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As one might expect from a graduate text on logic by a very distinguished al-
gebraic geometer, this book assumes no previous acquaintance with logic, but pro-
ceeds at a high level of mathematical sophistication. Chapters I and II form a short
course. Chapter I is a very informal introduction to formal languages, e.g., those
of first order Peano arithmetic and of ZFC set theory. Chapter II contains Tarski’s
definition of truth, Gödel’s completeness theorem, and the Löwenheim-Skolem the-
orem. The emphasis is on semantics rather than syntax. Some rarely-covered side
topics are included (unique readability for languages with parentheses, Mostowski’s
transitive collapse lemma, formalities of introducing definable constants and func-
tion symbols). Some standard topics are neglected. (The compactness theorem is
not mentioned!) The latter part of Chapter II contains Smullyan’s quick proof of
Tarski’s theorem on the undefinability of truth in formal arithmetic, and an account
of the Kochen-Specker “no hidden variables” theorem in quantum logic. There are
digressions on philosophical issues (formal logic vs. ordinary language, computer
proofs). A wealth of material is introduced in these first 100 pages of the book.

The elements of set theory are expounded in an Appendix to Chapter II. Chap-
ters III and IV are devoted to the continuum hypothesis. Chapter III contains the
Scott-Solovay Boolean-valued models approach to Cohen’s proof of the indepen-
dence of CH, using the more readily intelligible proof of its independence from a
system of axioms for the second order theory of the real numbers as preparation
for the more difficult proof of independence from ZFC. The alternative forcing ap-
proach is covered in a supplementary section at the end of the chapter. Chapter
IV contains Gödel’s proof of the consistency of CH. In accord with the attitude
of working set theorists, the emphasis is on semantics, constructing models, with
syntax, finitist relative consistency proofs, relegated to a section at the end of the
chapter. Some minor slips: p. 105 contains the absurd statement that CH is “the
only known example” of a naturally-occurring undecidable proposition. It is in fact

409

https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1800
https://www.ams.org/mathscinet-getitem?mr=0457126
https://www.ams.org/mathscinet-getitem?mr=0457126


410 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

but the first-discovered of many, the latest being Whitehead’s conjecture in group
theory. CH is, however, the only example treated in this book, which does not
contain Cohen’s independence proof for AC, nor Gödel’s consistency proof for the
existence of non-measurable projective sets. Page 148 mentions the singular cardi-
nals problem as an open question. Work of Silver, Magidor, et al. shortly before
the publication of this book has settled it. In several places Frege’s inconsistent
notion of set—every property determines the set of all things with that property—
is inaccurately called “Cantorian”. On the whole Chapters III and IV have little
connection with the rest of the book.

Chapter V introduces partial recursive functions and the so-called Church’s the-
sis. One novelty is the presentation of some elementary facts in geometrical lan-
guage in the last section of the chapter. Chapter VI is devoted to Hilbert’s tenth
problem and the lengthy proof that (∗) every recursively enumerable set is Dio-
phantine. Perhaps the hardest part of the proof of (∗) is to produce one example of
a function of exponential growth whose graph is Diophantine. In place of Matija-
sevič’s original example using Fibonacci numbers, the author presents an original,
simpler example based on Pell’s equation. Once (∗) is established, it is much ex-
ploited. For example, the proof of the enumeration theorem for partial recursive
functions is based on it. Chapter VI closes with a discussion of Kolmogorov’s
measure of complexity of recursive functions (length of the shortest program).

Chapter VII is devoted to Gödel’s incompleteness theorem. Gödel’s proof had
three components: (1) arithmetization of syntax, (2) definability of recursive func-
tions in formal arithmetic, (3) self-referential arguments. Since (3) has to some
extent been discussed on connection with Smullyan’s work in Chapter II, and (2) is
immediate from (∗), Chapter VII is devoted to a detailed exposition of (1), includ-
ing a careful explanation why in any two reasonable numberings of formulas, the
same syntactic operations will correspond to recursive functions. Gödel’s theorem
is stated semantically: For first order Peano arithmetic or any related system, some
true formula is not provable. The semantical fact that all provable formulas are true
is used in the author’s proof. The purely syntactic version of the theorem and its
adaptation to finitely axiomatized fragments of Peano arithmetic are not present.
So we do not get Gödel’s second incompleteness theorem (on the impossibility of a
consistency proof), Church’s theorem (on the undecidability of elementary logic),
nor the Trahtenbrot-Craig theorem (on the undecidability of the class of formulas
valid in finite models). On the other hand, Chapter VII closes with an exposition,
rare in logic texts, of Gödel’s work on the length of proofs.

The last chapter, Chapter VIII, is devoted to the word problem for groups and
Higman’s characterization of recursively presented groups. Following Valiev, the
author uses (∗) to simplify the recursion-theoretic parts of the proof. So Chapter
VIII consists mainly of detailed group-theoretic arguments.

Given the author’s preference for semantics over syntax, it is no surprise that,
for example, the Herbrand and Gentzen theorems do not appear in the book. It
is more surprising that the standard topics from model theory (preservation theo-
rems, elimination of quantifiers, ultraproducts, omitting of types) which are closely
connected with algebra (Birkhoff’s theorem, Artin-Schreier theory, the Ax-Kochen
theorems, differentially closed fields) are also left out. For a graduate course this
text would have to be supplemented from another source. On the other hand, many
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interesting unorthodox topics are included, and all the material is presented in a
fresh way.

John P. Burgess

From MathSciNet, May 2023

MR0785261 (87b:58038) 58F07; 35Q20, 58A50

Manin, Yu. I.; Radul, A. O.

A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy.

Communications in Mathematical Physics 98 (1985), no. 1, 65–77.

The authors introduce a radically new object into the theory of (continuous) in-
tegrable systems: Lax equations in an odd space-time. In some aspects, their con-
struction can be thought of as both an odd extension and a nontrivial square root
of the classical theory. Let K be a commutative superalgebra and let θ : K → K
be an odd derivation of K (e.g., K = C∞(R1)[ξ]/(ξ2), θ = ∂/∂ξ + ξ∂/∂x, so
that θ2 = ∂/∂x). Consider a (“pseudodifferential”) operator L of the form (1) L =∑n

i=0 or−∞ uiθ
i, and the associated Lax equations (2) ∂L/∂τ = [P+, L] = [−P−, L],

where P belongs to the centralizer Z(L) of L in K((θ−1)), as in the classical the-
ory, but τ , unlike the classical case, may be an “odd” time. The authors follow the
method of fractional powers to study the equations (2), which means two things: (i)
P runs over {(L1/n)m : m ∈ N}, and (ii) one deduces (2) from the same equation

for n
√
L. But here they find an interesting problem: for n ≡ 0 mod 2, the nth root

is not defined. For n ≡ 1 mod 2 everything is fine, and the authors sketch construc-
tions of the whole gamut of things familiar in the usual (i.e., even) theory: ring of
pseudodifferential operators, (super)residues, an infinity of conservation laws, vari-
ational derivatives of conservation laws and a sort of supercalculus of variations, a
candidate for what may be called the first Hamiltonian structure, etc.

Reviewer’s remarks: The paper is easy to understand and I restrict myself only
to a few general remarks. The method of fractional powers, although the most
direct from the point of view of deriving most of the results in the scalar (even)
theory, is known to lack the power to deduce the commutativity of the flows in a
purely algebraic fashion, i.e., bypassing the Hamiltonian formalism. This situation
also persists in the odd case. Of course, it is not really that important as long as
one considers only the scalar operators, as is the case here, but the full (future)
theory should also handle the matrix operators, and here one would need to devise
an odd extension of Wilson’s deep method. (It is really not trivial: the central
semisimplicity condition in Wilson’s theory becomes hardly recognizable.) This
remains, I think, the central problem in the theory; the odd Hamiltonian formalism
and the odd variational calculus are not difficult to construct, by employing purely
algebraic methods. Finally, when n in (1) is even, the theory should proceed by
taking the (n/2)th root instead of the nth one (which does not exist). Then one
obtains a truly odd extension of the classical theory (if n = 2m then θn = ( ∂

∂x )
m,

etc.), with plenty of new phenomena appearing (such as the disappearance of the
second Hamiltonian structure, the odd character of the first Hamiltonian structure,
etc.). The field has just started, and it is wide open.

B. A. Kupershmidt

From MathSciNet, May 2023
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MR0787979 (86m:32001) 32-02; 14-02, 32L25, 58A50, 81-02

Manin, Yu. I

Kalibrovochnye polya i kompleksnaya geometriya. (Russian)

“Nauka”, Moscow ,, 1984, 336 pp., 2.70 r.

In the last two decades two new ideas were introduced into mathematical physics.
The first of these is the notion of twistor geometry and the other is that of supersym-
metry. In this book we find a beautiful blend of developments stemming from these
two ideas written by a master expositor who uses the language of algebraic geome-
try to synthesize and unify the fundamental ideas involved. The fundamental idea
of Penrose in his formulation of twistor geometry was to use the space of light-rays
in Minkowski space as a new 5-dimensional background space on which to study
physical problems. Information can be transformed from this new space (called the
“twistor space” in this context) to Minkowski space by a variant of the classical
Radon transform, referred to today as the Penrose transform. What appears is
that solutions of the classical field equations (both linear and nonlinear varieties,
including electromagnetic fields, Yang–Mills fields, gravitational fields, etc.) arise
as the Penrose transform of algebraic data on twistor space. There are now a
number of variants of this basic idea which have been developed, and these have
been described in various places (recent references include books by the reviewer
[Complex geometry and mathematical physics, Presses Univ. Montréal, Montreal,
Que., 1982; MR0654864], R. Penroseand W. Rindler [Spinors and space-time, Vol.
1, Cambridge Univ. Press, Cambridge, 1984; MR0776784]; ibid., Vol. 2, 1986] and
S. A. Huggettand K. P. Tod [An introduction to twistor theory, Cambridge Univ.
Press, Cambridge, 1985]).

The theory of supersymmetry has evolved from both the point of view of graded
Lie algebras and from the more geometric point of view of supermanifolds. Super-
manifolds are manifolds which contain local coordinate systems in which some of
the variables are commuting and some are noncommuting. This corresponds to the
physicists’ field theories which have some fields satisfying commutation relations,
and others satisfying anticommutation relations. The mathematical theory of su-
permanifolds has been developed by Berezin, Kostant, Batchelor, Lĕıtes, Rogers,
the author (and his collaborators in Moscow), Rothstein and others. Recent refer-
ences include a paper by D. A. Lĕıtes [Uspekhi Mat. Nauk 35 (1980), no. 1(211),
3–57; MR0565567] and the collection Mathematical aspects of superspace [(Ham-
burg, 1983), Reidel, Dordrecht, 1984; MR0773076].

The book under review is in two parts. The first part develops twistor theory
in algebro-geometric language, and is quite elegantly presented, but with more of
an emphasis on the mathematical developments than on the physical field theories.
The second part gives a thorough development of projective algebraic geometry
in the context of supermanifolds. The supermanifolds developed here are defined
sheaf-theoretically, where the structure sheaf is a Z2-graded algebra modeled on an
exterior algebra of a vector space, and where the grading is given by the even and
odd elements of the algebra. The theory of super-Grassmannians and superflag-
manifolds are developed, and the double fibrations of twistor geometry are carried
over to this context. The general procedure of pulling back and taking direct images
of vector bundles (the technical definition of the Penrose transform involves these
ingredients) is generalized to this supermanifold setting. A fundamental observa-
tion of E. Witten [[]Phys. Lett. B 77 (1978), no. 4-5, 394–400] is incorporated into
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this more general setting, and representation of general Yang–Mills–Higgs fields on
super–Minkowski space in terms of “super” vector bundles on the twistor spaces
which naturally arise in this context is given. This is the general Penrose transform
in this setting, and various examples of explicit geometric situations are worked out
in the text.

The book is currently being translated into English, and will be published soon
by Springer. It is a very beautiful book with a number of fine points which are
not discussed in this review. On the other hand, it will not necessarily be easy
to read for someone who is not familiar with the modern language of algebraic
geometry or several complex variables, as the author makes full use of the power of
this language, and this is not the place to learn about sheaves, cohomology, spectral
sequences, etc. The book is highly recommended to those who can benefit from it,
and it is an important contribution to the development of this area of research.

Raymond O. Wells Jr.

From MathSciNet, May 2023

MR0797416 (87j:14030) 14Gxx; 11Gxx, 14-02, 32Jxx, 58A50, 58C50, 58E99

Manin, Yu. I.

New dimensions in geometry.

Workshop Bonn 1984 (Bonn, 1984), 59–101, Lecture Notes in Math., 1111,
Springer, Berlin, 1985.

The present article is a speculative article, drawing on the author’s enormous
breadth and depth of mathematical culture, and it is difficult, indeed impossible,
for the reviewer to do full justice to all its many facets. The article is a “lecture”
by the author to the 25th Arbeitstagung in Bonn (Atiyah summarized orally the
prepared text reproduced here). The author seeks to pull together several major
strands of current developments in geometry, arithmetic and physics, specifically:
(i) arithmetic geometry in the sense of Arakelov–Faltings, or “A-geometry”; (ii)
Kähler–Einstein metrics on algebraic varieties and their generalizations; (iii) super-
symmetry, or graded structures on manifolds.

The paper is naturally divided into three parts: an introduction, three sections
on A-geometry, followed by three sections on supermanifolds. The topic (ii) above
is laced through the A-geometry section. I will just mention a selection of what
the author chooses to review from these various fields, and will rather emphasize
reproducing here some of his almost “aphoristic” remarks as a way of trying to
entice the reader to peruse his suggestions personally.

The first premise of the paper is that Diophantine problems and physics have
forced the enlargement of our concepts of geometry. Put succinctly, one replaces
the coordinate ring R[x1, · · · , xn] of Cartesian n-space by Z[x1, · · · , xn; ξ1, · · · , ξm].
Here Z represents the arithmetic aspect of geometry, the xi are the usual (or
“bosonic”) geometric variables, and the ξj are anticommuting (or “fermionic”) vari-
ables. The author’s first aphorism: “All three types of geometric dimensions are
on an equal footing”. That the arithmetic and geometric (xi) variables are of an
equal stature goes back about 100 years or more; the equivalence of the xi and ξj
is the relatively recent import of supersymmetry in physics. The author proposes
simply completing the triangle, and the point of the paper, is, in a way, to review
current geometry with an eye towards evaluating whether we are evolving in that
direction and to crystallize questions that he feels would help this trend.
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A-geometry, the topic of Sections 1–3, seeks to compactify, in a natural way, a
Z-scheme by adding a variety at the infinite places. Of course, one knows what
the variety is supposed to be, but one wants to add a metric structure at ∞,
analogous to the norms at the ∞-places of a number field. In the case of an
arithmetic surface, the key ingredient on the curve at infinity is a special metric
and its Green’s function. The author proposes using Kähler–Einstein metrics on
varieties over infinite places, Hermite–Einstein metrics on stable bundles over these
varieties, etc. He stops short of speculating on the role of odd variables in this A-
geometry. Some of the questions he poses here are the following: (1) Do there exist
“groups” mixing the arithmetic and geometric dimensions? (This means, obviously,
more than group schemes/Z or adèle groups.) (2) If one considers Hermite–Einstein
bundles as the “obvious” metrization of some coherent sheaves on X∞, is there a
categorical way to generate all coherent sheaves from these semistable ones, and
does such a construction still have differential geometric content? (3) Do “canonical
examples”, such as moduli spaces of vector bundles on a curve, have canonical A-
structures? For example, could one describe an A-geometric c2 for higher rank
bundles over the moduli space? (4) What is intersection theory and the Riemann–
Roch theorem in this higher-dimensional context?

Some progress in local index theory for families, due to Bismut–Freed, Bost,
Gillet–Soulé and others, should hopefully be relevant to this last question.

In the sections on superspace, the author recounts some of the basic definitions
(Section 4), and then reports on the results of Văıntrob, Skornyakov, Voronov,
Penkov and the author himself. These latter concern “super”-analogues of Kodaira–
Spencer theory and of the Bruhat decomposition and Schubert cells for complete
flag superspaces of classical type. Several interesting differences from the classi-
cal (ungraded) case arise, some already highlighted in Kac’s representation theory
for such algebras. I would again rather record here some of the more aphoris-
tic suggestions and conjectures of the author. (1) (only hinted at) Supergeome-
try change-of-coordinate formulae involve derivatives of coordinate changes in the
transformations of the odd coordinates—what is the role, seemingly forced, of dis-
tributions in continuous (as opposed to C∞) supergeometry? (2) Is it possible to
compactify superspaces along the odd directions? For example, Lĕıtes asks what
the purely odd projective space “ProjZ[ξ1, · · · , ξn]” should be. In much the same
spirit, the author asks whether there is a cohomology on super-flag-manifolds with
his super Bruhat cells (which are really “sub-super-schemes”, and not just sub-
varieties of the flag supermanifolds as generators). In general, are there global
geometric invariants of the odd dimensions? (Some steps in this direction might
come from a paper by M. Rothstein [Trans. Amer. Math. Soc. 299 (1987), no. 1,
387–396].) (3) An even bolder question is, “Is the even geometry a collective effect
in the infinite-dimensional odd geometry?” This has roots in both the equivalence
of “wedge” and “spinor” pictures of representations of Kac–Moody algebras, and
more philosophically from the perceived “primacy” of fermions in particle physics.

The final Section 6 treats the kinematics of supergravity from the point of view
of creating a curved structure on superspace modelling the supergeometry of the
Bruhat cells. Many interesting physical equations (especially Yang–Mills) have been
treated “twistorially” in the last decade, and the equations of motion are usually re-
lated to such integrability conditions. (Cf. also a paper by the author [Arithmetic
and geometry, Vol. II, 175–198, Birkhäuser, Boston, Mass., 1983; MR0717612].)

https://www.ams.org/mathscinet-getitem?mr=0717612
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His current point of view is an extension of the twistor correspondence, the inter-
pretation being given in Section 6.1 of this paper. A final calculation equates these
integrability conditions with the pre-potential formalism of V. I. Ogievetskĭı and E.
S. Sokachev [Yadernaya Fiz. 31 (1980), no. 3, 821–839; MR0607671].

A final topic, which is not really touched upon, but simply pointed out: A
true super-symmetric Kähler geometry will probably be quite sophisticated. Even
in algebraic supergeometry, the value of classical projective techniques seems un-
fortunately limited, so the development of such a Kähler alternative might prove
important.

In summary, then, the author has tried to “seize the moment”, to discern a
pattern crystallizing out of what seems a tantalizing chaos in the rapidly exploding
frontiers of geometry. He has, in the opinion of this reviewer, done an exciting job
of updating the vision of the late nineteenth century in the discovery of the fecund
“parallels” between the theory of numbers and the theory of algebraic functions.
The jewel of geometry is even more brilliant and fascinating with the dazzling
interplay of flashes of light from any one of its new facets to another.

Daniel M. Burns Jr.

From MathSciNet, May 2023

MR0974910 (89m:11060) 11G35; 14G25; 14J20

Franke, Jens; Manin, Yuri I.; Tschinkel, Yuri

Rational points of bounded height on Fano varieties. (English)

Invent. Math., 2.
,, 1989, 421–435 pp.

Let K be a number field, V/K a variety, L a (metrized) line bundle on V/K, and
HL an absolute multiplicative height function on V relative to L. If L is assumed
to be ample, the number N(V,L, H) = #{x ∈ V (K)HL(x) ≤ H} is finite, and the
growth of N(V,L, H) as a function of H is an important arithmetic invariant of V .
The authors briefly discuss this problem for general V , and then they restrict to
the case when V is a Fano variety, i.e. varieties for which the anti-canonical bundle
K−1 is ample. Manin has conjectured that except for some degenerate cases, a Fano
variety should satisfy the asymptotic relation (∗) N(V,K−1, H) ∼ cH(logH)t for
certain constants c, t ≥ 0, and possibly even t = rankPic(V )− 1. In this paper, the
authors provide the following evidence for this conjecture. (1) Asymptotic (∗) with
error term O(H(logH)t−1) is stable with respect to direct product of varieties. (2)
For complete intersections in Pn, (∗) is consistent with predictions from the Hardy-
Littlewood method. (3) Let G be a semisimple algebraic group and P a parabolic
subgroup. Then (∗) is true for the generalized flag manifold P\G.

The proofs of (1) and (2) are clever, but relatively elementary, being respectively
an application of Abel summation and the calculation of an adelic integral. The
proof of (3) begins by identifying the Dirichlet series Z(s)=

∑
x∈(P\G)(K)HK−1(x)−s

with a certain Langlands-Eisenstein series. Then general facts about meromorphic
continuation and location of poles of such functions are used (in conjunction with
a standard Tauberian argument) to deduce an asymptotic formula (∗). Thus the
proof of (3) relies on the use of very deep machinery.
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The paper concludes with a brief appendix describing numerical data for the
rational points on the cubic surface x3 + 2y3 + 3z3 + 4w3 = 0.

Joseph H. Silverman

From MathSciNet, May 2023

MR1032922 (91g:11069) 11G35; 14G10, 14G40

Batyrev, V. V.; Manin, Yu. I.

Sur le nombre des points rationnels de hauteur borné des variétés
algébriques. (French)

Math. Ann. 286 (1990), no. 1–3, 27–43.

In this very entertaining paper the authors raise the following question: How
many rational points does an algebraic variety possess? More precisely, given
a variety V defined over some number field k (or, more generally, some global
field) and an ample sheaf L (or divisor class), we have the associated (exponential)
height HL [cf., e.g., S. Lang, Fundamentals of Diophantine geometry, Springer, New
York, 1983; MR0715605] and the problem is to study the asymptotic behaviour of
NV,L,k(H) = NL(H) := card{x ∈ V (k) : HL(x) ≤ H}. Actually the function HL

is defined only up to a function expO(1) (or up to some choice of metrics) so we
will speak only of the relation up to bounded functions �� though the authors
implicitly suggest one can give equivalent. We write f �� g when there exist two
positive constants such that C1f ≤ g ≤ C2f and say that f and g are equivalent
if asymptotically the inequality holds with any C1 < 1 and C2 > 1. Also, it is
convenient to let HL depend on the field k (so HL,k is not the absolute height

HL(x) = HL,k(x)
1/[k Q]). The authors relate this with a natural but, to our knowl-

edge, new concept of zeta function: ZV,L,k(s) = ZL(s) =
∑

x∈V (k) HL(x)
−s, and

call βV,L,k = βL the abscissa of convergence of this Dirichlet series. They then

compare this with the following geometric object reminiscent of Nevanlinna theory
[cf. P. Vojta, Diophantine approximations and value distribution theory, Lecture
Notes in Math., 1239, Springer, Berlin, 1987]: call NS(V ) the Néron-Severi group
of V (tensored with R), Neff(V ) the cone generated by effective divisors and KV

the canonical class, and then set α(L) = inf{r ∈ R rL + KV ∈ Neff(V )}. The
function α(L) enjoys formally properties very similar to those of βL, and the au-
thors conjecture that for all V , L and positive ε there exists a dense Zariski open
subset U such that βU,L ≤ α(L) + ε; they further conjecture that if the canonical
class does not belong to Neff then βU,L = α(L) provided U is small enough and
the ground field is large enough (such restrictions are trivially necessary). Results
are of course scarce but these conjectures fit harmoniously with other Diophantine
conjectures (cf. Vojta’s book [op. cit.]) and suggest a link with the work of S.
Mori [e.g., Ann. of Math. (2) 116 (1982), no. 1, 113–176; MR0662120]. The only
conclusive evidence is for some Fano varieties (ample anticanonical class); the au-
thors give in this case the following more precise conjecture: For U small enough
and k large enough one should have: NU,L,k �� Hα(L)(logH)t(L)−1, where t(L)
is the codimension in NS(V ) of the minimal face of ∂Neff containing α(L)L+KV .
The first known case is due to S. H. Schanuel [Bull. Soc. Math. France 107 (1979),
no. 4, 433–449; MR0557080] who proved this for V = Pn (and hence product of
such). Recently J. Franke, Manin and Yu. Tschinkel [Invent. Math. 95 (1989), no.
2, 421–435; MR0974910] have extended this to all “homogeneous” flag manifolds,
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that is, varieties obtained as the quotient of a semisimple linear algebraic group by
a parabolic subgroup (in this case one can remain over the field of definition and
keep the whole of V because of homogeneity). For all del Pezzo surfaces the authors
prove that α(L) ≤ βU,L ≤ (β−KV

)α(L) for U small and k large and, even more,
they prove that NU,−KV

�� H(logH)r for del Pezzo surfaces of degree 9− r and
0 ≤ r ≤ 3. Hence the conjecture is true for these surfaces (to be precise, the proof
of the last statement is given only over Q).

As mentioned, the beautiful set of worked out examples and open problems
displayed in this paper makes it extremely valuable and should prove fertile ground
for further work.

Marc Hindry

From MathSciNet, May 2023

MR1095783 (92k:58024) 58B30; 14M30, 16W30, 17B37, 19D55, 32C11, 46L87,

58A50

Manin, Yuri I

Topics in noncommutative geometry. (English)

M. B. Porter Lecture.
Princeton University Press , Princeton, NJ , 1991, viii+164 pp., $35.00,
ISBN 0-691-08588-9

This book brings together several distinct themes—Connes’s noncommutative
geometry, the theory of supervarieties, and the theory of quantum groups. All
three of these subjects are instances of the principle, understood long ago but not
realized until recently, that certain noncommutative rings, like their commutative
counterparts, can successfully be regarded as geometric objects.

Chapter I, entitled An overview, provides several definitions from Connes’s gen-
eralized theory of the de Rham complex, and from the theory of quantum groups.
Though little is proved in this chapter, the reader who is unfamiliar with these
subjects will find the framework that the author provides quite helpful.

After Chapter I, Connes’s work recedes from the discussion, and supervarieties
come to the fore. Chapter II is a beautiful summary of the theory of superalgebraic
curves, in particular the so-called SUSY curves. These are 1|N -dimensional su-
pervarieties with a superconformal structure. The author introduces the notion of
superconformal structure by considering first the superprojective spaces P1|N , N =
1, 2, regarding them as superhomogeneous spaces for the supergroups PC(2|N).
These supergroups preserve, and are in turn defined by, certain distributions on
P1|N . These distributions then provide a local model for the general definition of a
superconformal structure on a 1|N -dimensional supervariety. With the local model
in hand, the author turns his attention to the moduli problem, which he approaches
through Schottky superuniformization. Also in Chapter II is a summary and exten-
sion of the author’s work on sheaves of Virasoro algebras, in which the central ex-
tension is realized invariantly in terms of an algebra of formal pseudodifferential op-
erators canonically associated to the algebra of holomorphic vector fields on C. The
whole construction can be sheafified, and so takes place on any Riemann surface.
A similar construction holds for SUSY curves. Perhaps the most fascinating aspect
of this chapter is the speculation regarding the notion of Picard variety in superge-
ometry. It is well known that a straightforward imitation of the classical definitions
does not lead to a satisfactory theory. The author outlines ideas of Levin and Skorn-
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yakov which suggest that the moduli space of rank 1|1 sheaves endowed with an
odd automorphism should play the central role.

Next the discussion turns to flag superspaces and Schubert supercells. The dis-
cussion here is rather brief. The reader is introduced to the flag Weyl groups, the
singularities of the Schubert supervarieties, and their Bott-Samelson desingulariza-
tion. Root systems are also discussed briefly.

The final topic of the book is the author’s approach to quantum groups. The
theme here is that among all Hopf algebras, those which deserve to be called quan-
tum groups are the ones which are in some sense the “symmetry groups” of quantum
spaces. A quantum space is defined by its algebra of functions, A, together with
a subset A1 ⊂ A which generates A. One may think of A as the polynomials
on the quantum space and A1 as the linear functions. In the author’s approach,
A should in fact be a superalgebra—quantum groups are automatically quantum
supergroups. The author’s emphasis on the quantum spaces lends clarity and mo-
tivation to the subject. Appropriately, this chapter is not a textbook on quantum
groups. Indeed, the literature on quantum groups is growing so rapidly that no text
on the subject can remain current for very long. Rather, what the author provides
here is a source of ideas and perspectives that will be of lasting value.

Mitchell Rothstein

From MathSciNet, May 2023

MR1291244 (95i:14049) 14N10; 53C15, 58D10, 58F05

Kontsevich, M.; Manin, Yu.

Gromov-Witten classes, quantum cohomology, and enumerative
geometry. (English)

Comm. Math. Phys. 164 (1994), no. 3, 525–562.

This interesting and innovative paper gives an axiomatic treatment of the Gro-
mov-Witten invariants of symplectic manifolds, including a geometric interpreta-
tion of the quantum cohomology ring in terms of a flat connection (the Dubrovin
connection). The authors also explain the relation between the associativity law
and a certain system of quadratic third-order partial differential equations (the
WDVV equations). As a result they obtain explicit recursion formulae for certain
enumerative problems in algebraic geometry.

Briefly, the Gromov-Witten invariants are defined by counting pseudo-holomor-
phic curves in a 2n-dimensional compact symplectic manifold (X,ω) with a compat-
ible almost complex structure J . Given a homology class A ∈ H2(X,Z), integers
p, g ≥ 0, and cohomology classes α1, · · · , αp ∈ H∗(X) (integral cohomology modulo
torsion), the GW-invariant

ΦA,p,g(α1, · · · , αp) =

∫
MA,p,g

e1
∗α1 ∧ · · · ∧ ep

∗αp

can roughly be understood as the number of pseudo-holomorphic curves of genus
g representing the homology class A and intersecting p given cycles Poincaré dual
to the cohomology classes αν . The complex structure on the Riemann surface is
allowed to vary, as are the points of intersection. The αν must satisfy the dimension
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condition
p∑

ν=1

deg(αν) = dimMA,p,g = (2− 2g)(n− 3) + 2p+ 2c1 ·A

with c1 = c1(TX, J) ∈ H2(X,Z). Here MA,p,g is the moduli space of unparame-
trized pseudo-holomorphic curves inX of genus g with pmarked points representing
the homology class A and ei : MA,p,g → X denotes the evaluation map at the ith
marked point.

The ideas for defining such invariants go back to the work of M. L. Gromov
[Invent. Math. 82 (1985), no. 2, 307–347; MR0809718] and E. Witten [in Surveys in
differential geometry (Cambridge, MA, 1990), 243–310, Lehigh Univ., Bethlehem,
PA, 1991; MR1144529]. Care must be taken with the definition of the invariants,
firstly, because of the presence of multiply covered curves and, secondly, because
the moduli spaces MA,p,g are, in general, not compact and one needs to work with
Gromov’s compactification. The rigorous treatment requires some analysis, the
details of which were carried out by Y. Ruan and G. Tian [Math. Res. Lett. 1
(1994), no. 2, 269–278; MR1266766; J. Differential Geom., to appear] (for general
Riemann surfaces) and D. McDuff and the reviewer [J-holomorphic curves and
quantum cohomology, Amer. Math. Soc., Providence, RI, 1994; MR1286255] (for
genus zero). The construction also requires a suitable perturbation of the Cauchy-
Riemann equations; however, the resulting invariants are independent of the almost
complex structure J and the perturbation used to define them and they depend
only on the isotopy class of the symplectic form ω.

In the terminology of the paper under review, the invariants ΦA,p,g are the
codimension-zero classes. For the case of genus zero and codimension zero, the ax-
ioms in this paper take the following form. (Zero) The invariants ΦA,p,0(α1, · · · , αp)
vanish unless

∫
A
ω ≥ 0. (Symmetry) The number ΦA,p,0(α1, · · · , αp) is equivari-

ant under the action of the permutation group Sp, where the action on Z is given
by the sign of the permutation. (Fundamental class) If αp = 1X ∈ H0(X) is the
Poincaré dual of the fundamental class [X], then the only nonvanishing invariants
are Φ0,3,0(α1, α2, 1X) =

∫
X
α1∧α2. (Mapping to point) For A = 0 the only nonzero

invariants are

Φ0,3,0(α1, α2, α3) =

∫
X

α1 ∧ α2 ∧ α3.

(Divisor) If p ≥ 4 and deg(αp) = 2, then

ΦA,p,0(α1, · · · , αp) = ΦA,p−1,0(α1, · · · , αp−1) ·
∫
A

αp.

(Splitting) A special case of this axiom asserts that the integer invariant

ΨA,4,0(α1, α2, α3, α4) =
∑
B

∑
i

ΦA−B,3,0(α1, α2, φi)ΦB,3,0(ψi, α3, α4)

is equivariant under the action of the permutation group S4. Here the φi form a
basis of H∗(X) and the ψi are the dual basis with respect to Poincaré duality (i.e.
deg(φi) + deg(ψi) = 2n and φi · ψj = δij). The classes αν satisfy

∑
ν deg(αν) =

2n+2c1 ·A and the sum runs over all pairs (B, i) with deg(α3)+deg(α4)+deg(ψi) =
2n+ 2c1 ·B.

To date, the definition of the invariants requires the assumption that there be no
pseudo-holomorphic spheres with negative Chern number. This holds, for example,
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when X has dimension at most 6, or when c1 ·A = 0 for every A ∈ π2(M), or when
X is monotone (the symplectic version of Fano variety: there exists a constant λ > 0
such that [ω] ·A = λc1 ·A for every A ∈ π2(M)). The invariants should be well de-
fined without these assumptions but so far this has not been established. Some ideas
in this direction are contained in a paper by Kontsevich [“Enumeration of rational
curves via torus actions”, Preprint, http://xxx.lanl.gov/abs/hep-th/9405035].

In this paper Kontsevich and Manin show how to use these axioms and their
appropriate generalizations to higher genus and classes of higher codimension in
order to determine all the GW-invariants for genus zero from the basic invariants
ΦA,3,0(α1, α2, α3) with c1 ·A ≤ 2n+1,

∑
ν deg(αν) = 2n+2c1 ·A and deg(α3) = 2.

This holds whenever the cohomology ring is generated by H2(X).
Witten [op. cit.; MR1144529] organized these data into a generating function

Φ = ΦX
ω : H∗(X,C) → C which depends on the symplectic form ω and is defined

by

ΦX
ω (α) =

∑
p

∑
A

∑
i1,··· ,ip

exp
(
−
∫
A
ω
)

p!
ΦA,p,0(αi1 , · · · , αip).

Here α = α0 ⊕ · · · ⊕α2n with αi ∈ Hi(X,C) and the sum runs over all A ∈ H2(X)
and (unordered) multi-indices i1, · · · , ip ∈ {0, · · · , 2n} with

∑p
ν=1 deg(αiν ) = 2n−

6+2p+2c1 ·A. There is a nontrivial convergence problem. In the monotone case the
sum is finite for every p and the convergence follows from the axioms. Moreover, in
this case the factor exp(−

∫
A
ω) can be dropped. In the Calabi-Yau case with c1 = 0

the sum is infinite for every p, the factor exp(−
∫
A
ω) is essential, and convergence

is a conjecture. The function Φ = ΦX
ω is called the Gromov-Witten potential. In

terms of this potential the axioms can be restated as a system of partial differential
equations, namely ∂0∂i∂jΦ = gij and the WDVV equations∑

μ,ν

∂i∂j∂μΦ gμν ∂ν∂k∂lΦ = (−1)di(dj+dk)
∑
μ,ν

∂j∂k∂μΦ gμν ∂ν∂i∂lΦ.

Here the function Φ is expressed in terms of complex coordinates x0, · · · , xm with
α =

∑
i x

iφi. The φi form a homogeneous basis of H∗(X) with deg(φi) = di and
φi · φj = gij . The gij represent the inverse matrix of gij . The derivatives are to be
understood in the sense of supermanifolds with ∂i∂jΦ = (−1)didj∂j∂iΦ. The proof
that, in the monotone case, the GW-potential Φω satisfies the WDVV equations
was given by Ruan and Tian [op. cit.; MR1266766]. It also follows from the gluing
theorem for J-holomorphic spheres in papers by G. Liu [“Associativity of quantum
multiplication”, Preprint, SUNY, Stony Brook, NY, 1994; per revr.] and the book
by McDuff and the reviewer [op. cit.; MR1286255 (Appendix A)].

Kontsevich and Manin explain how the WDVV equations give rise to a potential
Dubrovin structure on H∗(X,C), understood as a supermanifold. Thus each tan-
gent space is equipped with a metric given by Poincaré duality, and a multiplicative
structure

x ∗ y =
∑
i,j,l

Al
ijx

iyjφl, Al
ij =

∑
k

∂i∂j∂kΦ gkl,

where x =
∑

i x
iφi, y =

∑
j y

jφj . This is the quantum deformation of the cup-
product and the WDVV equations are equivalent to associativity. The ordinary
cup-product appears as the limit of Φtω with t → ∞.
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Example (Kontsevich): In the case X = CP2 the GW-potential (without the
term exp(−

∫
A
ω)) is in standard coordinates x, y, z on H∗(CP2,C) = C3 given by

ΦCP2

0 (x, y, z) =
xy2 + x2z

2
+

∞∑
d=1

N(d)
z3d−1

(3d− 1)!
edy,

where N(d) = ΦdL,3d−1,0(pt, · · · , pt) denotes the number of holomorphic spheres
of degree d passing through 3d − 1 generic points. The WDVV equations are
now equivalent to an explicit recursion formula for the numbers N(d). The first
few values are N(1) = 1, N(2) = 1, N(3) = 12, N(4) = 620, N(5) = 87 304,
N(6) = 26 312 976, N(7) = 14 616 808 192. Kontsevich and Manin also show how
to explicitly compute numerical invariants of this type for any projective space and
for Del Pezzo surfaces.

Remark 1: S. Piunikhin, the reviewer and M. Schwarz [“Symplectic Floer-
Donaldson theory and quantum cohomology”, Preprint, Univ. Warwick, Coventry,
1995; per revr.] have shown that the quantum multiplication structure at the origin
α = 0 is equivalent to the pair-of-pants product in Floer homology.

Remark 2: Explicit computations of the quantum cohomology ring structure can
be found in papers by A. Givental and B. Kim [Comm. Math. Phys. 168 (1995),
no. 3, 609–641] for flag manifolds, C. Vafa [in Essays on mirror manifolds, 96–119,
Internat. Press, Hong Kong, 1992; MR1191421], Witten [in Geometry, topology,
& physics, 357–422, Internat. Press, Cambridge, MA, 1995], and B. Siebert and
Tian [“Quantum cohomology rings of Fano manifolds and a formula of Vafa and
Intriligator”, Preprint, 1994; per revr.] for complex Grassmannians, A. Astashke-
vich and V. Sadov [“Quantum cohomology of partial flag manifolds”, Preprint,
http://xxx.lanl.gov/abs/hep-th/9401103] for partial flag manifolds, and S. K. Don-
aldson [in Vector bundles in algebraic geometry (Durham, 1993), 119–138, Cam-
bridge Univ. Press, Cambridge, 1995] for the moduli space of flat SO(3)-connections
over a Riemann surface of genus 2. M. Callahan [Ph.D. Thesis, Univ. Oxford, Ox-
ford, in preparation] uses a generalization of the quantum cohomology structure to
distinguish isotopy classes of symplectomorphisms on such moduli spaces.

Remark 3: In a recent paper, C. H. Taubes [Math. Res. Lett. 2 (1995), no. 2,
221–238] has related the Gromov-Witten invariants of symplectic 4-manifolds to
the new invariants of smooth 4-manifolds by Seiberg and Witten. He considers
moduli spaces MA,p,g which consist of embedded curves. In view of the adjunction
formula this means that c1 · A = A · A + 2 − 2g and hence dimMA,0,g = 2p,
p = A · A+ 1− g. Taubes proves that the GW-invariant ΦA,p,g(pt, · · · , pt) agrees
with the Seiberg-Witten invariant SW(X, c1 + 2PD(A)).

Dietmar A. Salamon

From MathSciNet, May 2023

MR1702284 (2001g:53156) 53D45; 14H10, 14N35, 18D50, 32G34

Manin, Yuri I

Frobenius manifolds, quantum cohomology, and moduli spaces.
(English)

American Mathematical Society Colloquium Publications, 47.
American Mathematical Society , Providence, RI , 1999, xiv+303 pp., $55.00,
ISBN 0-8218-1917-8

This book is a good introduction to the theory of Frobenius manifolds and quan-
tum cohomology. Many topics discussed in the book were developed by the author
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in his earlier work. The theory of Frobenius manifolds was developed by B. A.
Dubrovin [in Integrable systems and quantum groups (Montecatini Terme, 1993),
120–348, Lecture Notes in Math., 1620, Springer, Berlin, 1996; MR1397274], but
the formal treatment of the author might be more accessible to an algebraist or
algebraic geometer.

The theory of Frobenius manifolds relates very different areas of mathematics.
They can be constructed from the quantum cohomology of a smooth projective
manifold, from a deformation of a singularity of a holomorphic function, and from
differential Gerstenhaber-Batalin-Vilkovisky (dGBV) algebras. There is a connec-
tion between Frobenius manifolds and integrable systems. One can formulate the
mirror conjecture as an isomorphism between two Frobenius manifolds associated
to two different manifolds. Many insights in this subject come from theoretical
physics.

Roughly speaking, the book consists of two parts. In the first part (Chapters 1–4)
the author discusses Frobenius manifolds in general, and gives the most important
examples. In the second part (Chapters 5–6) the quantum cohomology and the
moduli spaces of stable maps are studied in detail. This requires sophisticated
algebraic-geometric techniques.

A Frobenius algebra is a commutative associative algebra with a unity and a
symmetric nondegenerate invariant bilinear form. A Frobenius manifold M has a
structure of a Frobenius algebra on each tangent space TtM such that this structure
varies smoothly with t, and the corresponding metric on M is flat. It is also required
that the structure constants of the Frobenius algebras are the partial derivatives of
a function F , the potential of M . In addition, one usually requires that there exists
a flat identity, that is, a flat vector field which is the identity for the multiplication,
and a grading Euler vector field. (The flat identity and the Euler vector field are
incorporated in Dubrovin’s definition of a Frobenius manifold.) The fact that M
is a Frobenius manifold with the Euler field E can be expressed as flatness of a
structure connection on M ×C∗.

Many examples of Frobenius manifolds coming from geometry are semisimple.
A Frobenius manifold M is semisimple if for a general point t ∈ M the Frobenius
algebra structure on TtM is semisimple, that is, it has no nilpotent elements. Since
all such algebras of the same dimension are isomorphic, it gives rise to the canonical
coordinates on M , which are different from the flat coordinates. The existence of
two sets of coordinates plays an important role in the study of semisimple Frobenius
manifolds.

In Chapter 2 the author identifies the semisimple Frobenius manifolds with flat
identity and Euler vector field as special solutions to Schlessinger’s differential equa-
tions. It follows that semisimple Frobenius manifolds can be identified with the
special initial conditions to Schlesinger’s equation. The author explicitly describes
the set of special initial conditions. In order to obtain the above identification
he studies meromorphic connections on M × P1 using results of Malgrange. The
original structure connection has a pole of order 2 along M × {∞}. (It has been
studied by Dubrovin and Y. Zhang [Compositio Math. 111 (1998), no. 2, 167–219;
MR1606165; Comm. Math. Phys. 198 (1998), no. 2, 311–361; MR1672512; Selecta
Math. (N.S.) 5 (1999), no. 4, 423–466 MR1740678].) However, the author notices
that there is another structure connection on M × P1 having only simple poles,
which is related to the original one by a formal Laplace transform.

In Chapters 3 (the first part) and 4 the author conducts the study of formal
Frobenius manifolds. A key observation is that a structure of a formal Frobenius
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manifold on a vector space V (that is, on the underlying affine manifold) is equiv-
alent to a structure of a cohomological field theory (CohFT) of genus 0 on V . A
(complete) CohFT of rank r is a triple (V, η, Ig,n), where V is a vector space of
dimension r, η is a (super)symmetric nondegenerate bilinear form on V , and the
linear maps

Ig,n : H
•(Mg,n,Q) → V ⊗n

satisfy certain conditions when restricted to the boundary strata. Here, Mg,n is the
moduli space of stable curves of genus g with n punctures. To define a structure of a
genus 0 CohFT one needs to provide Ig,n only for g = 0. There is yet another point

of view explained in Chapter 4. The collection {H•(M0,n,Q)}, n ≥ 3, possesses
a natural structure of a (cyclic) operad. A CohFT in genus 0 is then an algebra
over this operad. This allows one to apply the machinery of operads to the study
of formal Frobenius manifolds.

There is a natural way to form the tensor product of CohFTs. Consequently, one
can form the tensor product of two formal Frobenius manifolds. The author, follow-
ing R. M. Kaufmann [Internat. J. Math. 10 (1999), no. 2, 159–206; MR1687157],
explains how one forms the tensor product of two analytic Frobenius manifolds.

In Chapter 3 the author also explains three constructions of Frobenius manifolds
[cf. Y. I. Manin, Asian J. Math. 3 (1999), no. 1, 179–220; MR1701927]. Since
the Gromov-Witten invariants of a smooth projective variety produce an example
of a cohomological field theory, this also gives an example of a formal Frobenius
manifold. (At this point the author presents only the axioms of Gromov-Witten
invariants, postponing more detailed discussion until later chapters.) Another way
to construct a Frobenius manifold comes from deformations of singularities. This
structure was first studied by K. Saito.

The third way uses dGBV algebras, and was motivated by work of S. A. Baran-
nikov and M. Kontsevich [Internat. Math. Res. Notices 1998, no. 4, 201–215;
MR1609624]. The author shows that each dGBV algebra satisfying certain con-
ditions gives rise to a formal Frobenius manifold. Each (weak) Calabi-Yau man-
ifold determines a dGBV algebra satisfying these conditions, and, consequently,
produces a formal Frobenius manifold.

Chapter 5 is devoted to the construction of the moduli spaces of stable maps, and
their properties. In order to do this, the author discusses the formalism of stacks
since the (fine) moduli spaces of stable maps are stacks rather than schemes [cf. K.
A. Behrend and Yu. I. Manin, Duke Math. J. 85 (1996), no. 1, 1–60; MR1412436].

Gromov-Witten invariants are defined as intersection numbers on the moduli
spaces of stable maps, and a generating function having these numbers as its co-
efficients is the potential of the corresponding Frobenius manifold. However, in
general these spaces can be singular, and not of the expected dimension. Therefore
one needs to construct virtual fundamental classes. The virtual fundamental classes
were first constructed by J. Li and G. Tian [J. Amer. Math. Soc. 11 (1998), no. 1,
119–174; MR1467172; in Topics in symplectic 4-manifolds (Irvine, CA, 1996), 47–
83, Internat. Press, Cambridge, MA, 1998; MR1635695] in the symplectic category,
and by K. A. Behrend and B. Fantechi [Invent. Math. 128 (1997), no. 1, 45–88;
MR1437495] in the analytic category. The construction is fairly complicated, and
the author presents the axioms of the virtual fundamental classes along with a brief
sketch of the Behrend-Fantechi construction.
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The rest of the chapter is concerned with gravitational descendants and the Vi-
rasoro conjecture [T. Eguchi, K. Hori and C. S. Xiong, Phys. Lett. B 402 (1997),
no. 1-2, 71–80; MR1454328]. Correlators with gravitational descendants are the
intersection numbers on the moduli spaces of stable maps involving the first Chern
classes of the tautological line bundles associated to the punctures. The corre-
sponding generating function G is called the large phase space potential. The
Gromov-Witten invariants are called primary correlators. Eguchi, Hori, and Xiong
conjectured that certain explicitly constructed differential operators Li, i ≥ −1,
satisfying the Virasoro relations annihilate G. The author discusses this conjec-
ture, and first proves two equations: L−1G = 0, L0G = 0. The reader can find a
review of the developments on the Virasoro conjecture in [E. Getzler, in Algebraic
geometry: Hirzebruch 70 (Warsaw, 1998), 147–176, Contemp. Math., 241, Amer.
Math. Soc., Providence, RI, 1999; MR1718143].

This book is of interest to a broad mathematical audience.
Alexandre I. Kabanov
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Continued fractions, modular symbols, and noncommutative geometry.
(English)

Selecta Math. (N.S.) 8 (2002), no. 3, 475–521.

The rotation algebra is a well-studied C∗-algebra, providing a ready example on
which to test notions related to foliations and crossed products. It is defined as the
C∗-algebra Aθ, where θ ∈ R, generated by two unitaries U and V satisfying

V U = exp(2πiθ)UV.

By an important result of M. A. Rieffel [Pacific J. Math. 93 (1981), no. 2, 415–429;
MR0623572; J. Pure Appl. Algebra 5 (1974), 51–96; MR0367670], the algebras
Aθ and Aθ′ , θ, θ′ ∈ R, are strongly Morita equivalent if and only if θ and θ′ are
in the same orbit of the fractional linear action of PSL(2,Z) on the projective
real line P1(R). Strongly Morita equivalent C∗-algebras have the same space of
classes of irreducible representations, canonically isomorphic K-theory groups, and
share many other properties [see A. Connes, Noncommutative geometry, Academic
Press, San Diego, CA, 1994; MR1303779 (Chapter II, Appendix A)]. On putting
U = exp(2πix), V = exp(2πiy), x, y ∈ R and θ = 0, we see that A0 is the algebra of
continuous functions on the 2-torus R2/Z2. In Connes’s theory of noncommutative
geometry, a dense subalgebra Aθ of “smooth elements” of the rotation algebra Aθ

is known as the “noncommutative 2-torus Tθ” and is an important case study in
this theory. A generic element of a ∈ Aθ is a formal sum

a =
∑

(m,n)∈Z2

a(m,n)UmV n,

where the sequence (a(m,n))(m,n)∈Z2 is of rapid decay. The algebra Aθ has a
canonical trace function τ (·) determined by

τ (a) = a(0, 0).
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In [Inst. Hautes Études Sci. Publ. Math. No. 62 (1985), 257–360; MR0823176]
Connes computed the Hochschild and periodic cyclic cohomology of Aθ. He showed
that the dimension of the Hochschild cohomology spaces depends on the Dio-
phantine properties of θ, whereas the periodic cyclic cohomology is complex 2-
dimensional in both odd and even degrees. The bases of the periodic cyclic coho-
mology can be described in terms of the trace τ and the natural derivations on Aθ

determined by

δ1(U
mV n) = 2πimUmV n, δ2(U

mV n) = 2πinUmV n.

The noncommutative torus Tθ was used by J. Bellissard [in Statistical mechanics
and field theory : mathematical aspects (Groningen, 1985), 99–156, Lecture Notes
in Phys., 257, Springer, Berlin, 1986; MR0862832; in Localization in disordered
systems (Bad Schandau, 1986), 61–74, Teubner, Leipzig, 1988; MR0965981] in an
application of noncommutative geometry to the Quantum Hall Effect (QHE) in
physics. Bellissard gave a complete explanation of certain stable numerical quan-
tities described by the QHE in terms of noncommutative topological invariants of
Tθ, thereby completing earlier work of Novikov and Thouless.

The 2-torus R2/Z2 can be given a complex structure. The different possibilities
for this structure are parametrized by the Poincaré upper half plane H of complex
numbers with positive imaginary part. To z ∈ H, we may associate the complex
1-dimensional torus

Tz = C2/(Z+ zZ),

given by the complex numbers modulo translation by the lattice Z + zZ. The
complex isomorphism classes of these tori, also known as elliptic curves from their
geometric description, are in bijective correspondence with the orbits of the frac-
tional linear action of PSL(2,Z) on H. The quotient space PSL(2,Z)\H can be
compactified by adding a point at infinity corresponding to the 1-point quotient
or “cusp” PSL(2,Z)\P1(Q). Adding extra structure to the isomorphism classes of
elliptic curves leads to replacing PSL(2,Z) by certain of its finite index subgroups
G0. The corresponding modular curves G0\H can be compactified by adding the
finite set of cusps G0\P1(Q).

The central point of the paper under review is that this traditional picture by-
passes the Morita classes of noncommutative tori that would appear if the boundary
of the modular curve G0\H were considered instead to be the “noncommutative
modular curve” PSL(2,Z)\P1(R). This is in the spirit of J. Bost and Connes [Se-
lecta Math. (N.S.) 1 (1995), no. 3, 411–457; MR1366621], Connes [Selecta Math.
(N.S.) 5 (1999), no. 1, 29–106; MR1694895], Y. Soibelman [Lett. Math. Phys. 56
(2001), no. 2, 99–125 MR1854130 ] and others, as discussed in the paper under re-
view and its references. The paper contributes completely new concrete examples
of how mathematics usually applied to the commutative case relates to that tradi-
tionally applied to the noncommutative case. It opens up a new field in “noncom-
mutative number theory”, aimed at combining the mathematics of classical spaces
of automorphic functions with that of noncommutative algebras. For further work
in this direction by the authors see [Yu. I. Manin, “Real multiplication and non-
commutative geometry”, preprint, arXiv.org/abs/math/0202109; “Von Zahlen und
Figuren”, preprint, arXiv.org/abs/math/0201005; M. Marcolli, J. Number Theory
98 (2003), no. 2, 348–376 MR1955422].

We now outline the main results of the paper. A matrix A ∈ PSL(2,R) is
hyperbolic if its trace has absolute value greater than 2. In this case, it has two
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hyperbolic fixed points θ, with A′(θ) < 1, and θ′, with A′(θ′) > 1. The oriented
geodesic in H from θ′ to θ is invariant under the action of A and is called the axis
of A. If A ∈ G0, then the axis of A becomes a closed geodesic in G0\H. Moreover
θ and θ′ are then irrational conjugates in a real quadratic field. Conversely, every
closed geodesic in G0\H represents the conjugacy class of a primitive hyperbolic
transformation in G0. Furthermore, closed geodesics for the modular group are
known to be coded by “minus” continued fractions [D. B. Zagier, Zetafunktionen
und quadratische Körper, Springer, Berlin, 1981; MR0631688].

For θ ∈ R, we may try to understand in what sense Tθ is a limit of Tz as z tends
to θ along a geodesic in H. In this vein, the authors extend the classical definition of
modular symbols to “limiting modular symbols”, with limits along geodesics in the
upper half plane ending at points on the “noncommutative boundary”. They show
that quadratic irrationalities give rise to limiting cycles whereas generic irrational
points give rise to cycles vanishing in a suitable averaged sense.

Let XG0
= XG0

(C) denote the smooth compactification of G0\H by the finite
number of cusps in bijection with G0\P1(Q) and let ϕ be the corresponding covering
map. As in [Yu. I. Manin, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66;
MR0314846; also in Selected papers of Yu. I. Manin, World Sci. Publishing, River
Edge, NJ, 1996; MR1408904 (pp. 202–247); L. Merel, Manuscripta Math. 80 (1993),
no. 3, 283–289; MR1240651], for any two points α, β in H∪P1(Q), we can define a
real homology class or “modular symbol” {α, β} ∈ H1(XG0

,R) by integrating lifts
ϕ∗(ω) of differentials ω of the first kind on XG0

along the geodesic path connecting
α to β: ∫

α,β

ω :=

∫ β

α

ϕ(ω).

When α, β are cusps, the modular symbol represents a rational homology class. To
extend the definition to “limiting modular symbols”, when either endpoint is real
irrational, the authors define

{{∗, β}}G0
:= lim

1

T (x, y)
{x, y}G0

∈ H1(XG0
,R),

where x, y ∈ H are two points on the geodesic joining α to β, x is arbitrary but
fixed, T (x, y) is the geodesic distance between them, and the limit is taken as y
tends to β. If the limit exists, the authors show that it depends neither on x nor on
α, which justifies the notation. These integrals can be related to finite (when α, β
are cusps), stably periodic (when α, β are two fixed points of a hyperbolic element
of G0 as described above), or general infinite continued fractions. The different
cases are treated using results from [Yu. I. Manin, op. cit., 1972] and [J. B. Lewis
and D. B. Zagier, in The mathematical beauty of physics (Saclay, 1996), 83–97,
World Sci. Publishing, River Edge, NJ, 1997; MR1490850]. Continued fractions
that eventually agree up to a shift of index can be identified by PGL(2,Z)\P1(R).
In this paper all of this noncommutative boundary is considered.

A striking result of the paper (Theorem 0.2.2), which is derived from certain
averaging techniques over successive convergents in infinite continued fractions,
uses modular symbols to relate Mellin transforms of weight-two cusp forms for
G0 = Γ0(N) to quantities defined entirely on the noncommutative boundary of the
corresponding modular curve. This gives a concrete example of how the two types
of tori Tθ, θ ∈ R, and Tz, z ∈ H, give information about each other.
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These results on the limiting modular symbols rely on certain properties, involv-
ing spectral analysis, of the Ruelle transfer operator or Gauss-Kuzmin operator for
the shift of the continued fraction expansion, generalized to subgroups G of finite
index in GL(2,Z). In particular the authors generalize the Gauss-Kuzmin-Lévy
formula (Theorem 0.1.2). This result gives a formula for the limit of the pullback
of the Lebesgue measure on (0, 1)×GL(2,Z)/G with respect to gn(α) acting on α
and t simultaneously, where

gn(α) =

(
pn−1(α) pn(α)
qn−1(α) qn(α)

)
,

and pn(α)/qn(α) are the successive convergents to α.
A different direction, with a related philosophy, is the study of the K-theory

of the noncommutative modular curves in the spirit of Connes noncommutative
geometry [A. Connes, op. cit., 1985]. In this theory, the quotient space G\P1(R),
where G is of finite index in PSL(2,Z), can be studied “topologically” via its as-
sociated crossed product algebra C(P1(R)) � G or the strongly Morita equivalent

C(X̂)�PSL(2,Z), where X̂ = P1(R)×PSL(2,Z)/G. M. V. Pimsner [Invent. Math.
86 (1986), no. 3, 603–634; MR0860685] (see also [M. Laca and J. S. Spielberg, J.
Reine Angew. Math. 480 (1996), 125–139; MR1420560]) has studied the K-theory

of C(X̂) and its crossed product with Γ = PSL(2,Z) = Z/2 ∗ Z/3, Γ0 = Z/2
and Γ1 = Z/3. The K-theory in degrees 0 and 1 is related by a six-term ex-
act sequence. On the other hand, in [Yu. I. Manin, op. cit., 1972] and [L.
Merel, op. cit.] the homology groups H1(XG;Z) and relative homology groups
Hcusps := H1(XG, cusps;Z) were studied via the “modular complex” and “rela-
tive modular complex” (with respect to the elliptic and parabolic (cuspidal) fixed
points of PSL(2,Z)). This homology is based on the n-cells, n = 0, 1, 2, of the
PSL(2,Z)/G-orbit of the fundamental region of PSL(2,Z) built from geodesics join-
ing those fixed points. The authors show (Theorem 4.4.1) that there is a natural
isomorphism between a four-term exact sequence derived from Pimsner’s exact se-
quence and an exact sequence derived from the modular complexes. Essentially,
this relates Hcusps to the noncommutative topology of G\P1(R). The authors also
relate the modular complex to homological constructions of noncommutative geom-
etry via the periodic cyclic cohomology of the “smooth” crossed product algebras
associated to G\P1(R).

These innovative and ground-breaking results reveal the mutual influence of the
mathematics of a commutative geometric object and that of its natural noncom-
mutative boundary.

Paula Tretkoff

From MathSciNet, May 2023

MR2077591 (2006e:11077) 11G15; 11M41, 58B34

Manin, Yu. I.

Real multiplication and noncommutative geometry (ein Alterstraum).
(English)

The legacy of Niels Henrik Abel, 685–727, Springer, Berlin, 2004.

This is the type of visionary paper that makes waves through different mathe-
matical communities and is bound to have a long-lasting effect and influence. The
paper is a pleasure to read, full of thought-provoking ideas, centered around the
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unexpected interplay between noncommutative geometry and abelian class field
theory. The first subject, in the version developed by Alain Connes, is functional
analytic in nature and originates from the theory of operator algebras, while the
latter is a beautiful chapter of classical number theory.

A goal of the paper is to provide evidence for a new approach via noncommutative
geometry to the explicit class field theory problem (Hilbert’s 12th problem) and the
related Stark conjectures for real quadratic fields.

In the case of imaginary quadratic fields, it is well known that the explicit class
field theory problem (generators of the maximal abelian extension and the explicit
Galois action) has a geometric counterpart which is based on the theory of elliptic
curves with complex multiplication. This paper proposes the idea that there should
be a parallel for real quadratic fields of the theory of elliptic curves with complex
multiplication, based on the (noncommutative) geometry of quantum tori with real
multiplication.

The geometry of quantum tori (or noncommutative tori, also known as irrational
rotation algebras) was developed in [A. Connes, C. R. Acad. Sci. Paris Sér. A-B
290 (1980), no. 13, A599–A604; MR0572645] as a very important test case of the
main ideas and tools of noncommutative geometry such as cyclic cohomology [cf.
A. Connes, in Géométrie différentielle (Paris, 1986), 33–50, Hermann, Paris, 1988;
MR0955850].

In noncommutative geometry the good notion of isomorphism of spaces is given
by Morita equivalences. It was shown in [A. Connes, op. cit., 1980] and [M. A.
Rieffel, Pacific J. Math. 93 (1981), no. 2, 415–429; MR0623572] that the orbits
of the action of SL2(Z) on the parameter θ of the irrational rotation give the
equivalence classes of quantum tori. In particular, if θ is a quadratic irrationality,
the algebra has nontrivial Morita self-equivalences.

Manin identifies this property as the natural analog for a noncommutative torus
of complex multiplication for elliptic curves. Such noncommutative tori are said to
have real multiplication. The value of the modulus θ of a noncommutative torus
with real multiplication is an element of a real quadratic field, just as in the case
of elliptic curves with complex multiplication the modulus τ is an element of an
imaginary quadratic field.

There is an equivalence of categories between rank two lattices in a complex
line and elliptic curves realized by the period functor. Moreover, elliptic curves
(with level structure) have moduli spaces given by the modular curves. There are
three classical approaches to the construction of abelian extensions of imaginary
quadratic fields: via the elliptic curves with complex multiplication, in terms of the
values at torsion points of the Weierstrass ℘ function; via the modular curves, in
terms of the values at a CM point τ of modular functions; via the Stark numbers,
that is, by considering zeta functions of lattices and obtaining algebraic units in
abelian extensions from the exponential of the derivative of such zeta functions.

This paper presents analogs of the three approaches mentioned above, in the
case of noncommutative tori. The author introduces a category of pseudolattices
and a Morita category of finitely generated right modules over an algebra with
morphisms given by isomorphism classes of projective bimodules corresponding to
projections. There is an equivalence of categories between pseudolattices and the
Morita category of noncommutative tori realized by the K0 functor. This result
relies on the theory of noncommutative tori developed in [A. Connes, op. cit., 1980;
in Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), 19–143, Lecture Notes in
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Math., 725, Springer, Berlin, 1979; MR0548112; M. A. Rieffel, op. cit.; F.-P. Boca,
Comm. Math. Phys. 202 (1999), no. 2, 325–357; MR1690050]: the basic aspects of
the theory are recalled in the paper.

This first part of the paper contains in addition interesting discussions on how
to regard noncommutative tori as “limits” (or degenerations) of elliptic curves, or
on viewing elliptic curves themselves as noncommutative spaces, which explain and
motivate the ideas and results of the paper. The topic of noncommutative tori as
limits of elliptic curves is illustrated by a reinterpretation of “Hecke’s substitution”
(lifting of closed geodesics on the modular curve to the space of lattices) as a way of
passing from pseudolattices to lattices, or from a noncommutative torus to a family
of elliptic curves.

Another main part of the paper is dedicated to a discussion of Stark’s numbers for
real quadratic fields. These can be formulated in terms of zeta functions ζ(L, l0, s)
associated to a pair (L, l0) of an integral ideal L in a real quadratic field K and
an element l0 in the ring of integers of K, with suitable conditions. The Stark
numbers are then of the form S0(L, l0) = exp(ζ ′(L, l0, 0)). Stark conjectured [see
H. M. Stark, Advances in Math. 22 (1976), no. 1, 64–84; MR0437501] that these
numbers are algebraic units and generate abelian extensions of K.

The author discusses Hecke’s approach to the computation of sums of the type
that occurs in the definition of ζ(L, l0, s) in terms of a suitable class of theta func-
tions for pseudolattices. These can be obtained by averaging ordinary theta con-
stants along geodesics (via the Hecke substitution). Poisson’s formula gives a func-
tional equation for the theta functions of pseudolattices.

The last part of the paper develops another related theme, a theory of quantized
theta functions. These are different from the theta functions of pseudolattices intro-
duced earlier in the paper and play a role in defining morphisms of noncommutative
tori. After recalling the relation between theta functions and Heisenberg groups, the
author recalls a result of Boca [op. cit.] that constructs projections in irrational rota-
tion algebras in terms of theta functions. The main result of this section generalizes
Boca’s calculation and describes a construction for quantized theta function (in the
sense previously developed by the present author in [Progr. Theoret. Phys. Suppl.
No. 102 (1990), 219–228 (1991); MR1182167; in Moduli of abelian varieties (Texel
Island, 1999), 231–254, Progr. Math., 195, Birkhäuser, Basel, 2001; MR1827023;
Lett. Math. Phys. 56 (2001), no. 3, 295–320; MR1855265]). This result clarifies
the relation between Manin’s quantized theta functions and the representations of
quantum tori.

This paper is complemented by another paper of the present author [“Von Zahlen
und Figuren”, preprint, arxiv.org/abs/math/0201005] where the theme of class
field theory for real quadratic field and noncommutative tori with real multiplication
is further developed.

Matilde Marcolli

From MathSciNet, May 2023
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MR2263200 (2008a:11062) 11F67; 11G55, 11M41

Manin, Yuri I.

Iterated integrals of modular forms and noncommutative modular
symbols.

Algebraic geometry and number theory, 565–597, Progr. Math., 253, Birkhäuser
Boston, Boston, MA, 2006.

This interesting and inspiring paper sets up the foundations of the theory of
“iterated noncommutative modular symbols” by generalizing simultaneously the
classical theory of modular symbols [Yu. I. Manin, Izv. Akad. Nauk SSSR Ser. Mat.
36 (1972), 19–66; MR0314846; Selected papers of Yu. I. Manin, World Sci. Publ.,
River Edge, NJ, 1996; MR1408904 (pp. 202–247); Mat. Sb. (N.S.) 92(134) (1973),
378–401, 503; MR0345909; Selected papers of Yu. I. Manin, World Sci. Publ., River
Edge, NJ, 1996; MR1408904 (pp. 268–290); V. V. Šokurov, Izv. Akad. Nauk SSSR
Ser. Mat. 44 (1980), no. 2, 443–464, 480; MR0571104; Izv. Akad. Nauk SSSR Ser.
Mat. 44 (1980), no. 3, 670–718, 720; MR0582162; L. Merel, “Quelques aspects
arithmétiques et géometriques de la théorie des symboles modulaires”, thèse de
doctorat, Univ. Paris VI, Paris, 1993] and that of multiple zeta values [cf., e.g.,
D. B. Zagier, in First European Congress of Mathematics, Vol. II (Paris, 1992),
497–512, Progr. Math., 120, Birkhäuser, Basel, 1994; MR1341859]. The main
goal of the paper is that of extending the theory of periods of elliptic modular
forms by replacing (single) integration along geodesics in the complex upper-half
plane with a process of iterated integration of modular forms (i.e. cusp forms
and Eisenstein series), possibly multiplied by a (complex) power of the standard
complex coordinate variable, along geodesics connecting two cusps.

The theory of multiple zeta values (MZV) and in particular the definition of
MZV via m-multiple iterated integrals (m = m1 + · · ·+mk),

(1) ζ(m1, . . . ,mk) =

∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

· · ·
∫ zmk−1

0

dzmk

1− zmk

· · · ∈ C,%tag1

where the sequence of differential forms in the iterated integral consists of consec-
utive subsequences of the form dz

z , . . . , dz
z , dz

1−z of lengths mk,mk−1, . . . ,m1, is the
author’s inspiration for the definition of a total iterated integral:

(2) Jγ(Ω) =

1 +

∞∑
n=1

∫ 1

0

γ∗(Ω)(t1)

∫ t1

0

γ∗(Ω)(t2) · · ·
∫ tn−1

0

γ∗(Ω)(tn) ∈ C〈〈AV 〉〉.

Here, a finite sum Ω =
∑

v∈V Avωv of sections Avωv of the sheaf of bi-modules

Ω1
X(U)〈〈AV 〉〉 over the rings OX(U)〈〈AV 〉〉 of holomorphic functions, as U varies

among the open sets of a connected (not necessarily compact) Riemann surface
X, with coefficients noncommuting free formal variables Av (AV = {Av|v ∈ V },
V = finite set, C〈〈AV 〉〉 = ring of associative formal series), is integrated over the
simplex 0 < tn < · · · < t1 < 1, along a piecewise smooth path γ : [0, 1] → U .
This construction describes the first step toward a generalization of the geometry
associated to MZV, namely

(P1(C), {0, 1,∞}) � Γ0(4)\(H ∪P1(Q), {cusps}).
The congruence subgroup Γ0(4) of SL2(Z) is replaced here by an arbitrary (congru-
ence) subgroup Γ, by use of which the Riemann surface X gets uniformized. The
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Eisenstein series of weight 2 for Γ0(4) (i.e. the lifting to the Poincaré upper-half
plane H of the meromorphic differential forms dz

z , dz
1−z with logarithmic singularities

at {0, 1,∞}) are replaced by cuspidal elliptic modular forms with respect to Γ. In
relation to this point, the integral formula (1) is not quite covered by the formalism
of (2), because the integrands in (1) have logarithmic poles at the boundary. In the
last part of the paper the author develops the case when the integration limits of
the iterated integral are logarithmic singularities of the form Ω (differentials of the
third kind). By using the Manin-Drinfel′d theorem on cusps, he suggests a gener-
alization of Drinfel′d’s associator [V. G. Drinfeld, Algebra i Analiz 2 (1990), no. 4,
149–181; MR1080203] and extends to this case a part of the identities satisfied by
the latter.

In the case of differentials of the first kind, there is an equivalent version of (2)
which is a generating series of iterated integrals and is defined by the following
function of the variable z:

Jz
a (ωV ) = 1 +

∞∑
n=1

∑
(v1,...,vn)∈V n

Av1 · · ·Avn

×
∫ z

a

ωv1(z1)

∫ z1

a

ωv2(z2) · · ·
∫ zn−1

a

ωvn(zn),

where zi = γ(ti) ∈ X, a = γ(0), z = γ(1). This description allows one to recover,
in a multiplicative/noncommutative version, the usual properties of the integrals
such as the additivity of simple integrals with respect to the union of integration
paths (cyclicity) and the variable change formula (functoriality). These basic re-
lations between total iterated integrals are complemented by a group-like property
described in terms of a co-multiplication on the ring of formal series

Δ: C〈〈AV 〉〉 → C〈〈AV 〉〉⊗̂CC〈〈AV 〉〉, Δ(Av) = Av ⊗ 1 + 1⊗Av,

which extends to the series with coefficients in OX and Ω1
X producing the formula

(3) Δ(Jz
a (ωV )) = Jz

a (ωV )⊗̂OX
Jz
a (ωV ).

The identity in (3) is a multiplicative version of the additivity of a simple integral
as a functional of the integration form. It also encodes all shuffle relations between
the iterated integrals of the forms ωv and is equivalent to the fact that log(Jz

a (ωV ))
can be expressed as a series in commutators (of arbitrary length) of the variables
Av.

The central part of the paper generalizes the theory of ordinary (non-iterated)
integrals by showing, in particular, how the classical theory is recast within the
linear (in Av) terms of this new iterated construction. For 1-forms f of cusp modular
type of weight k = 2r for a congruence subgroup Γ = Γ0(N) of SL2(Z), the theory
of ordinary integrals is suitably extended, by covering and generalizing the following
points.

(a) It is well known that the classical Mellin transform Λ(f ; s) =
∫ 0

i∞ f(z)zs−1dz

of a function in (dz)−r((Ω1
H)

⊗r)Γ, which is Γ-normalized by the involution gN =(
0 −1
N 0

)
(i.e. g∗N (f(z)(dz)r) = εff(z)(dz)

r, εf = ±1), satisfiess the functional equa-
tion

(4) Λ(f ; s) = εfN
r−sΛ(f ; k − s).

https://www.ams.org/mathscinet-getitem?mr=1080203


432 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

This result is generalized to iterated integrals by introducing an iterated version of
the Mellin transform associated to a finite sequence f1, . . . , fk of cusp forms with
respect to a congruence subgroup

(5) M(f1, . . . , fk; s1, . . . , sk) :=

I0i∞(ω1, . . . , ωk) =

∫ 0

i∞
ω1(z1)

∫ z1

i∞
ω2(z2) · · ·

∫ zn−1

i∞
ωn(zn).

Here we write ωj(z) = fj(z)z
sj−1dz. Then, the total Mellin transform associated

to the finite family fV = {fv|v ∈ V } of cusp forms (sV = {sv|v ∈ V })

TM(fV ; sV ) = J0
i∞(ωV ) =

∞∑
n=0

∑
(v1,...,vn)∈V n

Av1 · · ·AvnM(fv1 , . . . , fvn ; sv1 , . . . , svn)

satisfies, under the assumption of stability of the family fV with respect to gN
and for an appropriate linear transformation (gN )∗ of the formal variables Av, the
following functional equation (kV = (kv), kv = weight of fv(z)):

(6) TM(fV ; sV ) = g∗(TM(fV ; kV − sV ))
−1.

The reviewer thinks that it may be useful to some readers to report explicitly the
following comment of the author related to the above functional equation. “The
individual Mellin transforms (5) do not fulfill any generalized form of functional
equation, simply because applying gN to the integration limits in them one gets an
expression which is not a Mellin transform in the sense developed in the paper. It
is only when one puts them all together that one defines the necessary environment
for replacing the overall minus sign on the right hand side of (4) by the overall
exponent −1 on the right hand side of (6).”

(b) The classical theory of modular symbols deals with the space MSk(Γ) of
R-linear functionals on the space Sk(Γ) of cusp forms. This space is spanned by
the Shimura integrals

f(z) �→
∫ β

α

f(z)zm−1dz; 1 ≤ m ≤ k − 1; α, β ∈ P1(Q).

Three descriptions of MSk(Γ) are known: (i) formal, i.e. given in terms of gen-
erators and relations; (ii) geometric, i.e. as (part of) the middle homology of a
Kuga-Sato variety; (iii) cohomological, i.e. as the dual space to the group cohomol-
ogy H1(Γ,Vk−2) with coefficients in the (k − 2)-th symmetric power of the basic
representation of SL. The author develops in the paper an iterated extension of this
third description, by introducing the notion of noncommutative modular symbol as
a cohomology class ζa of the noncommutative group cohomology H1(Γ,Π). Here,
Π denotes the multiplicative group of power series in (Av) with constant term 1.
More precisely, a family (ωv) of Shimura differentials fv(z)z

mv−1dz, where fv form
a basis of the C-vector space

⊕
i S(ki,Γ), and for a fixed weight, mv ranges over

all critical integers for this weight, spans a Γ-invariant space. Let Π be the group
of group-like and (−id)∗-invariant elements of (1 +

∑
v∈V AvC〈〈AV 〉〉)∗. The left

action of Γ on Π is implemented by the functorial action J �→ g∗J . Then, for any
a ∈ H ∪P1(Q), the map

Γ → Π; γ �→ Ja
γa(Ω)
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defines a noncommutative 1-cocycle ζa ∈ Z1(Γ,Π) whose class in H1(Γ,Π) does
not depend on the choice of a. The author eventually shows that the cohomology
class ζa belongs to the cuspidal subset H1(Γ,Π)cusp consisting of those cohomology
classes whose restriction on all stabilizers of Γ-cusps is trivial. Because the group Γ
generally does not act transitively on cusps, the components of cocycles ζa do not
contain iterated (Shimura) integrals along all geodesics connecting two cusps. In
the paper the author uses his previously developed techniques of continued fractions
in order to express all such integrals through a finite number of them.

(c) In the classical setting, one knows that the Mellin transform Λ(f ; s) of a cusp
form f(z) of weight 2r and with Fourier expansion f(z) =

∑∞
n=1 ane

2πinz can be
expressed in terms of the associated Dirichlet series as

Λ(f ; s) = − Γ(s)

(−2πi)s

∞∑
n=1

an
ns

.

This result is generalized in the paper to show that the iterated Mellin transforms
(5) at integer values of their Mellin arguments (i.e. integral points of the critical,
multidimensional strip) can be expressed as a linear combination of multiple Dirich-
let series of a special form. The precise formula reads as follows. Starting with the
family of 1-forms on H,

ωv(z) =
∞∑

n=1

cv,ne
2πinzzmv−1dz, cv,n ∈ C, mv ∈ Z, mv ≥ 1, cn,v = O(nC),

put

L(z;ωvk , . . . , ωv1 ; jk, . . . , j1) =

(7) (2πiz)jk×∑
n1,...,nk≥1

cv1,n1
· · · cvk,nk

e2πi(n1+···+nk)z

n
mv1

+j0−j1
1 (n1 + n2)

mv2
+j1−j2 · · · (n1 + · · ·+ nk)

mvk
+jk−1−jk

.

The presence of the exponential terms ensures absolute convergence of this series,
for any z ∈ C with Im(z) > 0, so that it defines a holomorphic function on H

(a formal substitution z = 0 may lead to divergence). Then, for any k ≥ 1,
(v1, . . . , vk) ∈ V k and Im(z) > 0, we have

(2πi)mv1
+···+mvk Izi∞(ωvk , . . . , ωv1) =

(−1)
∑k

i=1(mvi
−1)

mv1
−1∑

j1=0

mv2
−1+j1∑

j2=0

· · ·
mvk

−1+jk−1∑
jk=0

(−1)jk

× (mv1 − 1)!(mv2 − 1 + j1)! · · · (mvk − 1 + jk−1)!

j1!j2! · · · jk!
× L(z;ωvk , . . . , ωv1 ; jk, . . . , j1).

The limit z → 0 and a description of I0i∞(ωvk , . . . , ωv1) is also discussed in the paper.
Under the assumption that z1−mvωv(z) are a basis of a space of cusp modular forms
for the subgroup Γ0(N), or more in general for any modular subgroup which is
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normalized by the involution z �→ gNz, one obtains

(8) J0
i∞(ωV ) = ((gN )∗(J

i√
N

i∞ (ωV )))
−1J

i√
N

i∞ (ωV ).

By replacing the coefficients of the formal series at the right hand side of (8) with
their convergent representations via multiple Dirichlet series with exponents, one
gets the sought for description of I0i∞(ωvk , . . . , ωv1), by avoiding this way, possible
divergences at z = 0.

In addition to the integral representation (1), multiple zeta values have an equiv-
alent description given in terms of k-multiple Dirichlet series

(9) ζ(m1, . . . ,mk) =
∑

0<n1<···<nk

1

nm1
1 · · ·nmk

k

which converge for all integers mi ≥ 1 and mk > 1. Easy combinatorial considera-
tions allow one to express in two different ways products ζ(l1, . . . , lk)·ζ(m1, . . . ,mk)
as Z-linear combinations of multiple zeta values, described by a so-called shuffle
product. Depending upon a chosen description of the MZV, one talks of harmonic
product (i.e. the multiplication rule corresponding to a formal multiplication and
rearrangement of the terms in the sum (9)) or of shuffle product (i.e. the prod-
uct corresponding to the product of two integrals in (1)). The harmonic product,
for example, determines so-called harmonic shuffle relations, that is relations in-
volving sums over shuffles, with repetitions, which enumerate simplices occurring
in the natural simplicial decomposition of the product. In the paper, the author
considers (formal) multiple Dirichlet series of a special form generalizing the formal
series considered in (7) and deduces bilinear relations between them generalizing
the classical harmonic shuffle relations involving shuffle with repetitions. To obtain
this result one has to extend considerably the initial system of series coming from
1-forms of modular type. In relation to this point, the author states an interest-
ing open problem related to the description of some nontrivial spaces of Dirichlet
series, containing periods of cusp forms, closed with respect to the series shuffle
relations and consisting entirely of periods in the sense of M. Kontsevich and Za-
gier [in Mathematics unlimited—2001 and beyond, 771–808, Springer, Berlin, 2001;
MR1852188].
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