertation advisor to seven students, putting Bryn
Mawr third, behind Chicago and Cornell, at a time when women were winning three times the
percentage of PhDs in America that they were to win in the 1950s. Scott alone directed three of
the nine PhDs successfully completed by American women in the 19th century. She was influential
from the start in the American Mathematical Society and became its vice-president in 1905–06.
For information on Scott, see Macaulay’s obituary of her (Macaulay 1932) [25], (Kenschaft 1989)
[Ken89], and the references cited therein.
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2.1. Noether’s Fundamental Theorem. This result, sometimes referred to as
the “AF +BG” theorem, was the central result necessary to prove that the linear
systems cut out on a curve C by adjoint curves are complete. The Fundamental
Theorem says that if a projective plane curve E : H(X,Y, Z) = 0 contains all the
intersections of the curves C : F (X,Y, Z) = 0 and D : G(X,Y, Z) = 0, which have
no common components, then H is in the homogeneous ideal generated by F and G;
in other words, it gives a local test, for each point of the set-theoretic intersection
of C and D, for membership in the homogeneous ideal.

The first step in such a result is to define what it means for E to contain the
intersection of C and D at a point p. Since the question is local around p, we may
assume that the point p is (0, 0, 1) and replace F,G,H by their dehomogenized
versions f(x, y), g(x, y), h(x, y), where x = X/Z, y = Y/Z. Noether said that
E contains the intersection of C,D at p if h is in the ideal generated by f, g in
the power series ring C[[x, y]]. This coincides with the modern scheme-theoretic
definition.

The proof Noether gave first asserted that it was enough to treat the affine case,
and then used the theory of resultants—relatively unfamiliar at the time—to prove
the theorem. The result attracted quick attention; for example [Vos87] and [Ber89]
offered what they claimed were improved or clarified proofs, and Noether himself
returned to give what he considered more complete proofs several times, though
we found his expositions difficult to read. He also maintained that his orginal
paper contained an adequate proof of the case where the intersections are not too
complicated.

Primary decomposition was first established by Lasker in 1905, more than 30
years after Noether enunciated the Fundamental Theorem; but in Lasker’s terms,
Noether’s assertion was that H is in the homogeneous ideal (F,G) if it belongs to
every isolated component of (F,G). The truth of the assertion thus depends on
the statement that (F,G) has no primary component associated to the “irrelevant”
ideal (X,Y, Z). The Fundamental Theorem cannot be reduced to the affine case
without somehow taking care of this extra possibility and the corresponding result
that would decide whether H ∈ (F1, F2, F3) is true in the affine and false in the
projective case, something that went unremarked or unnoticed.

In modern terms, the absence of an (X,Y, Z)-primary component follows from
the fact that coordinates can be chosen so that none of the intersection points lies
on the line Z = 0, and that the three forms (F,G,Z) are a regular sequence. This
is essentially what Brill and Noether finally use in [BN94, p. 353] to deduce the
projective case from the affine case. Here is the way they explain it.

Suppose that F (X,Y, Z) and G(X,Y, Z) are homogeneous polynomials with no
common factors, and no common zeros on the line Z = 0, and that H(X,Y, Z) is
a homogeneous polynomial containing the clusters of points common to the curves
F = 0 and G = 0. Let f(x, y), g(x, y), h(x, y) be the polynomials that arise from
F,G,H by setting Z = 1, and suppose we have proven that h = af + bg, where
a, b are polynomials. We must show that there are homogeneous polynomials A,B
such that H = AF +BG.

Note that h(x, y) may be written as ZdegHh(X/Z, Y/Z), and similarly for F,G.
Moreover, a, b are dehomogenizations of some homogeneous polynomials A′, B′.
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Thus we may write

H(X,Y, Z) = ZdegHh(X/Z, Y/Z)

= ZdegH
(
a(X/Z, Y/Z)f(X/Z, Y/Z) + b(X/Z, Y/Z)g(X/Z, Y/Z)

)
= ZdegH

(
Z− degA′−degFA′F + Z− degB′−degGB′G

)
,

and thus, clearing the negative powers of Z,

ZmH = A′′F +B′′G

with A′′, B′′ homogeneous, for some m ≥ 0, which we may take to be minimal.
If m > 0, this leads to a contradiction: Since F,G have no common zero on the

line Z = 0, the polynomials F (X,Y, 0) and G(X,Y, 0) have no common factors.
Thus A′′(X,Y, 0) = C(X,Y )G(X,Y, 0), so A′′(X,Y, Z) = C(X,Y )G(X,Y, Z) +
ZA′′′ for some form A′′′. It follows that ZmH = ZA′′′F + B′′′G for some homo-
geneous B′′′. But now Z must also divide B′′′, and dividing both sides by Z, we
have reduced m. Since m was assumed minimal, this is a contradiction; so m = 0,
completing the argument.

2.2. Residuation. Brill and Noether represented divisors on the normalization C̃
of C as differences of intersections of C with other plane curves D having specified
behavior at the singular points of C (“satisfying the conditions of adjunction”).
These intersections could occur at singular points of C and D, have arbitrary be-
havior there, and in particular could have high multiplicity. Macaulay called such
intersections “clusters” of points. A cluster at (say) the origin corresponding to an
intersection of curves f1(x, y) = 0, . . . , fs(x, y) = 0 was considered as correspond-
ing to the ideal generated by f1 = 0, . . . , fs = 0 in the power series ring—today
we would identify this as a finite subscheme of P2. The statement of Brill and
Noether’s proposed version of the Riemann–Roch theorem required that one could
form the difference, or residual, of one cluster in another γ′′ := γ \ γ′ when γ′ was
contained in γ, with the property that γ \ γ′′ = γ′.

There is no difficulty about this when C is smooth, and it is possible to do this
in the singular case, as Macaulay showed, when γ = C∩D is the intersection of two
curves, C,D, as was necessary for the Riemann–Roch theorem; but if γ = C∩D∩D′

is the common intersection of C with two (or more) curves D,D′, it may not be
possible. Here is a concrete example.

Example 1. Consider the three irreducible curves that intersect at the origin in the
affine plane which are defined by the three polynomials x2+y3, xy+(x+y)3, y2+x3.
In the power series ring C[[x, y]] these three generate the ideal I = (x2, xy, y2),
corresponding to a cluster of points γ of multiplicity 3. The intersection of the line
x = 0 with γ is a cluster β represented by the ideal (x, y2), which has multiplicity
2, so the residual cluster γ \ β should have multiplicity 1, and thus must be the
unique cluster α of multiplicity 1 contained in γ, represented by the ideal (x, y). So
far so good: but if β′ is the cluster in which y = 0 intersects γ, then γ − β′ = γ as
well, and since β �= β′, we cannot hope for

γ \ (γ \ β) = β.

Macaulay studied a cluster of points γ by studying the corresponding ideal I ⊂
C[[x, y]] of the power series ring. If f ∈ C[[x, y]], then the condition f ∈ I can be
written as a finite set of linear equations on the coefficients of f , which he called the
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modular equations of the cluster. Macaulay observed that some of these equations
could be derived from others, and called γ a t-set point if the minimum number of
equations necessary to derive all the others is t. From a modern point of view, t is
the dimension of the socle (I : (x, y))/I of C[[x, y]]/I. In [Mac99, p. 407] he proved
that residuation in a t-set point is possible if and only if t = 1; again, from a modern
point of view, this condition means that C[[x, y]]/I is Gorenstein. He also showed
that the intersection of two curves without common components always consists of
clusters that are 1-set points, and that any 1-set point has a Noether ideal with just
two generators; in modern language, these are complete intersections, and complete
intersections are the only Gorenstein ideals of codimension 2.

Finally, he showed that if γ is a 1-set point and α ⊂ γ is a t-set point, then the
residual γ − α is an s-set point, where s = t − 1, t or t + 1, anticipating part of a
theorem of Gaeta [Gae52]). He was to develop these ideas far more broadly in his
later work.

2.3. Riemann–Roch and Cayley–Bacharach. In a paper of 1843 [Cay09, p.
211], Arthur Cayley famously quoted Chasles’ 1837 proof that Pascal’s theorem
on the sides of a hexagon inscribed in a conic could be subsumed in the result
that if Γ is the set of nine points of intersection of two cubic curves in the plane,
then any cubic through eight points of Γ automatically passes through the ninth (see
[Cha89]). Cayley went on to state a generalization to the set of points of intersection
of two curves of any degree. His generalization depended on the assumption that
the points of intersection were “sufficiently general”—an assumption that can fail.
Isaak Bacharach, a student of Brill, used Noether’s Fundamental Theorem to prove
a corrected version, in a restricted case, in [Bac86].

In [Mac00, p. 424] Macaulay (again using Noether’s Fundamental Theorem)
proved a much more general version, which is now usually referred to as the Cayley–
Bacharach theorem (and misattributed to Bacharach in [EGH96]). Rather than
using the name Cayley–Bacharach, Macaulay referred to it as the “Generalized
Riemann–Roch Theorem” a name (nearly) justified by the close connection of the
two results. Macaulay began with two definitions. Here N represents a cluster of
points and n a positive integer:

The n (called an n-ic) defect ofN is the degree-of-freedom of a curve
of degree n-ic containing N ; that is, one less than the dimension
of I(N)n, the degree n part of the homogeneous ideal of N . The
n-ic excess of N is the excess of the number N over the number of
independent conditions supplied by N for an n-ic, that is, N minus
the codimension of I(N)n in the space of all forms of degree n.

In these terms, Macaulay’s result is the following:

Theorem 1. If the point-base forming the whole intersection of two curves C�, Cm,
which have no common factor and no intersection at infinity, is divided into any two
residual point-bases N,N ′ and if dn, d

′
n, Dn are the n-ic defects, and en, e

′
n, En the

n-ic excesses, of N,N ′, N+N ′, respectively, then d′n′ = en+Dn′ and e′n′ = dn−Dn,
where n+ n′ = �+m− 3.

For example, in the case treated by Bacharach, the points of Δ lie on a curve of
degree γ − 3 if and only if they fail to impose independent conditions on curves of
this degree, that is, if and only if their (γ − 3)-ic defect is at least 1; and in this
case Macaulay’s theorem says precisely that the number of conditions on forms of
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degree r imposed by the points of Cm ∩ Cn \Δ is strictly less than the number of
conditions imposed on forms of degree r by the points of Cm ∩ Cn, so that some
curves of degree r that contain Cm ∩ Cn \Δ will in fact not contain Cm ∩ Cn. By
this time Macaulay had already done his work on residuals in 1-set points, and
proven that every component of a complete intersection of two curves was a 1-set
point, so in principle he could have allowed the intersection of Cm and Cn to be
nontransverse. But he did not speak of this, and it seems likely that he thought
just of the transverse case.

Like the Riemann–Roch theorem, this version of the Cayley–Bacharach theorem
is about residuals of clusters in complete intersections of curves in the plane, and for
points on a smooth plane curve it is easily seen to be equivalent to the Riemann–
Roch theorem, once one understands the canonical divisor. Macaulay saw it as
a more general result than the Riemann–Roch theorem, and he ignored the ques-
tions about the canonical divisors that would have made the two truly equivalent.
For a detailed modern treatment of the Cayley–Bacharach theorem, with (partially
incorrect) history and generalizations, see [EGH96]. Here is a sketch of the equiva-
lence of the Riemann–Roch and Cayley–Bacharach theorems in the case of smooth
curves:

2.3.1. Riemann–Roch, with the Fundamental Theorem, implies the Cayley–Bachar-
ach theorem. To avoid the problems of the conditions of adjunction, we will consider
only the case of Cayley–Bacharach where C is nonsingular (the case where C and
D have no singular points in common follows easily from this, but the general
case is more delicate). Let Γ = C ∩ D as a divisor on C, and suppose that Γ =
Γ′ + Γ′′, that is, Γ′′ is residual to Γ′ in Γ. Write n, d for the degrees of the curves
C,D, respectively, and let k be an integer with 0 ≤ k ≤ n + d − 3. We write
H for the divisor on C given by the intersection with a line, so that Γ is linearly
equivalent to dH, and γ = nd, γ′, γ′′ for the degrees of Γ,Γ′,Γ′′, respectively. Set
g = (n(n − 3)/2) + 1, the genus of C. Write K := (d − 3)H for the canonical
divisor of C. Using the completeness of the hypersurface series, which follows from
the Fundamental Theorem, we can reformulate the Cayley–Bacharach theorem in
terms accessible to the Riemann–Roch theorem:

• The number of conditions imposed by Γ minus the number imposed by Γ′

on forms of degree k is

N := L(kH − Γ′)− L((k − d)H) = L(kH − Γ′)− L(kH − Γ).

• The failure of Γ′′ to impose independent conditions on forms of degree
d+ e− 3− k is

M := γ′′ − (L((n+ d− 3− k)H)− L((n+ d− 3− k)H − Γ′′))

= γ′′ − L(K + (d− k)H) + L(K + (d− k)H − Γ′′)).

Using the Riemann–Roch theorem and the fact that the degree of the divisor
kH is kd, we see that

N = kd− γ′ − g + 1 + L(K − kH + Γ′)−
(
kd− γ − g + 1 + L(K − kH + Γ)

)
= γ′′ + L(K − kH + Γ′)− L(K − kH + Γ)

= γ′′ + L(K + (d− k)H − Γ′′)− L(K − (d− k)H)

= M,

as required.
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2.3.2. The Cayley–Bacharach theorem implies the Riemann–Roch theorem. Again,
let C be a smooth plane curve of degree n. Let Γ = K = (n− 3)H, where K is the
canonical divisor and H is the class of the intersection of C with a line. Let Γ′′ be
a divisor on C of degree γ′′, and set Γ′ = K − Γ′′. We allow the possibility that
γ′ = n(n−3)−γ′′, the degree of Γ′, is negative, and interpret the Cayley–Bacharach
theorem as asserting the equality of the quantities M,N above in any case. Taking
d = k = n− 3, we have

N = L(kH − Γ′)− L(0H) = L(K − Γ′)− 1 = L(Γ′′)− 1.

On the other hand

M = γ′′ − L(K) + L(K − Γ′′)

and L(K) = g, whence L(Γ′′) = γ′′ − g + 1 + L(K − Γ′′), as required.

3. 1903 and 1923: Two papers on resultants

The image under a general linear projection π : Pn → Pm of a k-dimensional va-
riety X will be a k-dimensional variety again if k ≤ m. Algebraically, the projection
is represented by an inclusion

C[x0, . . . , xm] ⊂ S := C[x0, . . . , xm, ym+1, . . . , yn],

and the defining ideal of π(X) is the intersection of the defining ideal of X with
the subring C[x0, . . . , xm]. (In the affine case the image may not be closed; the
intersection ideal defines its closure.) The computation of the ideal of π(X) goes
under the name “elimination theory”, since it involves eliminating variables from
the equations of X. A special case that plays a major role in early investigations
of polynomial algebra occurs when m = k+ 1 or m = k; then π(X) is defined by a
single equation, which is 0 in the latter case. In the case where X is defined by an
ideal generated by c := codimX = n− k equations f1, . . . , fc, this single equation
is called the “resultant” of f1, . . . , fc with respect to the m+1 variables x0, . . . , xm.
Etienne Bézout [Béz79] in 1779 published a determinantal formula for the resultant
in the case c = 2 of two polynomials; and in a paper of 1848 [Cay09, pp. 370–
374] Arthur Cayley announced, without proof, a formula for the resultant in the
general case. Cayley’s formula, however, expressed the resultant as a ratio of one
complicated product of determinants by another such product. Cayley’s idea was
expounded by George Salmon in [Sal85, pp. 80–83]. Although the denominator in
Cayley’s expression must be a factor of the numerator in this product, making the
division explicit is an open problem to this day. (See, for example, [ES03] for a
modern view of the situation.)

The resultant was particularly important in early 20th century commutative
algebra because an ideal generated by c homogeneous polynomials of positive degree
cannot have codimension greater than c, and has codimension exactly c if and
only if the resultant with respect to m + 1 = k + 1 general variables is 0 (in the
affine case this is the resultant with respect to k general variables). Thus the
resultant provides a criterion under which, in modern terms, c homogeneous forms
are a regular sequence, and this is the use to which it is put in Lasker’s, and later
Macaulay’s, generalization of Noether’s Fundamental Theorem.

In [Mac03] Macaulay, always interested in explicit computation and recognizing
the difficulty in using Cayley’s formula, proposed a potentially simpler computation,
writing the resultant as the quotient of a single determinant by one of its minors of
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a certain size. Mathematical interest in this sort of expression continues: a search
in MathSciNet for Macaulay and resultant together yields many relevant references.

The basis of Macaulay’s method is the theorem on p. 9 of [Mac03]. Write S� for
the vector space of forms of degree � in the polynomial ring S. Macaulay considered
the number d =

∑c
1 deg fi − c + 1 and the matrix D with

(
n+d
d

)
rows that is the

degree d component of the map whose ith component is multiplication by fi,

c⊕
i=1

Sd−deg fi → S.

Macaulay proved:

Theorem 2. If the coefficients in each of the polynomials f1, . . . , fc are taken to
be indeterminates, and the matrix D is expressed in terms of these indeterminates,
then the resultant of f1, . . . , fc is the greatest common divisor of the minors of size(
n+d
d

)
of D.

The formula is not difficult to understand set-theoretically: the resultant, eval-
uated at the coefficients of the fi, is nonzero if and only if the ideal generated by
the fi has finite colength, which says that the degree d part of the map above is
surjective for d 	 0. Cayley’s original insight was that this would be the case if and
only if the map was surjective for d =

∑c
1 deg fi − c+ 1, and this is the case if and

only if the maximal minors of D generate the unit ideal. Moreover, the resultant
must vanish on a set of n-tuples of forms of codimension 1 (the condition is that fn
vanishes on one of the points cut out by f1, . . . , fn−1, which is a linear condition on
the coefficients of fn), so the annihilator of the cokernel of D has codimension 1. It
follows that this annihilator has at least the same radical as the greatest common
divisor of the maximal minors of D.

Starting from this theoretical insight, the paper [Mac03] is quite computational.
Modern treatments of the computation can be found in [Jou95] and [ES03]. In the
case when all the forms fi are homogeneous of the same degree, f1, . . . , fc can be
thought of as defining a rational map of Pn−1 to Pc−1, and the variety defined by
the fi appears as the base locus of the map. In [Mac27] Macaulay gave a “more
symmetric” expression for the resultant in this case. In [Mac23] he returned to
this problem, giving “a simpler and more symmetrical form for the quotient” when
f1, . . . , fc are all homogeneous of the same degree.

4. The Congress of 1904 and the work of König and Lasker

The year 1904 was a watershed in Macaulay’s career. He was invited to give an
address at the International Congress of Mathematicians (ICM) in Heidelberg—
no small honor for a school teacher. There he met Brill and Noether, probably
for the first time. The paper [Macaulay, 1905]5 [13] in the proceedings volume
described his work on plane curves, and sketched a far-reaching generalization to
higher dimensions. But it is clear that he was unaware of a fundamental difficulty,
caused by the possible presence of an embedded primary component. In a footnote

5For the citations of Macaulay’s own work, see the separate listing of all of his papers, before
the main bibliogrphy at the end of this paper.
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on p. 285 he wrote:

Since writing this paper Professor Noether and Professor Brill have
kindly drawn my attention to the recently published “Einleitung in
die allgemeine Theorie der algebraischen Größen” by Julius König
(B. G. Teubner, Leipzig, 1903). This work, remarkable for its preci-
sion and comprehensiveness and the large additions it makes to the
subject, contains a much desired proof of the extension of Noether’s
theorem to the case of k polynomials M1, . . . ,Mk in k variables,
when [the variety defined by M1, . . . ,Mk] is of zero dimensions, i.e.,
when the equations M1 = M1 = · · · = Mk = 0 have only a finite
number of solutions. I assume throughout my paper a still further,
and what I regard as a fundamental, extension, viz., to the case of k
polynomials in n variables, where k > n. The theorem is that if, for
each and every point of intersection of M1 = M2 = · · · = Mk = 0
taken as origin, a given polynomial M can be expressed in the form
M1P1+ · · ·+MkPk, where P1, P2, . . . , Pk are undetermined integral
power series, then M ≡ 0(mod.M1, . . . ,Mk). The theorem can be
finally extended so as to be free of all restrictions with respect to
(M), k, or n.

The claimed result is false because the ideal (M1, . . . ,Mk) may have an irrelevant
component.

Lasker’s paper [Las05] finally provided the right tools and language to properly
understand the situation. Perhaps from this, Macaulay seems to have realized his
error, and he published no further research until [Mac13] by which time, as we shall
see in §5, he was master of the situation.

4.1. König. Gyula (Julius) König is a major figure in the history of mathematics
in Hungary, and he is perhaps best known internationally for his work on Can-
tor’s set theory. In his Introduction to the general Theory of algebraic Quantities
(Hungarian edition 1902, German edition 1903) he attempted to make Kronecker’s
difficult theory of modular equations in [Kro82] more accessible. To do so, he set
out a broad account of algebra, defining fields of characteristic zero (which he called
“holoid domains”) and rings with no zero divisors (“orthoid domains”), and greatly
elaborating the theory of resultants and resolvents. Resultants allow one to elimi-
nate variables from a system of polynomial equations; resolvents allow one to test
for membership of a polynomial ideal. In his account, the statement that a form f
belongs to what we would call an ideal M was written as the congruence modulo
f ≡ 0 mod. M , as in Gauss’s introduction of modular arithmetic.

Using these tools, König generalized Noether’s ideal membership condition and
some of its properties to the case of k polynomials in k variables that define a set
of points in affine space.

4.2. Lasker. Emanuel Lasker was the world chess champion from 1894 to 1921, and
he wrote about chess, bridge, and other games. He was also a great mathematician
and originally hoped for an academic career: in between chess competitions he
wrote in the 1890s about rational normal curves in n-dimensional space and the
convergence of infinite series of functions, for which he was awarded a doctorate
under Max Noether in Erlangen. Noether later wrote, in Lasker’s words, “a very
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flattering recommendation”6 in the context of Lasker’s application for an academic
job in Pittsburgh that never materialized [Ros18]. Albert Einstein, in the Foreword
to [Han91] called Lasker “one of the most interesting people I came to know in my
later life”, and wrote that

I had the impression that to him chess was a means of livelihood
rather than the real object of life. What he really yearned for
was some scientific understanding and that beauty peculiar to the
process of logical creation. . . ”

Lasker’s most important mathematical work was the great paper [Las05], which
established the theory of primary decomposition for ideals in polynomial rings, and
also two central properties of regular sequences: that all their syzygies have the form
given by the Koszul complex and (using this) that their associated primes have the
same dimension7 [Las05, Satz XI and Satz XXVII, respectively]. He based his work
on four great results of Hilbert (which he labelled Theorems 1 to 4, in contrast with
his own Sätze), among them the Hilbert basis theorem (Theorem 1), which was
fundamental to his proof of the existence of primary decompositions for polynomial
ideals, as it was in the more general work of Emmy Noether. Lasker also justified
Max Noether’s ideal membership test with a version of what is now called the Krull
intersection theorem (but see Section 6.3). His work deeply influenced Macaulay’s
later work. We pause to give an account of three theorems from [Las05] that were
particularly important for Macaulay.

4.2.1. Syzygies of a regular sequence. After preliminaries on resultants, Lasker be-
gan with the syzygies of a regular sequence:

Theorem 3 (Satz I, p 24). If u1, . . . , uh are forms in m variables, with h ≤ m,
such that the resultant of u1, . . . , uh and m − h linear forms with indeterminate
coefficients does not vanish identically, and if there is an identical relation p1u1 +
· · ·+ phuh = 0 where the pi are forms, then there are forms qi,j = −qj,i such that

(1) pi = qi,1u1 + · · ·+ qi,huh.

The resultant condition means that the ideal generated by the ui and m − h
general linear forms has no zeros in projective space; that is, it contains a power
of the maximal homogeneous ideal. The condition is equivalent to the modern
statement that the ideal (u1, . . . , uh) has codimension (at least) h. Thus Satz I,
in modern language, says that if h forms generate an ideal of codimension h, then
every syzygy of the forms is the product of a skew symmetric matrix and the row of
forms themselves; or still more succinctly, the first homology of the Koszul complex
of the forms vanishes.8

4.2.2. Primary decomposition. The most famous result of [Las05] is the existence of
primary decomposition; even the definition of a primary ideal was new with Lasker.

Theorem 4 (Satz VII, p. 51). Every ideal of forms in a polynomial ring has a
primary decomposition.

6quoted in [Han91, p. 208]
7Recall that the associated primes of an ideal in a Noetherian commutative ring are the radicals

of the primary ideals in any minimal primary decomposition.
8Despite the name, the Koszul complex was known to Cayley, and appears in a special case in

Hilbert’s work as well.
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Proof. Given a homogeneous ideal M ⊂ C[x1, . . . , xn], Lasker’s proof started with
the geometry of the set of points C in Cn at which all the elements of I vanish. As
in the modern usage, he defined the residual of an ideal M with respect to an ideal
N to be the ideal of forms f such that fM ⊆ N ; we denote it N : M . He wrote
C1∪· · ·∪Cj for the union of the maximal dimensional components of C and defined
MCi

to be the set of forms F such that the residual ideal M : F contains forms not
vanishing on Ci—the primary component of M associated to Ci. If M =

⋂
MCi

,
he was done; otherwise he defined M ′

Ci
:= M : MCi

and chose a form Φ ∈
∑

i M
′
Ci

that does not vanish on any of the Ci. He then proved that

M =
⋂
i

MCi
∩ (M,Φ)

and asserted the existence of a primary decomposition of (M,Φ) by analysing
(M,Φ) in the same way and by tacitly appealing to the ascending chain condi-
tion in the form that Hilbert had proved for polynomial rings—the result Lasker
had cited as Theorem I. �

4.2.3. Equidimensionality. Perhaps the result of Lasker’s that influenced Macaulay
the most was this:

Theorem 5 (Satz XI, p. 58). If u1, . . . , uh are forms in m variables, with h ≤ m,
such that the resultant of u1, . . . , uh and m−h linear forms with indeterminate co-
efficients does not vanish identically, then (u1, . . . , uh) has a primary decomposition
in which all the primary ideals have the same dimension m− h.

In the language Macaulay introduced in his Tract : such an ideal is unmixed.
Lasker’s proof relied on his Satz I, on the syzygies of a regular sequence.

Lasker proved Satz XI as follows. By the primary decomposition theorem, the
ideal M can be written as

M = MC1
∩MC2

∩ · · · ∩MCj
∩N,

where C1, C2, . . . , Cj are varieties of the highest dimension which are satisfied by
all the forms in M , and N is a variety of dimension lower than that of M . Let
M = (u1, u2, . . . , uh) and let Φ be any form in N whose corresponding variety
contains none of the C1, C2, . . . , Cj . Let F ∈ MC1

∩MC2
∩ · · · ∩MCj

. Then

FΦ ∈ MC1
∩MC2

∩ · · · ∩MCj
∩N = M.

But now the resultant of Φ, u1, u2, · · · , uh and m − h − 1 linear forms does not
vanish identically, and so, by Satz I, F ∈ M . Lasker also proved analogous results
over the integers, and for power series rings.

5. Macaulay’s great paper of 1913:

Perfect ideals, Gorenstein ideals, and linkage

After his report in the ICM of 1904 Macaulay published nothing relevant to our
story for nine years; but his next work on algebra is by far his most remarkable.
It contains the work for which he is now most famous, the definition and study of
perfect ideals, as well as work that was largely rediscovered, much later, on what are
now called Gorenstein ideals and linkage. Perhaps harking back to his early work
on Noether’s Fundamental Theorem, or to his error at the time of his ICM talk in
1904, Macaulay began by recapitulating some of Lasker’s 1905 paper, with a focus
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on unmixedness.9 To handle this conveniently, he introduced, in [Mac13, §39], the
definitions that will be familiar to a modern reader (except that current usage, and
ours below, replaces “imbedded” with “embedded” and “module” with “ideal”):

Resolution of any given H-module. The primary modules of
which any given module M is composed are of two kinds, which can
be distinguished by the terms isolated and imbedded. An isolated
primary module or spread is one which contains points outside all
the other primary modules or spreads of M , although it may in-
terpenetrate these other spreads. An imbedded primary module or
spread is one whose points are all contained in one or more of the
other spreads of M of lower rank. The isolated primary modules
into which M resolves are unique, but the imbedded ones are not.

Always concerned with actual computation, Macaulay then explained how to
find all the primary components using resolvents. The distinction between isolated
and embedded components was central in Macaulay’s treatment. In [Mac13, §57]
he reinterpreted Lasker’s Theorem XI: but where Lasker said that the primary
decomposition of the ideal generated by a regular sequence (Macaulay called this
“an ideal of the principal class”) has only the primary components “of highest
dimension” (höchster Mannigfaltigkeit”), Macaulay said that the ideal is unmixed.
He extended the result to inhomogeneous ideals of the principal class and also
proved that powers of such ideals are unmixed.

5.1. Perfect ideals. Macaulay’s first major step beyond the work of Lasker, and
certainly his most influential contribution, is the definition of perfect ideals in
[Mac13, §66]. His definition there uses what he called the “Hilbert numbers” (we
would say the Hilbert function) HS/I(d). Defined only in the case when I is homo-
geneous, HS/I(d) is the dimension of the dth graded component of S/I. In modern
terms, Macaulay observed that if I is a homogeneous ideal in S, then for any linear
form y ∈ S the degree d component of the quotient S/(I, y) is the quotient of the
degree d component of S/I by the degree d component of (S/I)y ⊂ S/I. Thus

HS/I(d) ≤ HS/(I,y)(d) +HS/(I,y)(d− 1)

with equality for all d if and only if y is a nonzero divisor on S/I. Since the set
of zero divisors on S/I is the union of the associated primes of I, the equality
holds for all d if and only if y is not contained in any associated prime of I. In
[Mac13, §66]—always assuming implicitly10 that the coordinates x1, . . . , xn are cho-
sen generally with respect to I—observed that if the codimension of I is c, then the
ideal J := (I, xc+1, . . . , xn) will contain a power of the maximal ideal (x1, . . . , xn),
and generalizing the displayed relation above,

HS/I(d) ≤ HS/J (d) +

(
n− c

1

)
HS/J (d− 1) +

(
n− c+ 1

2

)
HS/J (d− 2) · · · .

9Though there is a fleeting reference to a “mixed” ideal in [Mac13, p. 43], Macaulay does not
use the term “unmixed” until the exposition in [Mac16].

10The assumption that the coordinates are chosen generally is so automatic for Macaulay that
it is almost never mentioned in his text. General position arguments can be quite deep and difficult
to justify. For example, Brill and Noether’s “proof” of the famous “Brill–Noether theorem” on
the existence of linear series with prescribed degree and dimension depends on a general position
assertion that was not verified until 100 years later. However, Macaulay’s use of general position
in this context is harmless and easy to make rigorous.
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He then defined a homogeneous ideal to be perfect if the maximum value of HS/I(d)
allowed by the expression above is attained for all d, and defined an arbitrary ideal to
be perfect if its “equivalentH-ideal”—that is, its homogenization—is perfect.11 It is
interesting to note that this definition remains the most efficient known method for
determining whether a homogeneous ideal is perfect by computation in a program
such as Macaulay2 [GS93].

In the case of homogeneous ideals, Macaulay’s definition is equivalent to the
modern notion, since the equality holds if and only if xc+1, . . . , xn is a regular
sequence modulo I. However, Macaulay said that a not-necessarily-homogeneous
ideal I is perfect if the “equivalent” homogeneous ideal is perfect—or in modern
language, if the ideal representing the closure of the affine variety in projective
space is perfect. This is considerably stronger than the modern notion, which
would be defined today through localization, a technique that seems to have been
first introduced in [Kru38]. Indeed, Macaulay pointed out that even ideals of the
principal class (that is, ideals generated by regular sequences) need not be perfect
in his sense if they are not homogeneous, though they would be considered perfect
in the modern sense.

Example 2. Consider the affine quartic space curve C, given parametrically by

A
1  t �→ (t, t3, t4) ∈ A

3

with ideal I = (x2−x3
1, x1x2−x3). Since the curve has codimension 2, this ideal is

a complete intersection, and the localized ideal IP is perfect for every prime ideal
P ; but the equivalent homogeneous ideal to I is

J = (x0x3 − x1x2, x3
2 − x1x

2
3, x0x

2
2 − x2

1x3, x3
1 − x2

0x2),

which is the ideal of the closure C of C in P3, the image of

P
1  (s, t) �→ (s4, s3t, st3, t4) ∈ P

3.

In this case the linear forms x0, x3 are general enough, and the factor ring

S/(J, x0, x3) = k[x1, x2]/(x1x2, x
3
1, x

3
2)

has basis 1, x1, x2, x
2
1, x

2
2, so its Hilbert function has values 1, 2, 2, 0, 0, . . . . But

HS/J(3) = 13 < 0 + 2 × 2 + 3 × 2 + 4 × 1 = 14, whereas, if J were perfect, then
1, 2, 2, 0 would be the second difference function of HS/J , and we would have

HS/J(3) = (4 · 1) + (3 · 2) + (2 · 2) + 0 = 14

instead. Thus, ideal I would not be perfect according to Macaulay’s definition.

The homogeneous ideal J in this example played an interesting role in another
context. One of the few letters from Macaulay that have been preserved is the letter
to David Hilbert proposing the manuscript that became [Mac13] for consideration
in the Mathematische Annalen.12 In his letter Macaulay expressed his frustration
in trying to prove that homogeneous prime ideals are perfect, and asked whether
Hilbert could shed light on this question. He wrote “It would go some way towards
proving that a prime ideal is perfect if it were known that (M,xn) is prime when
M is a prime H-ideal of rank < n − 2.13 It would still have to be proved that a

11Perhaps he found this awkward: in the Tract Macaulay offered a different but equivalent
definition in which homogenization figures only indirectly.

12Cited with permission from the Niedersachische Staats und Universtät Bibliothek Göttingen,
Cod. Ms. D. Hilbert, 136. The full correspondence will appear in [EG].

13Macaulay used the term “rank” where we would say “height” or “codimension”.
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prime H-ideal of rank n − 2 was perfect.” By the time of publication, Macaulay
knew why this had been difficult to prove: he gave the example of the projective
curve C above to show that not all homogeneous prime ideals are perfect!

Lasker in his paper of 1905 does not mention the paper [BN94], but his proof
that all the primary components of a regular sequence in C[x1, . . . , xn] have the
same dimension starts from the same place: he begins by computing generators for
the first syzygies of a regular sequence.

Macaulay, in his turn, defined a homogeneous ideal of dimension d in
C[x1, . . . , xn] to be perfect if, in generic coordinates, xi+1 is a nonzero divisor
modulo I + (x1, . . . xi) for i = 0, . . . , c − 1; again, effectively a statement on the
syzygies.

Macaulay immediately connected this numerical condition to primary decompo-
sition. To do this, he followed what would also be the simplest modern proof, noting
that the numerical condition is equivalent to the condition that xc+1 is a nonzero
divisor modulo I and further, xc+i is a nonzero divisor modulo (I, xc+1, . . . , xc+i−1)
for each i = 2, . . . , n − c. Given the general choice of coordinates, this condition
holds if and only if the ideals

I, (I, xc+1), . . . , (I, xc+1, . . . , xn−1)

have no (embedded) component primary to (x1, . . . , xn), what Macaulay called a
“relevant simple spread”. This idea, called “prime avoidance” in modern texts,
is apparently self-evident for Macaulay: presumably he would have argued that
the possible associated primes other than (x1, . . . , xn) intersect the vector space of
linear forms in proper subspaces, so their union cannot contain the general linear
form.

Already in [Mac13, §57], Macaulay had stated that homogeneous ideals of the
principal class are perfect (noting that inhomogeneous ideals of the principal class
need not be perfect in his sense). After he gave the definition in [Mac13, §66], his
first goal was to show that there are many other further examples. It is obvious
from his definition that any zero-dimensional ideal

I = (f1, . . . , ft) ⊂ k[x1, . . . , xn]

is perfect; and Macaulay pointed out that the ideal J ⊂ k[x1, . . . , xn, y1, . . . ym]
obtained from I by substituting xn + y1 + · · · + ym for xn is a perfect ideal of
codimension n in n + m variables. Macaulay next connected perfection with un-
mixedness although he did not introduce the term, showing in [Mac13, §68–69] that
(always assuming the variables xi are chosen generally) not only is a perfect ideal
I ⊂ k[x1, . . . , xn] of codimension c unmixed, but also the ideals

(I, x1), (I, x1, x2) · · · (I, x1, . . . , xn−c)

are perfect, and thus unmixed. In [Mac13, §69] he proved that in fact a ho-
mogeneous ideal I is perfect if and only if the penultimate ideal in this series,
(I, x1, . . . , xn−c−1), is unmixed. (This would not be true if the coordinates were
not generally chosen. For example, consider the ideal I = (x2, xy) = (x)∩ (x2, y) ⊂
C[x, y, z], which defines a line with an embedded point in the projective plane.
Since it is mixed, this ideal is not perfect, and modulo z or any general linear form
it remains mixed. But (I, x) = (x), which is unmixed.)
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5.1.1. The importance of perfection. Perfect ideals may be thought of as the ideals
that satisfy the ultimate generalization of Noether’s Fundamental Theorem: if I
is a perfect homogeneous ideal defining a projective variety X of dimension d and
F1, . . . , Fd are forms that vanish simultaneously on X only in a finite set Γ of points,
then membership in the ideal I + (F1, . . . , Fd) can be tested by Noether’s criterion
applied at the points of Γ—the original result is the case in three variables with
d = 1.

Also, the perfection of I can be thought of as taking place entirely in the ring
R/I. Whereas the notion of an ideal of the principal class—that is, one generated
by a regular sequence—depends on building up the ideal from 0 in the ring R,
the definition of a perfect ideal depends only on the behavior of elements of R as
elements of R/I; it is actually a property of R/I that is independent of R in the
sense that if R/I ∼= R′/I ′, then I and I ′ are either both perfect or both not perfect.

In the modern period the property of perfection has far-reaching importance
in algebraic geometry because of its relation to Serre’s fundamental idea of flat-
ness. For example, I is perfect of (affine) dimension d if and only if, whenever
R/(I + (F1, . . . , Fd)) is zero dimensional, R/I is a finitely generated free (equiva-
lently, flat) module over the ring C[F1, . . . , Fd].

Perfection has also played an important role in combinatorics starting with
Richard Stanley’s proof of the Upper Bound conjecture for spheres [Sta75] via
the formula for the Hilbert function above.

We would say that a homogeneous ideal I in a polynomial ring R is perfect in
Macaulay’s sense if and only if any partial system of parameters in each localization
of R′ is unmixed; this is the definition of a “Cohen–Macaulay” ring. The name of
Irvin Sol Cohen enters because he gave an analysis of the structure of complete
local rings and used it to prove the unmixedness theorem for ideals of the principal
class (which he mistakenly attributed to Macaulay rather than Lasker) in regular
local rings. For this he used a case-by-case analysis using the theory of complete
local rings developed in his 1942 Johns Hopkins thesis under Oscar Zariski [Coh42]
and [Coh46]. Irving Kaplansky felt that one should speak simply of Macaulay rings,
and that is the terminology used in [Kap74].

5.2. Linkage: a general theory of residuation. Macaulay described the exam-
ple of the projective curve C above by “residuation”, in the special case that we
would call “linkage”, or “liaison”: he described J as “the prime ideal of order 4
whose variety is the curve in space of three dimensions in which a quadric and cubic
surface drawn through two non-coplanar lines intersect again” (the “non-coplanar
lines” can be taken to two lines from the same ruling of a nonsingular quadric, so
this describes J as the ideal of a divisor of type (3, 1) on the quadric.)

The idea of describing curves in 3-space in this way had already been extensively
used by Georges-Henri Halphen. In [Hal82] he considered a range of cases in which
the intersection of two surfaces in P

3 is the union of two reduced curves, and
deduced properties of one of the curves from properties of the other one. This is
similar to the use of residuation for the transverse intersection of two curves in the
plane. Macaulay had been concerned in his early work exactly in the case when
the intersection of two curves is not transverse, and in 1913 he was able to do the
same thing in a far more general setting—one that has been studied extensively in
modern commutative algebra.
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The fundamental idea is to replace set-theoretic subtraction with residuation,
defined by an ideal quotient: if M ⊂ M ′ are ideals of a ring R, then the quotient
M : M ′ is defined to be {f ∈ R | fM ′ ⊂ M}. In the special case when M ′ is
unmixed and M is one of its primary components, it is easy to see that M : M ′

is the intersection of the other primary components: geometrically, the closure of
V (M ′)\V (M) is V (M : M ′) (here V (M) denotes the “spread” of M in Macaulay’s
sense, that is, the locus in C

n where the polynomials in M all vanish.)
The ideal quotient is generally the best approximation to a subtraction operation,

but, as in the case of intersections of curves in the plane, it often does not have
the good properties of subtraction. The most important questions are whether
M : (M : M ′) = M ′ and whether the invariants of (M : M ′) can be deduced in
a simple way from those of M and M ′. Macaulay proved (always in the context
of polynomial ideals) that these properties are satisfied when M is an ideal of the
principal class and M ′ is unmixed of the same codimension as M ; in this case,
M : M ′ is said today to be “linked” to M ′. The properties of this construction
were proven independently in the setting of Gorenstein local rings in [PS74].

The last sections of [Mac13] are all concerned with these questions. He first
proved a general elementary result:

Theorem 6 ([Mac13, §53]). If M : M ′ = M ′′ and M : M ′′ = M ′′′, then
M : M ′′′ = M ′′, i.e., M ′′,M ′′′ are doubly residual with respect to M.

He generalized his result that a cluster defined by the intersection of two plane
curves is a 1-set point, showing that it is a principal system:

Theorem 7 ([Mac13, §62]). A primary ideal of the principal N-class has a sin-
gle principal modular equation, i.e., all its modular equations consist of a single
equation and its derivates.

Sketch of Macaulay’s proof. To say that a primary ideal I is “of the principal
N-class” means that I contains a power mγ of the homogeneous maximal ideal m :=
(x1, . . . , xn) and that the ideal I is the primary component of an ideal generated by
n = dimR general elements F1, . . . , Fn ∈ I having the same m-primary component
as I; or, in modern terms, that the localization of I at m is a complete intersection.
To prove the result, Macaulay observed that one may add any terms of degree ≥ γ
to the Fi without changing the situation; thus I ′ := (F1, . . . , Fn) may be assumed
to have no common zeros at infinity, that is, their highest degree terms may be
assumed to form a regular sequence as well, say of degrees �1, . . . , �n > γ. This has
the effect that every monomial of degree >

∑
�i − n is contained in I, while the

forms G of degree equal to
∑

�i − n form a hyperplane in the space of all forms of
that degree, defined by a single linear equation L = 0 on the coefficients of G.

Macaulay next proved by induction on the number of variables that if mF ∈ I ′

and degF <
∑

i �i − n, then F ∈ I ′; this is equivalent to saying that the socle

(I : m)/I R/I is in degree ≥
∑

(�i − 1), the degree of the socle of R/(x�1
1 , . . . , x�n

n ).
Together, these statements imply the theorem, because they show that the linear
conditions on the coefficients of a form F of degree e to lie in I—the modular
equations of degree e—are all derived from the single equation and this that implies
that the coefficients of G = Fm satisfy the condition L = 0 for every monomial m
of degree

∑
�i − n− (d− e). �

At the end of [Mac13, §62] Macaulay mentioned the fact that, in two variables,
the converse holds: every simple N -ideal with a principal modular equation (that
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is, any m-primary Gorenstein ideal) is generated by two elements, so it is a complete
intersection. The generalization of this to all Gorenstein ideals of codimension 2
in regular local rings is attributed to Serre in [Bas63] (Bass seems to have been
unaware of Macaulay’s work in this area). But Macaulay stated that in three or
more variables this is no longer true. In [Mac16] he gave the example in three
variables of the ideal (x2, y2, z2 − xy, xz, yz) to demonstrate this fact.14

In [Mac13, §63] Macaulay turned to the application that originally motivated his
work on ideals with a principal modular equation in [Mac99].

Theorem 8 ([Mac13, §63]). If Mμ is a simple K-N-ideal (that is, an ideal of finite
colength μ) whose modular equations consist of a single principal equation and its
derivates, and Mμ1

is any ideal containing Mμ, and Mμ : Mμ1
= Mμ2

, then

Mμ : Mμ2
= Mμ1

and μ1 + μ2 = μ.

In the final pages of [Mac13] Macaulay turned to what we would consider the
theory of homogeneous ideals that define Gorenstein factor rings of the polynomial
ring. Though he didn’t give them a name in this paper, he called them superperfect
rings in [Mac34]; we will use the modern term “Gorenstein”. Macaulay’s definition
is that they are perfect ideals M of codimension r such that “(M,xr+1, . . . , xn) has
a single principal modular equation”.

For example, in [Mac13, §64], he highlighted the symmetry of the Hilbert func-
tion of a finite-dimensional graded Gorenstein ring, writing that, for any primary
homogeneous ideal with a single principal modular equation,

We have the rather remarkable result that the numbers of inde-
pendent derivates of successive degrees of any homogeneous N -
equation, or the Hilbert numbers of any simple H N -module with
a single principal modular equation . . . are the same as when re-
versed in order. . . .

In [Mac13, §71], Macaulay proved a result that is at the foundation of the theory
of linkage: if M ⊂ M ′ ⊂ R are perfect homogeneous ideals of the same codimension
in the polynomial ring R, andM is Gorenstein, thenM ′′ := M : M ′ is again perfect,
and M ′ = M : M ′′.

Theorem 9 ([Mac13, §71]). If M is a perfect H-ideal of codimension r such that
(M,xr+1, . . . , xn) has a single principal modular equation, and if M ′ is a perfect
H-ideal of codimension r containing M , then M : M ′ is a perfect ideal M ′′.

In the final section, [Mac13, §72] Macaulay derived a central formula in the
theory of linkage: under the hypotheses of [Mac13, §71], he computed the Hilbert
function of M ′′ in terms of the Hilbert functions of M and M ′.

6. The Tract: Absorbing primary decomposition

and introducing inverse systems

Macaulay’s best known work today is undoubtedly The Algebraic Theory of
Modular Systems, published in the series Cambridge Tracts in Mathematics and
Mathematical Physics [Mac16], which we will refer to simply as the Tract . It
was republished by Cambridge University Press, with a masterful introduction by

14In the early 1970s David Buchsbaum and the first author, quite unaware of Macaulay’s work
in this direction, studied and discovered the structure of Gorenstein ideals in codimension 3, thus
extending the structure result of Macaulay and Bass [BE77].
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Paul Roberts, in 1994. Much of the Tract is taken up with an exposition of the
material that was already presented in [Mac13], but there are several new results
and emphases, and we will concentrate on these. Macaulay always focused on
concrete computations, and these were usually based on resultants, the theory of
which occupies the first sections. Then Macaulay gave an exposition of Lasker’s
theory of primary decomposition. Whereas in [Mac13] he spoke of ideals with no
embedded primary components, he now made this condition central by introducing
the term unmixed. In [Mac16, §41] he wrote

An unmixed module is usually understood to be one whose isolated
irreducible spreads are all of the same dimensions; but it is clear
from the above [Lasker’s theory] that this cannot be regarded as a
satisfactory view. It should be defined as follows:
Definition. An unmixed module is one whose relevant spreads
[associated primes] both isolated [minimal] and imbedded, are all
of the same dimensions;15 and a mixed module is one having at
least two relevant spreads of different dimensions.

In these sections Macaulay gave many examples showing how resultants and re-
solvents can be used to partially describe the primary decomposition of an ideal,
but do not give the full picture. This must have been a concern; Emmy Noether
famously asked whether the decomposition could be effected at all algorithmically
(“in endlich vielen Schritten”), a question that her student Grete Hermann resolved
positively in characteristic 0. (There are now many such algorithms, in all char-
acteristics and even over the integers; see for example [IPS15] and the references
there.)

6.1. The number of generators of a prime ideal. It is an easy consequence
of Hilbert’s Nullstellensatz that any prime ideal in C[x, y] is generated by just two
elements; and Kronecker in [Kro82, p. 85] had given an argument showing that any
prime ideal in C[x1, . . . , xn] is generated up to radical by n+1 elements. Macaulay
filled in this picture by defining, for every � ≥ 3, an ideal P� ∈ C[x, y, z] that
requires at least � generators; in fact, Macaulay’s argument in § 34 shows that even
the localization of P� at a suitable maximal ideal requires at least � generators. The
idea is that the variety C� of P� should be a curve in 3-space, singular at the origin
and having tangent cone there consisting of

(
�
2

)
general lines. Since the ideal of(

�
2

)
general points in the plane requires � generators, this implies that P� requires

at least � generators, even locally at the origin. Unfortunately, the claim that P�

is prime depends on properties of “general” choices that are not demonstrated, so
for a long time these examples were not regarded as definitive. However, Shreeram
Abhyankar successfully reworked the examples—he asserted in [Abh73] that to do
so he had to “rediscover” the proof. The fact that the tangent cone of C� is reducible
implies that P�C[[x, y, z]] is no longer prime—that is, C� is analytically reducible—
leaving the open the question of whether such examples were possible in the power
series ring. Finally, in [Moh74], Tzuong-Tsieng Moh put the question to rest with
a new family of examples of analytically irreducible affine curves.

6.2. Powers of regular sequences and the perfection of determinantal
ideals. Lasker had proved that ideals of the principal class are unmixed, and

15It follows that there are no imbedded primes at all!
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Macaulay observed that this implies that they are perfect: if I = (a1, . . . , ar) is
of codimension r and J = I+(b1, . . . , bs) is of codimension r+s (assuming that the
ai and bj are homogeneous), then J is also of the principal class, and thus unmixed.
Macaulay generalized this example of a perfect ideal in two important and related
ways:

(1) He proved in [Mac16, §50] that if I is an ideal of the principal class, then all
powers Iγ are unmixed; and in the case when I is radical, he identified Iγ

as the set of functions that vanish to order at least γ at every point of the
variety determined by I. (He observed in a footnote in [Mac16, §52] that,
for any prime ideal P , the ideal of functions vanishing to order at least γ
on the points where all functions in P vanish is primary to P—a special
case of Zariski’s “Main Lemma on Holomorphic Functions” [Zar49].)

(2) He proved in [Mac16, §53] that the ideal of r× r minors of an r× s matrix
(with r ≤ s) is unmixed, (and even perfect [Mac16, §93]), if the ideal has
codimension s− r+1, at the same time computing the first syzygies of this
ideal (the first step in the Eagon–Northcott complex), by induction on the
size of the matrix (in case r = 1 this is an ideal of the principal class).

Macaulay’s [Mac16, §52] begins with an interesting assertion about when the
powers of a prime P are unmixed. He considered the case of a prime ideal M of
codimension r and a linked prime M ′ = (f1, . . . , fr) : M also of codimension r,
allowing the fi and M ′ to vary. He asserted that

if M ′ does not cut M in a fixed spread, then the powers Mγ are un-
mixed. In the contrary case some power Mγ is mixed, and will have
the fixed spread in which M ′ cuts M as an embedded component.

From a modern point of view, the primes containing all possible ideals M ′ +M are
the primes Q such that the localization MQ is not a complete intersection, that is,
primes in the noncomplete intersection locus; and this, with assertion (1) above,
shows that any embedded prime of a power of M must indeed contain all M +M ′.
It follows from a modern theorem of [CN76] that the converse is true for primes Q
of codimension r+1 containing M +M ′; but it is false even for minimal primes of
the noncomplete intersection locus that have codimension r+2. For example, if M
is the ideal of the twisted cubic curve in P3, then the ideal of all the four variables is
the unique prime such that MQ is not a complete intersection; but Mγ is unmixed
for all γ [Con98].

We can only speculate on the source of Macaulay’s error. He made many com-
putations and was perhaps too quick to assume that the examples he was able to
compute represented general behavior. Perhaps he relied too much on the examples
of affine curves; for these examples, he would have seen precisely the behavior he
described, since the only prime ideals that could be associated to the powers would
have been the ideals of points (covered by the theorem of Cowsik and Nori). Since
Macaulay worked in isolation in England, he could not test his assertions with oth-
ers. At the 1904 ICM, one might guess that Brill or Max Noether were important
in telling him of Lasker’s work and helping him understand his error. But back in
England he had no such support, and there is no evidence that he was in contact
with the mathematicians in his field on the continent at this time; such contact
would have been difficult, in any case, because of the First World War.

Macaulay proposed two examples of powers of primes that are mixed, one based
on a geometric idea and the other (it seems) on algebraic computation. Macaulay



392 DAVID EISENBUD AND JEREMY GRAY

asserted that if a curve in 3-space has a spatial triple point (that is, a triple point
where every line meets the curve at least twice), then the powers of the ideal of the
curve are mixed, and thus (he said) the square of the ideal of the curve contains the
equation of a surface that is double at every point of the curve. He did not provide
a proof, but rather a clever example: Let C be the curve defined by the ideal I of
2× 2 minors of the matrix

M :=

(
x1 x2 x3

x2 x3 x2
1

)
,

and let f(x1, x2, x3) = (x2x3 − x3
1)

2 − (x2
2 − x1x3)(x

2
3 − x2

1x2). Note that this poly-
nomial lies in the square of the ideal of minors (indeed, the polynomials

(x2x3 − x3
1), (x2

2 − x1x3), (x2
3 − x2

1x2)

are the three 2× 2 minors of M). Thus f vanishes to order 2 everywhere along the
curve. Note that f is divisible by x1, which does not vanish on the curve except
at the origin; thus g = f/x1 vanishes to order 2 at every point of the curve. But
g is not in the square of the ideal of minors, since g has only a triple point at the
origin, whereas every element of I2 has order at least 4 at the origin.

The curve C is a rational curve with parametrization

A
1 → A

3 : t �→ (t3, t4, t5),

and is thus reduced and irreducible; but if we allow reducible curves, a much simpler
example is possible. Consider the union of the three coordinate axes, whose ideal
is

I = (x1, x2) ∩ (x2, x3) ∩ (x1, x3) = (x1x2, x1x3, x2x3).

It is obvious that the cubic polynomial x1x2x3 vanishes to order 2 on all three axes,
but cannot be in I2 since the generators of I2 have degree 4. Presumably, Macaulay
would not have considered such an example a genuine curve.

The second example [Mac16, §52, Example ii] is the ideal of 3 × 3 minors of
a linear 3 × 4 matrix in four variables; Macaulay asserted, roughly indicating a
computation, that the unmixed part of the cube of this ideal contains a form of
degree 8. It is now known ([Tru79], and in a wider context in [Hun81]) that every
power of the ideal of 3 × 3 minors of a generic matrix (in twelve variables) (and
indeed of the ideal of maximal minors of a generic matrix of any size) is unmixed.
Thus Macaulay’s example shows that (unlike in the case of a regular sequence),
the specialization of a perfect ideal with unmixed powers need not have unmixed
powers.

6.3. Power series and polynomials. In [Mac16, §55] Macaulay commented on a
generalization of what he calls (Max) Noether’s “fundamental theorem in algebraic
functions” (different from, though related to, what we have referred to above as
Noether’s Fundamental Theorem). In [Mac16, §56] Macaulay gave a more general

version as follows: if a form F can be written as F =
∑k

i=1 PiFi, where the Fi are
forms and the Pi are power series, then there is a polynomial φ such that φF is in
the ideal generated by the Fi in the ring of polynomials. We would now describe
this phenomenon by saying that the power series ring C[[x1, . . . , xn]] is faithfully
flat over the localization C[x1, . . . xn](x1,...xn). According to Macaulay, this result
was proven by Noether for the case k = n = 2, by König for k = n arbitrary,
and Lasker [Las05, Satz XXVII, p. 95] for arbitrary k. Macaulay called this the
Lasker–Noether theorem but finds that Lasker’s proof “seems to be faulty” in one
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point having to do with general position, which he claimed to correct. (He later
felt that his correction, too, was flawed, and referred to a proof by Wolfgang Krull;
see Section 8.)

6.4. Inverse systems and residuation. Already in his early work, Macaulay
studied the homogeneous linear equations that defined the ideals in the power
series ring of a “cluster” of points—the “Noether equations” of the cluster— and
the linear equations defining set of forms of a given degree d in a given homogeneous
ideal—the “modular equations” of the ideal. Chapter IV of the Tract formalizes
this study through the theory of inverse systems. Macaulay emphasized that this
was a new idea, and he drew from it several consequences which have been later
rediscovered and extended. The idea of inverse systems has two components:

(1) A formal power series

E ∈ P := C[[x−1
1 , . . . , x−1

n ]]

in the inverse variables x−1
i acts as a linear functional on the polynomial

ring
R := C[x1, . . . , xn]

by the rule that if F ∈ R, then E(F ) is the constant coefficient of the
product EF . For example

x−2
i (x2

i ) = 1 while x−2
i (xi) = x−2

i (x3
i ) = 0.

The inverse system associated to an ideal I ⊂ C[x1, . . . , xn] is the set of ele-
ments of P whose associated functionals vanish identically on I. Macaulay
also calls this set the set of “modular equations” of I. Macaulay pointed
out that I is determined by its modular equations.

(2) Elements of the polynomial ring R act as operators on P by ordinary mul-
tiplication, understanding that positive powers in the product are set to 0.
For example,

xi(x
−2
i ) = x−1

i while x3
i (x

−2
i ) = 0.

Thus if F ∈ R,E ∈ P , then F (E) is the sum of the terms of nonpositive
degree in the product FE.

The key remark that makes these constructions useful is that if p ∈ N ⊂ P is
an element of the inverse system of an ideal I and r ∈ R, then rp, which Macaulay
called “the r-derivate of p”, is again in N : that is, N is an R-submodule of P .
Though vector spaces with operators were already current in work on group rep-
resentations, this is surely a very early, if not the first, example of an interesting
k[x1, . . . , xn]-module other than an ideal. In his early work Macaulay spoke more
vaguely of deriving one Noether equation of a cluster of points from another. The
action of R on P = HomC(R,C) codified and extended this idea.

Example 3. Consider the ideal (g, h)S = (y2 − x, x2)S in S = C[x, y]. The
equations that imply that F in x, y should belong to the ideal (g, h)S can be written:

1(F ) = 0

(y−1)(F ) = 0

(y−2 + x−1)(F ) = 0

(y−3 + x−1y−1)(F ) = 0,



394 DAVID EISENBUD AND JEREMY GRAY

where we need no further equations because (x, y)4 ⊂ (g, h). These four equa-
tions can all be derived from the last one, represented by the inverse polynomial
E := y−3 + x−1y−1 through the action of R on P :

y3(E) = 1

x(E) = y−1

y(E) = y−2 + x−1.

Because all the equations are derived from just one, Macaulay called this a
“one-set point”, and more generally he defined a t-set point to be one where all the
Noether equations are derived from t but not fewer.

Macaulay presented several examples and remarks about the inverse functions.
If I is homogeneous, then its inverse functions are generated (as a vector space) by
homogeneous functions. If I is zero dimensional, centered at the origin, the inverse
functions may be taken to be polynomials, but in general actual power series are
required. As a simple example, consider the ideal (x − 1) ⊂ C[x]. The inverse
function p := 1+x−1 vanishes on x−1 since x−1(x−1) = 1−0 and 1(x−1) = 0−1.
But p(x(x−1)) = p(x2−x) = −1 �= 0. As Macaulay explained, any inverse function
of degree −t that vanishes on elements of I up to degree t can be continued to a
power series that vanishes on all of I. In this case p′ = 1 + x−1 + x−2 vanishes on
x2 − x, and more generally p′′ =

∑
i≥0 x

−i vanishes on all xm(x − 1) and thus on
the whole ideal I. An ideal I of dimension 0 is called a “principal system” if its
inverse system consists of the derivates of a single element.

More generally, for an unmixed ideal of dimension r, Macaulay (always assuming
general position for the variables) defined I(r) to be IC(xr+1, . . . , xn)[x1, . . . , xr]
and noted that the inverse system of this ideal (regarding elements of
C(xr+1, . . . , xn) as constants) determines I as well. He allowed inverse functions in

C(xr+1, . . . , xn)[[x
−1
1 , . . . , x−1

r ]]

and showed how to derive an inverse system for an unmixed ideal I of codimension
r from an inverse system for I(r), so that the inverse system in this new sense also
determines the ideal.

By describing the intersection of primary components of each codimension in
this way, Macaulay could give a finite description, through inverse systems, of an
arbitrary ideal. This idea has been taken up again in a modern context in [CRHS21].

Macaulay said that an ideal I is a principal system if its inverse system consists
of the derivates of a single element. Macaulay showed that ideals of the principal
class are principal systems (see [Mac16, §72]), but not conversely. For the fal-
sity of the converse he gave in [Mac16, §71], the example of the principal system
(x2

1 − x2
2, x

2
1 − x2

3, x2x3, x3x1, x1x2).
Moreover, he showed that all the primary components of a principal system are

principal systems, and remarked in a footnote in [Mac16, §76] that the converse
does not hold. For example, a single (reduced) point is of the principal class, but
the union of three general points in the plane is not a principal system. However, he
noted in [Mac16, §§61, 62] that any principal system has the form I = (f1, . . . , fk) :
g, where (f1, . . . , fk) is of the principal class. In modern parlance, such an ideal
is quasi-Gorenstein, and is Gorenstein if and only if it is also perfect. Macaulay
proved that linkage preserves perfection, so I is Gorenstein if and only if the linked
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ideal

(f1, . . . , fc, g) = (f1, . . . , fc) : I

is perfect.
Macaulay proved several of the results on residuation from [Mac13] and added

more. He used his results to generalize the Restsatz of Brill and Noether that was
important in his early work:

Theorem 10 (Theorem of Residuation (Tract, §87)). Let M be an unmixed ho-
mogeneous ideal of codimension r, and let K = (F2, . . . , Fr) ⊂ C[x1, . . . , xn] be a
homogeneous ideal with r− 1 generators contained in M . Suppose that F1, F

′
1 ∈ M

are forms of the same degree d, such that J = (F1) +K and J ′ = (F ′
1) +K have

codimension r. Set M ′ = J : M and M ′
1 = J ′ : M . Suppose that for some form

F ′ ∈ M ′ of degree d the ideal J1 = (F ′) +K also has codimension r. Then there is
a form F ∈ M ′

1, again of degree d, such that J ′
1 := (F ′)+K has codimension r and

J ′
1 : M1 = M1.

To understand the significance of this confusing statement in modern terms,
let X be the scheme defined by the ideal K. The hypothesis implies that X is a
complete intersection in Pn−1, and the conclusion is a statement about the divisors
on X that can be defined by forms of degree d := degF1. The forms F1, F

′
1 define

Cartier divisors D1, D
′
1 containing a not-necessarily Cartier divisor E defined by

M on X, while M ′ and M ′
1 define the divisors E′ := D1 − E and E′

1 := D′
1 − E,

respectively. The form F ′ defines a Cartier divisor D′ containing the divisor E′
1.

Since F1, F
′
1, F

′ are forms of the same degree d, the divisors D1, D
′
1, D

′ are linearly
equivalent on X. The assertion is that there exists a form F ∈ M ′

1, defining a
divisor D such that D′ −E′

1 = D−E′. In the free group generated by the divisors
on X this equation is

D′ − (D′
1 − E) = D − (D1 − E); that is, D = D′ −D′

1 +D1.

Note that the expression D′ −D′
1 +D1 contains only Cartier divisors of the same

degree, so it is automatically represented by a rational function on X of degree
d, in this case F ′F1/F

′
1. The strength of Macaulay’s theorem is that this rational

function is equivalent modulo K to a form of degree d. Macaulay’s residuation
theorem is thus the statement that the linear system cut out by hypersurfaces of
degree d on a complete intersection is a complete linear series, a consequence of the
statement that a complete intersection is perfect.

Example 4. To see that this is nontrivial, consider the smooth rational quartic
curve in P

3 parametrized by

P
1  (s, t) �→ (x0, x1, x2, x3) = (s4, s3t, st3, t4).

On this curve the rational function x2
1/x0 which is linearly equivalent to a hyper-

plane section, is not represented by a linear form, since it pulls back to the form
s2t2 on P1.

Macaulay’s proof of Theorem 10 [Mac16, §86] is based on another result of
modern significance [Mac16, §86]: Again, suppose that M is an unmixed ideal
of codimension r, and choose r elements F1, . . . , Fr ⊂ M that generate an ideal
also of codimension r—a complete intersection. Let M ′ = (F1, . . . , Fr) : M be the
residual ideal. Macaulay proved the following.
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Theorem 11. The number of generators required by M ′ in addition to F1, . . . , Fr—
that is, the number of generators required by M ′/(F1, . . . Fr)—is independent of the
choice of F1, . . . , Fr.

Denoting the ambient polynomial ring by S = C[x1, . . . , xn] in modern terms,
the ring S/(F1, . . . , Fr) is Gorenstein, so the ideal

Hom(S/M,S/(F1, . . . , Fr)) = M ′/(F1, . . . , Fr)

is (up to a shift in grading) the canonical ideal of S/M , which is thus independent,
up to shift, of the choice of F1, . . . , Fr. This surprising fact is a pillar of the modern
theory of linkage, which is a fundamental tool for the study of space curves, given
power through its homological characterization in the work of Hartshorne and Rao
[PR78]. It has also been generalized to residual interections of higher codimension
in the works of Artin and Nagata, of Huneke, of Ulrich [Ulr94], and others.

6.5. Perfect Ideals. Perfect ideals were defined in [Mac13], first for homogeneous
ideals and then for all ideals by considering the associated homogeneous ideal in
an additional variable. In the Tract Macaulay’s definition applies to all ideals in a
polynomial ring, and uses the association of an ideal I ⊂ C[x1, . . . , xn] having codi-
mension r and the ideal I(r) = IC(xr+1, . . . , xn)[x1, . . . , xr], which has dimension
0 (note that the xi are assumed to be general). However, the definition he gave is
equivalent to the modern definition only in the case of homogeneous ideals.

An H-basis of the ideal I is a subset of elements f1, . . . , fk ∈ I such that the
highest degree term of any element g ∈ I is a linear combination of the leading
forms (the sum of the highest degree terms) of the fi. If f1, . . . , fk is an H-basis of
I, then a maximal set of monomials independent modulo the leading forms of I is
a vector space basis of S/I.

Definition 1. The ideal I is perfect if there is an H-basis f1, . . . , fk of I such that

(1) (f1, . . . , fk) is also an H-basis of I(r); and
(2) the degree of each fi is the same as the degree of fi in the variables x1, . . . , xr

alone; that is, among the top degree terms of fi there is a term involving
only x1, . . . , xr.

The essential point is that the monomials in the variables x1, . . . , xr that
form a vector space basis of C(xr+1, . . . , xn)[x1, . . . , xr]/I

(r) will then generate
S/I as a module over C[xr+1, . . . , xn], showing that S/I is a free module over
C[xr+1, . . . , xn], and thus that xr+1, . . . , xn is a regular sequence modulo I. To see
that this definition is equivalent to the one from [Mac13] when they both apply,
it suffices, by induction, to show that x1 is a nonzero divisor modulo I and that
the given H-basis will retain properties (1) and (2) modulo x1, so that I + (x1)
is again a perfect ideal. Macaulay does this using properties of what he called
“dialytic arrays” that he had developed over a number of pages, but both prop-
erties can also be checked directly. Conversely, if I is homogeneous and satisfies
the definition of perfection from [Mac13], so that xr+1, . . . , xn is a regular sequence
modulo I, then S/I is a free C[xr+1, . . . , xn]-module and any vector space basis
of C(xr+1, . . . , xn)[x1, . . . , xr]/I

(r) is a basis of the free module. This is enough to
show that the leading forms of I generate I∗. Note that the equivalence above
involves a special case of the Auslander–Buchsbaum formula connecting projective
dimension with depth. A final assertion in the Tract that is worth recording was
rediscovered, in a more general form by Gaeta [Gae52] and systematized by Peskine
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and Szpiro [PS74]. In the short [Mac16, §92], the last substantive paragraph of the
Tract , Macaulay reiterated a result from [Mac13]:

Theorem 12. Suppose that M ⊂ M ′ are perfect modules of codimension r. If
Mxr+1=···=xn=0 is a principal system, then the residual M : M ′ is again perfect.

7. 1927 and 1930: From the shape of a cluster

to the characterization of Hilbert functions

Macaulay’s next paper can be read as the completion of a journey that starts
from his study of clusters of points defined by the intersection of two or more
plane curves and passes through the extensive discussion of the modular equations
and inverse systems associated to ideals in the Tract. In [Mac27] he completely
described all possible Hilbert functions of polynomial ideals16 and introduced a
special family of ideals that has come to play an important role in the theory.
Along the way, he noted that if I is a homogeneous ideal, then what is now called
the “degree-lexicographic initial ideal” of I has the same Hilbert function as I,
now a central point in the theory of Gröbner bases. Macaulay actually treated two
cases in parallel: for a homogeneous ideal I he considered the sequence D0, D1, . . . ,
where D� is the dimension of the vector space I� of forms of degree � in I; while
for an inhomogeneous (he said “nonhomogeneous”) ideal I, he set Di equal to the
dimension of the vector space of polynomials in I of degree ≤ �. For simplicity we
will treat just the case of homogeneous ideals in S := C[x1, . . . , xn], the other case
being quite similar.

In [Mac27] Macaulay said exactly what sequences of numbers D� can arise. The
“shape” of a cluster defined by an ideal I could reasonably be considered to be
the Hilbert function of S/I. If dim I� = D�, then dim(S/I)� = dimS� − D�, and
Macaulay also characterized the possible Hilbert functions of rings of the form S/I
in this way. Macaulay’s characterization of the sequences of numbers D� has several
remarkable aspects: First, given D� the possible values of D�+1 are independent
of the numbers D�′ for �′ < �. Thus, given D�, there will be a smallest possible
D�+1, say Q(�,D�), and every value from Q(�,D�) up to the dimension of S� will
be possible, since one can simply add generators of degree �+ 1. Macaulay gave a
formula for Q, but he also identified a specific family of ideals in which all possible
sequences are realized. They are now called “lex segment” ideals, and they are
really the stars of the show.

Definition 2. The monomial xp1

1 xp2

2 · · · is greater than the monomial xq1
1 xq2

2 · · ·
in the lexicographic order on monomials of degree d if, for the smallest i for which
pi �= qi, we have pi > qi.

For example, in three variables, the ordering of the quadratic monomials, from
greatest to smallest, is

x2
1 > x1x2 > x1x3 > x2

2 > x2x3 > x2
3.

An initial sequence of monomials of degree d, from largest to smallest, thus starts
with

xd
1, xd−1

1 x2, xd−1
1 x2, . . . .

Macaulay proved three fundamental results.

16In this paper, Macaulay switched from using the old term “modular system” to the almost
modern term “polynomial ideal”.
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Theorem 13. If m1, . . . ,mD is the initial sequence of the monomials of degree d
in the lexicographic order, then the product of the vector space 〈m1, . . . ,mD〉 and
the vector space of linear forms 〈x1, . . . , xn〉 is spanned by an initial sequence of
monomials of degree d+ 1 in the lexicographic order.

An ideal J such that J� is the vector space spanned by an initial sequence of the
monomials of degree � in the lexicographic order for every � is called a lexicographic
ideal. It follows from Theorem 13 that the ideal generated by an initial sequence
of the monomials of degree d in the lexicographic order is a lexicographic ideal.

Theorem 14. Let I ⊂ S be homogeneous ideal, and set D = dim I�. If m1, . . . ,mD

is the initial sequence of the monomials of degree � in the lexicographic order, then

dim I�+1 ≥ Q(�,D) := dim(m1, . . . ,mD)�+1.

For example, in three variables, since

(x2
1, x1x2)3 = 〈x3

1, x2
1x2, x1x

2
2, x1x2x3〉

is a vector space of dimension 4, we must have dim I3 ≥ 4 for any ideal containing
two independent quadrics. Theorem 14 is the main theorem of [Mac27]; it has been
analyzed, exploited, and generalized a great deal. Macaulay’s proof takes about
ten pages, largely of numerical formulas, and the paper is famous for the remark
Macaulay added at its start: “Note: This proof of the theorem which has been
assumed earlier is given only to place it on record. It is too long and complicated
to provide any but the most tedious reading.” (For simpler modern proofs see
[BH93] or [Gre89].) From Theorems 13 and 14 it follows that the function Q(�,D)
that will serve to characterize all Hilbert functions of ideals is equal to dim J�+1 for
the lexicographic ideal J generated by D monomials of degree �. Macaulay’s third
result is an elegant computation of the function Q(�,D) in terms of the binomial
coefficients

(m)n :=

(
n− 1 +m

n

)
.

For example, dimS� =
(
n−1+�
n−1

)
= (� + 1)n−1. Macaulay noted that any integer D

with 0 < D < dimSl can be expressed uniquely as

(∗) D = (�1)n−1 + (�2)n−2 + · · ·+ (�r)n−r

with � > �1 ≥ �2 ≥ �r ≥ · · · ≥ 1 and n > r > 0;

this is now known as the (n− 1)-st Macaulay representation of D.
Theorem 15. If I is the lexicographic ideal generated in degree � by D elements,
then

Q(�,D) = dim I�+1 = (�1 + 1)n + (�2 + 1)n−1 + · · ·+ (�r + 1)n−r+1.

Interesting modern extensions of this result can be found in the works of Caviglia
and many others; see for example [CS18]. The related case of ideals in an exterior
algebra is the subject of the Kruskal–Katona theorem, fundamental in algebraic
combinatorics; see for example [GK78].
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Macaulay referred to the papers of Hilbert [Hil90] and Ostrowski [Ost22] for
expressions for the Hilbert function. If I ⊂ S is a homogeneous ideal, then Hilbert
proved that there is a polynomial χ(�) such that dim(S/I)� = χ(�) for � 	 0.
Macaulay quoted the form

χ(�) = a

(
�

n− r − 1

)
+ b

(
�

n− r − 2

)
+ · · ·+ k

and Ostrowski’s form

χ(�) = a(�+ 1)n−r−1 + b′(�+ 1)n−r−2 + · · ·+ k′,

and remarked that a is the degree (Macaulay called it the order) of I while r is the
codimension (which Macaulay called the rank) of I and n− r− 1 is the dimension
of the projective variety corresponding to I. From Theorems 13 and 14 it follows at
once that for any homogeneous ideal I there is a lexicographic ideal J with the same
Hilbert function as I. By Hilbert’s basis theorem, the degrees of the generators of
J are bounded by some number �0. Writing D := dim J�0 in the form (∗) above,
we see that for δ = �− �0 > 0 we have

dim J� = D = (�1 + δ)n−1+δ + (�2 + δ)n−2+δ + · · ·+ (�r + δ)n−r+δ.

From this, Macaulay deduced a third form for the function χ(�), which he felt is
“the simplest form in which to leave χ(�), and shows its restrictions.” This is:

χ(�) = (�1)n−r −
(
(�1 + δ)n−1+δ + (�2 + δ)n−2+δ + · · ·+ (�r + δ)n−r+δ

)
.

In the last section of the paper, Macaulay took up some special cases: Echoing
material from [Mac13], he remarked that the generating function for the Hilbert
function of a perfect ideal has a special form, and he computed the Hilbert function
of the residual of a perfect ideal with respect to an ideal of the principal class (that
is, a linked ideal). He uses the ideas from §70 of the Tract to describe the symmetry
of the Hilbert functions of zero-dimensional homogeneous ideals that are principal
systems. He wrote:

It may have been observed that we have only found the conditions
which govern the terms of theD series in the two cases of the general
ideal and a perfect ideal and some special cases of the latter. We
have not found them for the general unmixed ideal, primary ideal,
the ideal with no multiple spread, and prime ideal. Each of these
cases is more difficult to solve than the previous one, and I doubt
whether the solution can be found for any of them, since there
seems to be no law governing the discontinuities which occur.

However, in a note added later he conjectured a form for the Hilbert function of a
smooth projective variety X,

χ(�) = (�+ 1)m + p0(�)m − p1(�)m−1 + p2(�)m−2 − · · ·+ (−1)mpm,

where pi is the arithmetic genus of the intersection Xi of X with a plane of codi-
mension i. (The conjecture is correct: it follows from Bertini’s theorem that the
general plane sections of X in projective space are again smooth, so that the ith
difference of the Hilbert function of X differs from the Hilbert function of Xi in
only finitely many degrees.)

Macaulay published his next paper [Mac30] in theMathematical Gazette, a maga-
zine perhaps analogous to the American Mathematical Monthly. It is didactic in na-
ture, and gives an exposition of some properties of the Macaulay representation (∗)
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above, focusing on various inequalities for the numerical value of Q(�, A)−Q(�, B),
given the value of A − B. It is pure numerics—no ideals are mentioned—and
gives one some appreciation of the remark of J. E. Littlewood, one of Macaulay’s
pupils at St. Paul’s, that Macaulay’s book on Geometical Conics was “very stiff”
[Bak38, p. 359].

8. 1934: Appreciating Emmy Noether and summing up

Macaulay’s career is bracketed by the two famous Noethers, Max and Emmy.
At the beginning, Macaulay’s work centered around Max Noether’s Fundamental
Theorem and the problem of residuation, and it featured a deeper understanding
of the latter. Macaulay’s last paper [Mac34] is the first paper in English to de-
scribe Emmy Noether’s work on ideal theory. B. L. van der Waerden’s enormously
influential two-volume Moderne Algebra ([van30] and [vdW67], respectively) was
an exposition of the ideas of Emmy Noether and Emil Artin, among others, on
the theory of ideals in commutative and noncommutative rings. Macaulay’s article
[Mac34], published just three years later, begins with a description of this new the-
ory, which we believe to be its first mention in English. In §4 Macaulay specialized
to the case of ideals in S := C[x1, . . . , xn] (which he referred to throughout as “pol.
ideals”). He also mentioned the work of Wolfgang Gröbner, without journal attribu-
tion, and, as mentioned above, he quoted a proof by Krull of Lasker’s Satz XXVII,
that he said “has not been published, as far as I am aware” [Mac34, p. 36]. This
suggests considerable contact with the revolution in algebra going on in Germany,
and even leads one to wonder whether he was in direct contact with Krull.

In [Mac34, §5] Macaulay turned to inverse systems, saying on page 11 that he
can use the “broadened outlook of modern algebra” to give a simpler presentation
than that in the Tract. He now presented the inverse system explicitly as an “H-
ring-module” (that is, a graded S-module in the modern sense) and gave many
examples. Among other advances, Macaulay could now give the modern description
of what he called “principal systems” (which made their appearance in the Tract ,
§60), the ideals for which the inverse system is generated, in a suitable sense, by
a single element: they are the ideals I with no embedded components that are
also generically irreducible in the sense that, if I1 is a primary component of I of

codimension r, then I
(r)
1 := IC(xr+1, . . . , xn)[x1, . . . , xr] (where the xi are chosen

generally), is not the intersection of two strictly larger ideals. The next section,
§6, concerns the theory of perfect ideals. He defined these with a more modern
version of the definition given in the Tract : he said that a homogeneous ideal I
of codimension r is perfect if IS/(xr+1, . . . , xn) again has codimension r (which,
he remarked, is always true after a general linear change of variables) and “has
the same number of linearly independent elements up to any degree as I(r)”. This
implies that the Hilbert function of S/(I + (xr+1, . . . , xn)) as a vector space over
C is equal to that of C(xr+1, . . . , xn)[x1, . . . , xr]/(IC(xr+1, . . . , xn)[x1, . . . , xr]) as
a vector space over C(xr+1, . . . , xn). In modern terms, this is equivalent to the
statement that S/I is flat (in this case, even free) over the ring C[x1, . . . , xr]. Once
again he defined a nonhomogeneous ideal to be perfect if its homogenization is
perfect, and gave many examples. Here he pointed out that the dth power of the
ideal generated by f1, . . . , fr ∈ S can be written as the ideal generated by the d×d
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minors of the d× (d+ r − 1) matrix⎛
⎜⎜⎜⎜⎜⎜⎝

f1 f2 · · · fr−1 fr 0 · · · · · · 0
0 f1 f2 · · · fr−1 fr 0 · · · 0

0 0
. . .

. . . · · · . . .
. . . · · ·

...
...

. . .
. . .

. . . · · · · · · · · · . . .
...

0 · · · · · · 0 f1 f2 · · · fr−1 fr

⎞
⎟⎟⎟⎟⎟⎟⎠

with d rows and r nonzero diagonals. If f1, . . . , fr are homogeneous, then they
form a regular sequence (and thus generate what Macaulay called “an ideal of the
principal class”) if the codimension of (f1, . . . , fr) is r. Macaulay had proved in
[Mac13] that the ideal of maximal minors of a homogeneous d× (d+ r− 1) matrix
is perfect whenever it has codimension r. He now deduced the result (proven
differently in [Mac13]) that every power of an ideal that is a principal system is
again perfect. In the final section, §7, Macaulay named for the first time another
concept that first appeared in [Mac13, §71]: he said that a homogeneous ideal I is
superperfect if it is perfect of codimension r and S/(I + (xr+1, . . . , xn)), where n is
the ambient dimension, is a principal system (as always, with sufficiently general
choice of variables xi). In the homogeneous case this is equivalent to the modern
condition that S/I is a Gorenstein ring. (As with the definition of perfection, he
defined superperfection by the condition that the associated homogeneous ideal is
perfect, a less general condition than the modern one.) Superperfect ideals represent
a far-reaching generalization of the notion of 1-set points, which, at the beginning
of his career, was perhaps Macaulay’s main contribution to the development of Brill
and Noether’s theory of plane curves.

9. Conclusion

Starting from the theory of plane curves—essentially a theory of one or two
polynomials in two or three variables—Macaulay propelled commutative algebra
toward the modern treatment of polynomial ideals with arbitrary generators and
arbitrary numbers of variables, building on work of Kronecker, König, and Lasker.
Though most of his work was written in an archaic style, he was the first to bring
Emmy Noether’s theory of commutative rings to Britain, and his work was much
appreciated by her and her school.

Macaulay’s work before 1900 had to do with the problems of incorporating the
Riemann–Roch theorem into the theory of algebraic plane curves. In particular, he
classified “clusters” of points as “t-set points” by the dimension t of the socles of
their local rings (see Example 3) and showed that one could do residuation (only)
with respect to 1-set points; and he understood that the residual of a t-set point in
a 1-set point could be a t − 1, t or (t + 1)-set point. These results are forerunners
of the modern theory of Gorenstein ideals and linkage. His work in this period
culminated in his generalized Riemann–Roch theorem, now widely known as the
Cayley–Bacharach theorem.

In this period Macaulay and others struggled with the question of how to describe
the “shape” of a cluster of points, represented by the singular point of a curve or
by a nontransverse intersection of curves. Macaulay’s characterization of Hilbert
functions by means of lexicographic ideals in [Mac27] gives a satisfying answer to
this question.
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Most important was the understanding of perfect ideals, treated in [Mac13] and
[Mac16]. One obstruction to the full proof of Noether’s Fundamental Theorem was
the lack of a theory that included embedded components of ideals, and the result-
ing impossibility of reasoning that the intersection of just two curves would never
have such a component. Emanuel Lasker’s discovery of the primary decomposition
theorem for polynomial ideals [Las05] paved the way for such an understanding,
and Lasker showed that complete intersections never have embedded components.
Macaulay went much further. He isolated the property of unmixedness (not having
embedded components) that had only been implicit in the work of Lasker, and
identified the much larger class of perfect ideals as the natural class sharing key
properties of complete intersections.

In his last paper [Mac34], Macaulay codified the extension to all dimensions of his
early solution of the problems of residuation for point groups in the plane by intro-
ducing the “superperfect” ideals. Though the notion of perfect ideals dramatically
influenced the development of modern commutative algebra, Macaulay’s superper-
fect ideals were forgotten, and rediscovered in the guise of Gorenstein rings in work
of Serre and Bass only in the second half of the twentieth century; see [Bas63]. The
current paper is perhaps the first modern work to detail this connection.

Thus Macaulay’s major achievements after 1905 can be seen as directly motivated
by the difficulties encountered in his work on plane curves, giving a remarkable unity
to his life’s research work.
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1–174. MR1344713

[Kap74] I. Kaplansky, Commutative rings, Revised edition, University of Chicago Press,
Chicago, Ill.-London, 1974. MR0345945

https://www.ams.org/mathscinet-getitem?mr=453723
https://www.ams.org/mathscinet-getitem?mr=3886170
https://www.ams.org/mathscinet-getitem?mr=2866537
https://www.ams.org/mathscinet-getitem?mr=1355544
https://www.ams.org/mathscinet-getitem?mr=4323620
https://www.ams.org/mathscinet-getitem?mr=2937532
https://www.ams.org/mathscinet-getitem?mr=16094
https://www.ams.org/mathscinet-getitem?mr=1645574
https://www.ams.org/mathscinet-getitem?mr=572990
https://www.ams.org/mathscinet-getitem?mr=1376653
https://www.ams.org/mathscinet-getitem?mr=1969204
https://www.ams.org/mathscinet-getitem?mr=0052828
http://www.math.uiuc.edu/Macaulay2/
https://www.ams.org/mathscinet-getitem?mr=1023391
https://www.ams.org/mathscinet-getitem?mr=513002
https://www.ams.org/mathscinet-getitem?mr=1510634
https://www.ams.org/mathscinet-getitem?mr=608547
https://www.ams.org/mathscinet-getitem?mr=3325942
https://www.ams.org/mathscinet-getitem?mr=1344713
https://www.ams.org/mathscinet-getitem?mr=0345945


F. S. MACAULAY: FROM PLANE CURVES TO GORENSTEIN RINGS 405

[Ken89] P. C. Kenschaft, Charlotte Angas Scott (1858–1931), in A century of mathematics in
America. Part III, History of Mathematics, vol. 3, (P. Duren, H. M. Edwards, Uta C.
Merzbach, eds.), American Mathematical Society, Providence, RI, pp. 241–252, 1989.
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