The Jones polynomial, Knots, diagrams, and categories
HTML articles powered by AMS MathViewer
- by Louis H. Kauffman;
- Bull. Amer. Math. Soc. 60 (2023), 507-537
- DOI: https://doi.org/10.1090/bull/1792
- Published electronically: July 5, 2023
- PDF | Request permission
Abstract:
This essay is a remembrance of Vaughan Jones and a diagrammatic exposition of the remarkable breakthroughs in knot theory and low-dimensional topology that were catalyzed by his work.References
- Yasuhiro Akutsu and Miki Wadati, Exactly solvable models and new link polynomials. I. $N$-state vertex models, J. Phys. Soc. Japan 56 (1987), no. 9, 3039–3051. MR 914721, DOI 10.1143/JPSJ.56.3039
- Yasuhiro Akutsu, Tetsuo Deguchi, and Miki Wadati, Exactly solvable models and new link polynomials. II. Link polynomials for closed $3$-braids, J. Phys. Soc. Japan 56 (1987), no. 10, 3464–3479. MR 923086, DOI 10.1143/JPSJ.56.3464
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275–306. MR 1501429, DOI 10.1090/S0002-9947-1928-1501429-1
- J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. MR 1502807, DOI 10.2307/1968399
- Daniel Altschuler and Laurent Freidel, Vassiliev knot invariants and Chern-Simons perturbation theory to all orders, Comm. Math. Phys. 187 (1997), no. 2, 261–287. MR 1463829, DOI 10.1007/s002200050136
- Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. MR 1078014, DOI 10.1017/CBO9780511623868
- John A. Baldwin and Adam Simon Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012), no. 3-4, 1886–1939. MR 2964628, DOI 10.1016/j.aim.2012.06.006
- Dror - dror Bar-Natan, Perturbative aspects of the Chern-Simons topological quantum field theory, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–Princeton University. MR 2686517
- Dror Bar-Natan, Perturbative Chern-Simons theory, J. Knot Theory Ramifications 4 (1995), no. 4, 503–547. MR 1361082, DOI 10.1142/S0218216595000247
- Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886, DOI 10.1016/0040-9383(95)93237-2
- Dror Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337–370. MR 1917056, DOI 10.2140/agt.2002.2.337
- Dror Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005), 1443–1499. MR 2174270, DOI 10.2140/gt.2005.9.1443
- Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
- Joan S. Birman and Xiao-Song Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), no. 2, 225–270. MR 1198809, DOI 10.1007/BF01231287
- S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge University Press, Cambridge, 2012. MR 2962302, DOI 10.1017/CBO9781139107846
- Vincent Coll, Anthony Giaquinto, and Colton Magnant, Meanders and Frobenius seaweed Lie algebras, J. Gen. Lie Theory Appl. 5 (2011), Art. ID G110103, 7. MR 2846732, DOI 10.4303/jglta/G110103
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford-New York-Toronto, Ont., 1970, pp. 329–358. MR 258014
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- Heather A. Dye, Aaron Kaestner, and Louis H. Kauffman, Khovanov homology, Lee homology and a Rasmussen invariant for virtual knots, J. Knot Theory Ramifications 26 (2017), no. 3, 1741001, 57. MR 3627701, DOI 10.1142/S0218216517410012
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Mikhail Goussarov, Michael Polyak, and Oleg Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045–1068. MR 1763963, DOI 10.1016/S0040-9383(99)00054-3
- C. F. Ho, A new polynomial invariant for knots and links—preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 323842, DOI 10.1007/978-1-4612-6398-2
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), no. 2, 311–334. MR 990215, DOI 10.2140/pjm.1989.137.311
- Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625
- Louis H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR 907872
- Louis H. Kauffman, Statistical mechanics and the Jones polynomial, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 263–297. MR 975085, DOI 10.1090/conm/078/975085
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- Louis H. Kauffman, Knots and physics, 4th ed., Series on Knots and Everything, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. MR 3013186, DOI 10.1142/8338
- Louis H. Kauffman and Sóstenes L. Lins, Temperley-Lieb recoupling theory and invariants of $3$-manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994. MR 1280463, DOI 10.1515/9781400882533
- Louis H. Kauffman, Knot diagrammatics, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 233–318. MR 2179264, DOI 10.1016/B978-044451452-3/50007-1
- Louis H. Kauffman, Chern-Simons theory, Vassiliev invariants, loop quantum gravity and functional integration without integration, Internat. J. Modern Phys. A 30 (2015), no. 35, 1530067, 27. MR 3437102, DOI 10.1142/S0217751X15300677
- Louis H. Kauffman, An introduction to Khovanov homology, Knot theory and its applications, Contemp. Math., vol. 670, Amer. Math. Soc., Providence, RI, 2016, pp. 105–139. MR 3568526, DOI 10.1090/conm/670/13447
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Robion Kirby and Paul Melvin, The $3$-manifold invariants of Witten and Reshetikhin-Turaev for $\textrm {sl}(2,\textbf {C})$, Invent. Math. 105 (1991), no. 3, 473–545. MR 1117149, DOI 10.1007/BF01232277
- P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97–208. MR 2805599, DOI 10.1007/s10240-010-0030-y
- W. B. R. Lickorish, The skein method for three-manifold invariants, J. Knot Theory Ramifications 2 (1993), no. 2, 171–194. MR 1227009, DOI 10.1142/S0218216593000118
- Dan Margalit, The mathematics of Joan Birman, Notices Amer. Math. Soc. 66 (2019), no. 3, 341–353. MR 3889349
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Kauffman states, bordered algebras, and a bigraded knot invariant, Adv. Math. 328 (2018), 1088–1198. MR 3771149, DOI 10.1016/j.aim.2018.02.017
- Roger Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969) Academic Press, London-New York, 1971, pp. 221–244. MR 281657
- Józef H. Przytycki and PawełTraczyk, Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc. 100 (1987), no. 4, 744–748. MR 894448, DOI 10.1090/S0002-9939-1987-0894448-2
- Kurt Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1927), no. 1, 24–32 (German). MR 3069462, DOI 10.1007/BF02952507
- K. Reidemeister, Knotentheorie. Julius Springer (1932).
- N.Y. Reshetikhin, Quantized universal enveloping algebras, the Yang–Baxter equation and invariants of links, I and II, LOMI reprints E-4, E-17, Steklov Institute, Leningrad, USSR (1987).
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Ted Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996), no. 4, 1027–1050. MR 1404922, DOI 10.1016/0040-9383(95)00056-9
- V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), no. 3, 527–553. MR 939474, DOI 10.1007/BF01393746
- V. G. Turaev and O. Ya. Viro, State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), no. 4, 865–902. MR 1191386, DOI 10.1016/0040-9383(92)90015-A
- V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23–69. MR 1089670
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772, DOI 10.1007/BF01217730
- Matthias Wolfrum, Enumeration of positive meanders, Patterns of dynamics, Springer Proc. Math. Stat., vol. 205, Springer, Cham, 2017, pp. 203–212. MR 3775413, DOI 10.1007/978-3-319-64173-7_{1}3
Bibliographic Information
- Louis H. Kauffman
- Affiliation: Department of Mathematics, Statistics, and Computer Science (m/c 249), 851 South Morgan Street, University of Illinois at Chicago, Chicago, Illinois 60607-7045
- MR Author ID: 99235
- Email: kauffman@uic.edu
- Received by editor(s): May 10, 2022
- Published electronically: July 5, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 60 (2023), 507-537
- MSC (2020): Primary 57K10
- DOI: https://doi.org/10.1090/bull/1792
- MathSciNet review: 4642117