The legacy of Vaughan Jones in $\mathrm {II}_1$ factors
HTML articles powered by AMS MathViewer
- by Sorin Popa;
- Bull. Amer. Math. Soc. 60 (2023), 445-458
- DOI: https://doi.org/10.1090/bull/1805
- Published electronically: July 5, 2023
- HTML | PDF | Request permission
Abstract:
We describe Vaughan Jones’s ground-breaking discovery that symmetries of $\mathrm {II}_1$ factors, as encoded by their subfactors, are quantized and have a natural index that can be non-integral. We then comment on the impact his revolutionary work had in the study of $\mathrm {II}_1$ factors.References
- Narjess Afzaly, Scott Morrison, and David Penneys, The classification of subfactors with index at most $5\frac 14$, Mem. Amer. Math. Soc. 284 (2023), no. 1405, v+81. MR 4565376, DOI 10.1090/memo/1405
- C. Anantharaman and S. Popa, An introduction to $\mathrm {II}_1$ factors, https://www.math.ucla.edu/~popa/Books/IIunV15.pdf, 2021.
- Stephen Bigelow, Emily Peters, Scott Morrison, and Noah Snyder, Constructing the extended Haagerup planar algebra, Acta Math. 209 (2012), no. 1, 29–82. MR 2979509, DOI 10.1007/s11511-012-0081-7
- Dietmar Bisch, David E. Evans, Robion Kirby, and Sorin Popa, Memories of Vaughan Jones, Notices Amer. Math. Soc. 68 (2021), no. 9, 1540–1563. MR 4323829, DOI 10.1090/noti2358
- Dietmar Bisch and Vaughan Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), no. 1, 89–157. MR 1437496, DOI 10.1007/s002220050137
- Dietmar Bisch and Vaughan Jones, Singly generated planar algebras of small dimension, Duke Math. J. 101 (2000), no. 1, 41–75. MR 1733737, DOI 10.1215/S0012-7094-00-10112-3
- D. Castelvechi, Vaughan Jones $($1952–2020$)$, an obituary, Nature, Sept. 2020, https://www.nature.com/articles/d41586-020-02752-0.
- A. Connes, On the classification of von Neumann algebras and their automorphisms, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975) Academic Press, London-New York, 1976, pp. 435–478. MR 450988
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- A. Connes, Classification des facteurs, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 43–109 (French). MR 679497
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- A. Connes and V. Jones, Property $T$ for von Neumann algebras, Bull. London Math. Soc. 17 (1985), no. 1, 57–62. MR 766450, DOI 10.1112/blms/17.1.57
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques [Scientific Reports], Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 94722
- David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1642584
- D. E. Evans and Y. Kawahigashi, Subfactors and mathematical physics, Bull. Amer. Math. Soc. 60 (2023), no. 4, 1–14; arXiv:2303.04459.
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- A. Guionnet, V. F. R. Jones, and D. Shlyakhtenko, Random matrices, free probability, planar algebras and subfactors, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 201–239. MR 2732052
- A. Guionnet, V. Jones, and D. Shlyakhtenko, A semi-finite algebra associated to a subfactor planar algebra, J. Funct. Anal. 261 (2011), no. 5, 1345–1360. MR 2807103, DOI 10.1016/j.jfa.2011.05.004
- Uffe Haagerup, Principal graphs of subfactors in the index range $4<[M:N]<3+\sqrt 2$, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 1–38. MR 1317352
- Adrian Ioana, Jesse Peterson, and Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), no. 1, 85–153. MR 2386109, DOI 10.1007/s11511-008-0024-5
- Adrian Ioana, Cartan subalgebras of amalgamated free product $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 1, 71–130 (English, with English and French summaries). With an appendix by Ioana and Stefaan Vaes. MR 3335839, DOI 10.24033/asens.2239
- Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994. MR 1145672, DOI 10.2977/prims/1195169007
- Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $\textrm {II}_{1}$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, DOI 10.1090/memo/0237
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- V. F. R. Jones, A converse to Ocneanu’s theorem, J. Operator Theory 10 (1983), no. 1, 61–63. MR 715556
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Subfactors of type $\textrm {II}_1$ factors and related topics, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 939–947. MR 934296
- Vaughan F. R. Jones, von Neumann algebras in mathematics and physics, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 121–138. MR 1159209
- V. F. R. Jones, Planar algebras, I, New Zealand J. Math. 52 (2021 [2021–2022]), 1–107. MR 4374438, DOI 10.53733/172
- V. F. R. Jones, Ten problems, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 79–91. MR 1754769
- V. F. R. Jones Celebratio Mathematica, https://cm.msp.org/Jones_VFR/cover/697/, 2021.
- Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, The classification of subfactors of index at most 5, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 2, 277–327. MR 3166042, DOI 10.1090/S0273-0979-2013-01442-3
- Louis H. Kauffman, The Jones polynomial, knots, diagrams, and categories, Bull. Amer. Math. Soc, 60 (2023), no. 4, 1–31.
- Mikhail Khovanov and Robert Lipschitz, Categorical lifting of the Jones polynomial: a survey, Bull. Amer. Math. Soc. 60 (2023), no. 4, 1–24.
- Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496, DOI 10.1007/BF02125124
- R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys. 7 (1995), no. 4, 567–597. Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994). MR 1332979, DOI 10.1142/S0129055X95000232
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. Murray and J. von Neumann, Rings of operators IV, Ann. Math. 44 (1943), 716–808.
- J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1930), no. 1, 370–427 (German). MR 1512583, DOI 10.1007/BF01782352
- John von Neumann, Unsolved problems in mathematics, John von Neumann and the foundations of quantum physics (Budapest, 1999) Vienna Circ. Inst. Yearb., vol. 8, Kluwer Acad. Publ., Dordrecht, 2001, pp. 231–248. MR 2043230
- Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949, DOI 10.1007/BFb0098579
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Narutaka Ozawa and Sorin Popa, On a class of $\textrm {II}_1$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713–749. MR 2680430, DOI 10.4007/annals.2010.172.713
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
- M. Pimsner and S. Popa, Finite-dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal. 98 (1991), no. 2, 270–291. MR 1111570, DOI 10.1016/0022-1236(91)90079-K
- S. Popa, Correspondences, INCREST Preprint, 56/1986, https://www.math.ucla.edu/~popa/popa-correspondences.pdf
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Sorin Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375–405. MR 1198815, DOI 10.1007/BF01231293
- Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255. MR 1278111, DOI 10.1007/BF02392646
- Sorin Popa, Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in Mathematics, vol. 86, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. MR 1339767, DOI 10.1090/cbms/086
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI 10.1007/BF01241137
- Sorin Popa, Symmetric enveloping algebras, amenability and AFD properties for subfactors, Math. Res. Lett. 1 (1994), no. 4, 409–425. MR 1302385, DOI 10.4310/MRL.1994.v1.n4.a2
- Sorin Popa, Some properties of the symmetric enveloping algebra of a subfactor, with applications to amenability and property T, Doc. Math. 4 (1999), 665–744. MR 1729488, DOI 10.4171/dm/71
- Sorin Popa, Universal construction of subfactors, J. Reine Angew. Math. 543 (2002), 39–81. MR 1887878, DOI 10.1515/crll.2002.017
- Sorin Popa, On a class of type $\textrm {II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI 10.4007/annals.2006.163.809
- Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445–477. MR 2334200, DOI 10.4171/022-1/18
- Sorin Popa, On the vanishing cohomology problem for cocycle actions of groups on $\rm II_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 407–443 (English, with English and French summaries). MR 4258165, DOI 10.24033/asens.2461
- S. Popa, W*-representations of subfactors and restrictions on the Jones index, to appear in Ens. Math., arXiv:2112.15.148, 2021.
- Sorin Popa and Dimitri Shlyakhtenko, Universal properties of $L(\textbf {F}_\infty )$ in subfactor theory, Acta Math. 191 (2003), no. 2, 225–257. MR 2051399, DOI 10.1007/BF02392965
- Sorin Popa, Dimitri Shlyakhtenko, and Stefaan Vaes, Cohomology and $L^2$-Betti numbers for subfactors and quasi-regular inclusions, Int. Math. Res. Not. IMRN 8 (2018), 2241–2331. MR 3801484, DOI 10.1093/imrn/rnw304
- Sorin Popa and Stefaan Vaes, Unique Cartan decomposition for $\rm II_1$ factors arising from arbitrary actions of free groups, Acta Math. 212 (2014), no. 1, 141–198. MR 3179609, DOI 10.1007/s11511-014-0110-9
- Sorin Popa and Stefaan Vaes, Unique Cartan decomposition for $\rm II_{1}$ factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. 694 (2014), 215–239. MR 3259044, DOI 10.1515/crelle-2012-0104
- Sorin Popa and Stefaan Vaes, Representation theory for subfactors, $\lambda$-lattices and $\rm C^*$-tensor categories, Comm. Math. Phys. 340 (2015), no. 3, 1239–1280. MR 3406647, DOI 10.1007/s00220-015-2442-5
- Sorin Popa and Stefaan Vaes, $\rm W^*$-rigidity paradigms for embeddings of $\rm II_1$ factors, Comm. Math. Phys. 395 (2022), no. 2, 907–961. MR 4487528, DOI 10.1007/s00220-022-04446-2
- Sorin Popa and Antony Wassermann, Actions of compact Lie groups on von Neumann algebras, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 4, 421–426 (English, with English and French summaries). MR 1179050
- Florin Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), no. 2, 347–389. MR 1258909, DOI 10.1007/BF01231764
- Dimitri Shlyakhtenko, $A$-valued semicircular systems, J. Funct. Anal. 166 (1999), no. 1, 1–47. MR 1704661, DOI 10.1006/jfan.1999.3424
- Stefaan Vaes, Factors of type II$_1$ without non-trivial finite index subfactors, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2587–2606. MR 2471930, DOI 10.1090/S0002-9947-08-04585-6
- Dan Voiculescu, Circular and semicircular systems and free product factors, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 45–60. MR 1103585
Bibliographic Information
- Sorin Popa
- Affiliation: Department of Mathematics, University of California, Los Angeles
- MR Author ID: 141080
- Received by editor(s): May 8, 2023
- Published electronically: July 5, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 60 (2023), 445-458
- MSC (2020): Primary 46L37; Secondary 46L10
- DOI: https://doi.org/10.1090/bull/1805
- MathSciNet review: 4642114