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As the title suggests, this book is about ∞-categories. Although this terminol-
ogy has recently become mainstream in certain areas of mathematics, including
homotopy theory and algebraic geometry, it has a long history. In this review we
will discuss its evolution out of more familiar mathematical ideas.

1. Categories

The long journey to ∞-categories began with the introduction of category theory
by Eilenberg and MacLane [8] in 1945. Here is a quick, elementary reminder.

Category theory is a language for talking about abstract mathematics [20]. When
one wants to talk about a collection of things, such as topological spaces, differen-
tiable manifolds, or groups, it is important to clarify the maps between them. For
topogical spaces, the natural kind of map is a continuous function; for differentiable
manifolds, the natural map is a smooth function; for groups, the maps are group
homomorphisms. In the jargon of category theory, the things are called objects
and the maps are called morphisms. There are of course rules: the composition of
any two morphisms X → Y and Y → Z must be a morphism X → Z, composi-
tion is associative, and each object has an identity map. Higher category theory is
concerned with the structure of composition of morphisms.

Up to set theory, there is also a category Cat whose objects are small categories
and whose morphisms are functors. Here “small” means that the sets of objects
and morphisms have cardinality less than some fixed regular cardinal κ.

In mathematics, we often consider an invariant F (a) of an object a in a category
A as an object of a category B. A good invariant will send a morphism a −→ a′

to a morphism F (a) → F (a′) in B, respecting composition and identity maps. We
say that such an F is a functor from A to B.

For example, the fundamental group π1(X) is a functor from pointed topological
spaces to groups, and the abelianization G/[G,G] of a group G is a functor from
groups to the category Ab of abelian groups. Functors can be composed in useful
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ways—the composition of π1(X) and G/[G,G] is the homology H1(X) of a space
X,

X ��

f

��

π1(X)

π1(f)

��

�� H1(X)

H1(f)

��
Y �� π1(Y ) �� H1(Y ).

Another example is the fundamental groupoid of a topological space X. The
objects are the points of X, and Hom(x, y) is the set of homotopy classes of conti-
nous paths I → X from x to y; composition of paths defines the composition law.
The term “groupoid” implies that Hom(x, x) is a group for every x ∈ X. In fact,
Hom(x, x) is the fundamental group of the based space (X, x).

My favorite functors are forgetful functors from spaces, groups, etc., to Sets.
They take each object to their underlying set, and homomorphisms to the functions
between these sets.

The language of category theory was instrumental in the development of ho-
motopy theory, homological algebra, and algebraic geometry during the 1950s and
1960s. Much of this development was due to Grothendieck [10] and Kan [15].

2. Topological categories

Many of the ideas of higher category theory began in the 1960s with the notion of
a category A being enriched over Cat. This just means that the set of morphisms
in A from a to a′ is replaced by a category FunA(a, a

′), i.e., an object in Cat;
the underlying morphism set HomA(a, a

′) of the ordinary category A is the set
of objects of the category FunA(a, a

′). Such an enriched category is also called a
(strict) 2-category, or a bicategory. The morphisms in FunA(a, a

′) are called natural
transformations, or 2-cells. (We leave the list of axioms to the reader.)

A category can be enriched over any complete and cocomplete monoidal closed
category, such as Ab, Top,1 or simplicial sets. Homological algebra deals with Ab-
categories (categories enriched over Ab). Categories enriched over Top are called
topological categories, and they form the most geometric model of ∞-categories.

Unfortunately, topological categories are hard to work with, because diagrams
tend to only commute up to homotopies, good compositions require replacing maps
with homotopy equivalent fibrations, and the bookkeeping needed to keep track of
the homotopy data can be unwieldly. So the story didn’t end here.

Looking ahead, the fundamental ∞-groupoid of a topological space X has the
same space of objects as the fundamental groupoid, but now the topological space
Hom(x, y) is the topological space of paths from x to y in X, and there is an entire
topological space of compositions of γ0 : x → y and γ1 : y → z, parametrized by
maps from the 2-simplex Δ2 to X:

• one composition for each continuous map σ : Δ2 → X, whose three bound-
ary edges consist of γ0, γ1 and their σ-composition γ2 : x → z;

• the map σ is a homotopy between the concatenation γ1 ◦ γ0 and the σ-
composition γ2.

The fundamental ∞-groupoid also contains higher-dimensional information; the
two-dimensional homotopies have three-dimensional homotopies between them, i.e.,

1The category of compactly generated, weakly Hausdorff spaces.
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continuous maps from the 3-simplex Δ3 to X, and so on; see [18, 1.1.1.4]. We shall
skip the technical details, hoping that the reader gets the general idea.

3. Homotopy everything spaces

In the topology community of the post-World War II era, there was a recognition
that the space ΩX of loops S1 → X (for a space X with a specified basepoint) had
a composition S1 → S1 ∨ S1 → X which was not strictly associative, yet it had
more structure than just being associative up to homotopy (the relation needed to
define π1(X)). This recognition arose gradually in the 1950s, with H-spaces and
models for the classifying space BG of a group G being motivating examples.

Stasheff’s 1961 thesis [28] defined a nested sequence of homotopy associative
coherence conditions that a composition X ×X → X in a space X might satisfy;
an A2-space is an H-space, a space satisfying the first n conditions is called an
An-space, and n-fold loop spaces are An-spaces. This gave a bookkeeping device
for keeping track of the higher homotopies of associativity involved in composition.

Boardman and Vogt [5] extended Stasheff’s techniques to define E∞ structures
on a space X; this implied that X is an infinite loop space. This notion led to the
development of infinite loop spectra and even E∞-spectra in the 1970s, by Adams,
May [21], and others. These ideas were modified much later to define A∞-algebras;
see [16] for a survey.

Similar considerations were also making an appearance in homological algebra.
Chain complexes and their homology are the analogues of topological spaces and
their homotopy groups. But there was a problem: chain complexes carried too much
irrelevant information, while homology lost too much information. The notion of
chain homotopy was an interpolation between these extremes.

The notion of a triangulated category, due to Verdier [29], was a formalism that
tried to capture this middle ground. For example, the stable homotopy classes of
spectra form a triangulated category. Chain complexes in an abelian category A
can be given either the chain homotopy relation or the quasi-isomorphism relation;
the homotopy category with respect to chain homotopy is triangulated, as is the
homotopy category with respect to quasi-isomorphisms; the latter is called the de-
rived category of A, D(A). (More generally, a homological functor on a triangulated
category C induces a localization of C, which is a new triangulated category that
plays the role of the homotopy category of C.)

Here too, there was a recognition that the derived category lost too much in-
formation for some applications. The notion of a t-structure [2] was one attempt
to find a middle ground. The stable ∞-category of chain complexes is another
candidate for such a middle ground.

4. Simplicial constructions

Simplicial sets were first defined in 1950 by Eilenberg and Zilber in [9] and have
played a major role in algebraic topology ever since. Here is a rapid tour of the
subject.

Let Δ be the category whose objects are the finite ordered sets [n] = {0< · · ·<n}
and whose morphisms are order preserving. A simplicial set is a contravariant
functor K : Δ → Sets, and the elements of K(n) are called its n-cells. The
representable simplicial set Δ[n] is Hom(−, [n]).
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The category ΔopSets of simplicial sets is a good model for Top; there is a
realization functor from ΔopSets to Top sending Δ[n] to the n-simplex Δn. Its
adjoint functor is the singular complex of a topological space, [n] �→ Maps(Δn, X),
which is used to define the singular homology of X.

G. Segal [26] observed that every category A defines a simplicial set, called its
nerve: the objects of A are the 0-cells, and the composable sequences a0 → a1 →
· · · → an are its n-cells. This observation formed the starting point of Segal’s
infinite loop space machine.

The combinatorics of simplicial sets have given rise to a large dictionary of ter-
minology. Here is some terminology which will be relevant to our review of ∞-
categories.

The k-horn Λk[n] of the n-simplex Δ[n] is the subcomplex obtained by removing
the kth face. It is called an inner horn if it is not the first or last horn of Δ[n].

A Kan complex is a simplicial set with the right lifting property against all horns.
That is, every f : Λk[n] → K extends to a map Δ[n] → K. Kan complexes were
first introduced in 1956 by Dan Kan [14]. The singular complex of a topological
space is a Kan complex, and so is any simplicial group.

A simplicial map p : E → B is a (Kan) fibration if it has the appropriate lifting
property against all horns: every map f : Λk[n] → E, k ≤ n, such that pf factors
through a map Δn → B, factors through a map Δ[n] → E. There are weaker
notions; for example p is an inner fibration if it has the lifting property against all
inner horns.

Λk[n]
f ��

� �

��

E

p

��
Δ[n]

∃
���

�
�

�
�

�� B

One successful axiomatic approach to the axiomatization of homotopy theory,
due to Quillen [22], was the notion of a model category. Such a category has limits,
colimits, and three distinguished families of maps called cofibrations, fibrations,
and weak equivalences. The homotopy category is obtained by modding out by
weak equivalences.

There is a notion of a (left or right) Quillen functor between model categories
which is useful in manipulating ∞-categories; see [25, App. C.3]. An adjunction
between left and right Quillen functors is called a Quillen adjunction, and induces
an adjunction of homotopy categories.

The classic application is to topology: simplical spaces have a Quillen model
structure whose fibrations are Kan fibrations; the realization ΔopSets → Top is a
left Quillen functor and the singular complex is a right Quillen functor; together
they form a Quillen adjunction and induce an equivalence of homotopy categories.
Thus almost all of homotopy theory can be handled using simplicial techniques.

The following definition is relevant for ∞-categories.

Definition 4.1. An isofibration between quasi-categories is an inner fibration

E
p→B such that for any e in E, a weak equivalence p(e) → b in B can be lifted to

a weak equivalence e → e′ in E; see [25, 1.1.17].

The prototype of an isofibration is a functor p : E → B between categories such

that for every e in E, every isomorphism p(e)
�−→ b in B lifts to an isomorphism

e
�−→ e′ in E.
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5. Quasi-categories

Definition 5.1. A quasi-category is a simplicial set K which has the right lifting
property against all inner horns.

Quasi-categories are the primary working model of ∞-categories, as much of
the technical manipulations of ∞-categories work well in that setting. In practice,
many authors use the term ∞-category to mean a quasi-category; see [18]. The
definition used in the book under review is given in Definition 5.2 below.

In addition to Kan complexes, categories (or rather their nerves) are quasi-
categories. Any 2-category also defines a quasi-category. Quasi-categories were
first introduced by Boardman and Vogt [5], who called them weak Kan complexes.
Joyal [13] defined a Quillen model structure on the category of simplicial sets, one
for which quasi-categories are the fibrant objects.

The category QCat of (small) quasi-categories is the main ∞-category analogue
of Cat. For example, the analogue of the ordinary category of sets is the quasi-
category S of spaces, which is the simplicial nerve of Kan, the subcategory of
simplicial sets whose objects are Kan complexes. The analogue of the ordinary
category of finite sets is the quasi-category Sfin of finite spaces, the smallest full sub-
quasi-category of S containing the point, and which is stable under finite colimits.

The homotopy category hA of a quasi-category A is the category with the same
objects as A and homotopy classes of morphisms in A as its maps. An isomorphism
in a quasi-category A is a 1-cell f : a → b which represents an isomorphism in hA.
If A is (the nerve of) an ordinary category, then A = hA, and isomorphism has its
usual meaning.

An∞-category is pointed if it has an element 0 which is both initial and terminal.
The existence of a point allows many familiar constructions to make sense, such as
the adjunction of loops and supension functors (when they exist). All of the above
examples have pointed versions.

One of the most useful kinds of ∞-category is a stable ∞-category. This is a
pointed ∞-category which admits pullbacks and pushouts, and pullback squares
coincide with pushout squares [17]. Stable ∞-categories have all finite limits and
colimits, such as finite direct sums and products. In fact, if A is a stable ∞-
category, then its homotopy category hA is a triangulated category; see [19, 1.12.9].
In addition, any stable ∞-category is canonically enriched over the ∞-category of
spectra. Here are the most commonly used stable ∞-categories.

• There is an ∞-category Sp of Spectra; it is a stable ∞-category. Any stable
∞-category is enriched over Spectra; a construction of this ∞-category is
given in [19, 1.4.1]. See [4].

• For every abelian category A, there is an ∞-category Ch(A) of chain com-
plexes in A and chain complex maps; its 2-cells are chain homotopies; see
[19, 1.3.1]. This is also a stable ∞-category, and its homotopy category is
equivalent to the classical derived category of A, D(A).

Largely due to the influence of Lurie’s 2009 book [18], most experts regard quasi-
categories as the main examples of ∞-categories. However, there are several other
related settings where the term ∞-category is used. One of the main goals of the
book under review is to axiomatize the terminology of just what an ∞-category is.
The authors solve this problem by coining the term ∞-cosmos and defining an ∞-
category to be an object in an ∞-cosmos. The category QCat of quasi-categories
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is the prototype of an ∞-cosmos, and many model categories enriched over Joyal’s
model structure on simplicial sets also form an ∞-cosmos; see [25, 1.2.13]. I think
of an ∞-cosmos as a higher analogue of Cat.

Definition 5.2. An∞-cosmos is a category which is enriched over quasi-categories,
contains a terminal object, small products, cotensors with simplicial sets, and is
equipped with a notion of isofibration, satisfying some axioms which this review
will omit; see [25, 1.2.1].

An ∞-category is defined to be an object in an ∞-cosmos. When the ∞-cosmos
is QCat, we recover the usage of a quasi-category being an ∞-category.

Being enriched over quasi-categories means that for every two ∞-categories A
and B, Fun(A,B) is a quasi-category. A cosmological functor between∞-categories
is a simplicial functor preserving limits and isofibrations.

Here is a list of∞-cosmoi, many having been discovered in the decade 2000–2010:

• Cat is a trivial example of an ∞-cosmos.
• The category QCat of small quasi-categories is the prototypical ∞-cosmos.
Given two quasi-categories A and B, Hom(A,B) is the largest Kan complex
contained in the quasi-category Fun(A,B).

• Any 2-category C having sufficient limits defines an ∞-cosmos, where
Fun(A,B) is the nerve of the category HomC(A,B).

• Segal categories are bisimplicial sets satisfying a version of Segal’s condition;
they were introduced by Dwyer, Kan and Smith [6, 7], and studied in [27].

Hirschowitz and Simpson [12] defined a model structure on the category
of pre-categories for which the fibrant objects are the Segal categories.

• Complete Segal spaces, due to Rezk [24], are bisimplicial sets satisfying
a version of Segal’s condition for simplicial spaces; they are the fibrant
objects in Rezk’s Quillen model structure on the category of bisimplicial
sets. Bergner [3] showed that the model structures on complete Segal spaces
and Segal categories are Quillen-equivalent.

• The stable ∞-categories (and exact functors) in an ∞-cosmos also form an
∞-cosmos; see [25, 6.3.16].

Warning: Sometimes the new vocabulary causes confusion. Here are two examples.

• In a pointed ∞-category, the kernel and cokernel of a morphism are the
topologist’s homotopy fiber and cofiber.

• In an ordinary category A, the familiar limit of a functor J → A (when it
exists) is right adjoint to the constant diagram functor. In an ∞-category,
the limit is also defined to be the right adjoint of the constant diagram
functor, but turns out to be the topologists’ homotopy limit of a J-diagram
of simplicial complexes. In this ∞-categorical setting, the pushout of
B ← A → C is not the classical pushout, but rather the homotopy pushout
of the diagram of complexes.

We conclude by mentioning two approaches to higher category theory which are
not ∞-cosmoi:

(1) The theory of relative categories, due to Barwick and Kan [1];
(2) The theory of derivators, due to Grothendieck [11], has been modified by

Raptis [23] to give another model of ∞-categories.
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6. The book

We now turn to the 759-page book under review. It is certainly a comprehensive,
foundational text, laying out a model-independent approach to higher category
theory. This makes it a valuable resource for experts. However, the book is written
in a terse style, and is not for those not yet initiated into higher category theory.
In particular, I think that it is too advanced for a graduate course, as it relies on
several appendices, many of which would warrant a course in their own right.

Part I is the heart of the book, defining ∞-categories and ∞-cosmoi as well as
their associated homotopy categories and topics like adjunctions, limits, and colim-
its. To quote from the Introduction, “the aim of Part I is to develop a substantial
portion of the theory of ∞-categories from first principles, as rapidly and painlessly
as possible—at least assuming that the reader finds classical abstract nonsense to be
relatively innocuous.” However, following the proofs frequently requires familiarity
with the more classical material found in the appendices.

Rather than picking a specific model of ∞-category and providing structural
results in that model, the authors define an ∞-cosmos to be a category K that is
enriched over quasi-categories, as we did in the previous section. Just as ordinary
categories and functors form the objects and morphisms of Cat, an ∞-category
is defined to be an object A of K and an ∞-functor A → B is defined to be a
morphism in K.

Because the text ties many models together, the book contains both synthetically
proven results—whose statements and proofs hold in any model of ∞-categories—
and analytically proven results—whose statements and proofs depend on the fea-
tures of a particular model. I appreciate the many synthetic proofs of results that
had previously been proven only for quasi-categories.

Part II develops the calculus of modules ; ∞-categories A, B are the analogues
of classical rings, and an A-B bimodule is an ∞-category E on which A acts on the
left and B on the right. This analogy is exploited to develop the category theory
of ∞-categories (!) and (left and right) Kan extensions as well.

Part III discusses the difference between ordinary functors between ∞-cosmoi
and biequivalences between ∞-cosmoi. A cosmological functor F : A → B is a
biequivalence if it is essentially surjective and the maps Fun(A,B) → Fun(FA,FB)
are equivalences of quasi-categories. Biequivalences preserve a lengthy list of ∞-
categorical structures [25, 10.3.6], as well as preserving both synthetic and analytic
proofs of theorems. Part III also includes a proof of the fundamental theorem of
∞-categories [25, 12.2.17]: in any ∞-cosmos, a functor is an equivalence if and only
if it is fully faithful and essentially surjective.

The six appendices, A–F, which cover over 200 pages of the book, deal with
higher category theory (enriched categories, 2-categories, and Quillen model cate-
gories) and concrete constructions (simplicial sets, models of ∞-cosmoi, and quasi-
categories).

That being said, I learned a lot from the book under review, and I believe that
any reader familiar with simplicial sets can appreciate the rapid development in
Chapters 1 and 2.



442 BOOK REVIEWS

References

[1] C. Barwick and D. M. Kan, Relative categories: another model for the homotopy
theory of homotopy theories, Indag. Math. (N.S.) 23 (2012), no. 1-2, 42–68, DOI
10.1016/j.indag.2011.10.002. MR2877401
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