A new perspective on the Sullivan dictionary via Assouad type dimensions and spectra
HTML articles powered by AMS MathViewer
- by Jonathan M. Fraser and Liam Stuart;
- Bull. Amer. Math. Soc. 61 (2024), 103-118
- DOI: https://doi.org/10.1090/bull/1796
- Published electronically: August 2, 2023
- HTML | PDF | Request permission
Abstract:
The Sullivan dictionary provides a beautiful correspondence between Kleinian groups acting on hyperbolic space and rational maps of the extended complex plane. We focus on the setting of geometrically finite Kleinian groups with parabolic elements and parabolic rational maps. In this context an especially direct correspondence exists concerning the dimension theory of the associated limit sets and Julia sets. In recent work we established formulae for the Assouad type dimensions and spectra for these fractal sets and certain conformal measures they support. This allows a rather more nuanced comparison of the two families in the context of dimension. In this expository article we discuss how these results provide new entries in the Sullivan dictionary, as well as revealing striking differences between the two families.References
- Jon Aaronson, Manfred Denker, and Mariusz Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), no. 2, 495–548. MR 1107025, DOI 10.1090/S0002-9947-1993-1107025-2
- T. Anderson, K. Hughes, J. Roos, and A. Seeger, $L^p\to L^q$ bounds for spherical maximal operators, Math. Z. 297 (2021), no. 3-4, 1057–1074. MR 4229592, DOI 10.1007/s00209-020-02546-0
- Artur Avila and Mikhail Lyubich, Lebesgue measure of Feigenbaum Julia sets, Ann. of Math. (2) 195 (2022), no. 1, 1–88. MR 4358413, DOI 10.4007/annals.2022.195.1.1
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Christopher J. Bishop and Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), no. 1, 1–39. MR 1484767, DOI 10.1007/BF02392718
- Christopher J. Bishop and Yuval Peres, Fractals in probability and analysis, Cambridge Studies in Advanced Mathematics, vol. 162, Cambridge University Press, Cambridge, 2017. MR 3616046, DOI 10.1017/9781316460238
- David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, 2nd ed., Progress in Mathematics, vol. 318, Birkhäuser/Springer, [Cham], 2016. MR 3497464, DOI 10.1007/978-3-319-33877-4
- B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317. MR 1218098, DOI 10.1006/jfan.1993.1052
- Xavier Buff and Arnaud Chéritat, Quadratic Julia sets with positive area, Ann. of Math. (2) 176 (2012), no. 2, 673–746. MR 2950763, DOI 10.4007/annals.2012.176.2.1
- S. A. Burrell, K. J. Falconer, and J. M. Fraser, The fractal structure of elliptical polynomial spirals, Monatsh. Math. 199 (2022), no. 1, 1–22. MR 4469805, DOI 10.1007/s00605-022-01735-9
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Tushar Das, David Simmons, and Mariusz Urbański, Dimension rigidity in conformal structures, Adv. Math. 308 (2017), 1127–1186. MR 3600084, DOI 10.1016/j.aim.2016.12.034
- Tushar Das, David Simmons, and Mariusz Urbański, Geometry and dynamics in Gromov hyperbolic metric spaces, Mathematical Surveys and Monographs, vol. 218, American Mathematical Society, Providence, RI, 2017. With an emphasis on non-proper settings. MR 3558533, DOI 10.1090/surv/218
- M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math., 3 (1991a), no. 6, 561–580.
- M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. Lond. Math. Soc., 2 (1991b), no. 1, 107–118.
- M. Denker and M. Urbański, The capacity of parabolic Julia sets, Math. Z. 211 (1992), no. 1, 73–86. MR 1179780, DOI 10.1007/BF02571418
- Kenneth J. Falconer, Jonathan M. Fraser, and Antti Käenmäki, Minkowski dimension for measures, Proc. Amer. Math. Soc. 151 (2023), no. 2, 779–794. MR 4520027, DOI 10.1090/proc/16174
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- Fraser, J. M., Regularity of Kleinian limit sets and Patterson-Sullivan measures. Trans. Amer. Math. Soc., 372 (2019) 4977–5009.
- J. M. Fraser, Assouad dimension and fractal geometry. Tracts in Mathematics Series, vol. 222, Cambridge University Press, 2020.
- J. M. Fraser and L. Stuart, Assouad type dimensions of parabolic Julia sets, arXiv:2203.04943, 2022.
- Jonathan M. Fraser and Liam Stuart, The Assouad spectrum of Kleinian limit sets and Patterson-Sullivan measure, Geom. Dedicata 217 (2023), no. 1, Paper No. 1, 32. MR 4493662, DOI 10.1007/s10711-022-00734-2
- Jonathan M. Fraser and Han Yu, New dimension spectra: finer information on scaling and homogeneity, Adv. Math. 329 (2018), 273–328. MR 3783415, DOI 10.1016/j.aim.2017.12.019
- Lukas Geyer, Porosity of parabolic Julia sets, Complex Variables Theory Appl. 39 (1999), no. 3, 191–198. MR 1717570, DOI 10.1080/17476939908815191
- Antti Käenmäki, Juha Lehrbäck, and Matti Vuorinen, Dimensions, Whitney covers, and tubular neighborhoods, Indiana Univ. Math. J. 62 (2013), no. 6, 1861–1889. MR 3205534, DOI 10.1512/iumj.2013.62.5155
- Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23–76. MR 1608518
- John M. Mackay and Jeremy T. Tyson, Conformal dimension, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR 2662522, DOI 10.1090/ulect/054
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- C. T. McMullen, The classification of conformal dynamical systems, Curr. Dev. Math., 1995 (1995), no. 1, 323–360.
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- James C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Mathematics, vol. 186, Cambridge University Press, Cambridge, 2011. MR 2767108
- J. Roos and A. Seeger, Spherical maximal functions and fractal dimensions of dilation sets, Amer. J. Math. (to appear).
- B. Stratmann and M. Urbański, The box-counting dimension for geometrically finite Kleinian groups, Fund. Math. 149 (1996), no. 1, 83–93. MR 1372359, DOI 10.4064/fm-149-1-83-93
- B. O. Stratmann and M. Urbański, The geometry of conformal measures for parabolic rational maps, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 141–156. MR 1724435, DOI 10.1017/S0305004199003837
- B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3) 71 (1995), no. 1, 197–220. MR 1327939, DOI 10.1112/plms/s3-71.1.197
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Pekka Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), no. 1-2, 127–140. MR 736215, DOI 10.1007/BF02392194
- Mariusz Urbański, Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 3, 281–321. MR 1978566, DOI 10.1090/S0273-0979-03-00985-6
Bibliographic Information
- Jonathan M. Fraser
- Affiliation: The University of St Andrews, Scotland
- MR Author ID: 946983
- ORCID: 0000-0002-8066-9120
- Email: jmf32@st-andrews.ac.uk
- Liam Stuart
- Affiliation: The University of St Andrews, Scotland
- MR Author ID: 1530162
- ORCID: 0000-0001-8547-0236
- Email: ls220@st-andrews.ac.uk
- Received by editor(s): March 14, 2022
- Published electronically: August 2, 2023
- Additional Notes: The first author was financially supported by an EPSRC Standard Grant (EP/R015104/1) and a Leverhulme Trust Research Project Grant (RPG-2019-034). The second author was financially supported by the University of St Andrews.
- © Copyright 2023 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 61 (2024), 103-118
- MSC (2020): Primary 28A80, 37C45, 37F10, 30F40, 37F50
- DOI: https://doi.org/10.1090/bull/1796
- MathSciNet review: 4678573