A stroll around the critical Potts model
HTML articles powered by AMS MathViewer
- by Martin Hairer;
- Bull. Amer. Math. Soc. 61 (2024), 55-71
- DOI: https://doi.org/10.1090/bull/1802
- Published electronically: August 2, 2023
- HTML | PDF
Abstract:
Over the past decade or so, a broad research programme spearheaded by H. Duminil-Copin and his collaborators has vastly increased our understanding of a number of critical or near-critical statistical mechanics models. Most prominently, these include the $q$-state Potts models and, essentially equivalently, the FK cluster models. In this short review, we present a small selection of recent results from this research area.References
- Michael Aizenman and Hugo Duminil-Copin, Marginal triviality of the scaling limits of critical 4D Ising and $\phi _4^4$ models, Ann. of Math. (2) 194 (2021), no. 1, 163–235. MR 4276286, DOI 10.4007/annals.2021.194.1.3
- Michael Aizenman, Hugo Duminil-Copin, and Vladas Sidoravicius, Random currents and continuity of Ising model’s spontaneous magnetization, Comm. Math. Phys. 334 (2015), no. 2, 719–742. MR 3306602, DOI 10.1007/s00220-014-2093-y
- M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, J. Statist. Phys. 44 (1986), no. 3-4, 393–454. MR 857063, DOI 10.1007/BF01011304
- Michael Aizenman, Proof of the triviality of $\varphi _{d}^{4}$ field theory and some mean-field features of Ising models for $d>4$, Phys. Rev. Lett. 47 (1981), no. 1, 1–4. MR 620135, DOI 10.1103/PhysRevLett.47.1
- Michael Aizenman, Geometric analysis of $\varphi ^{4}$ fields and Ising models. I, II, Comm. Math. Phys. 86 (1982), no. 1, 1–48. MR 678000, DOI 10.1007/BF01205659
- R. J. Baxter, Generalized ferroelectric model on a square lattice, Studies in Appl. Math. 50 (1971), 51–69. MR 307646, DOI 10.1002/sapm197150151
- R. J. Baxter, Potts model at the critical temperature, Journal of Physics C: Solid State Physics 6 (1973), no. 23, L445–L448. doi:10.1088/0022-3719/6/23/005.
- Vincent Beffara and Hugo Duminil-Copin, The self-dual point of the two-dimensional random-cluster model is critical for $q\geq 1$, Probab. Theory Related Fields 153 (2012), no. 3-4, 511–542. MR 2948685, DOI 10.1007/s00440-011-0353-8
- T. W. Burkhardt and I. Guim, Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordred boundary fields, Phys. Rev. B 47 (1993), 14306–14311. doi:10.1103/PhysRevB.47.14306.
- R. J. Baxter, S. B. Kelland, and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, Journal of Physics A: Mathematical and General 9 (1976), no. 3, 397–406. doi:10.1088/0305-4470/9/3/009.
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X
- J. L. Cardy, Conformal invariance and surface critical behavior, Nuclear Physics B 240 (1984), no. 4, 514–532. doi:https://doi.org/10.1016/0550-3213(84)90241-4.
- Federico Camia, Christophe Garban, and Charles M. Newman, Planar Ising magnetization field I. Uniqueness of the critical scaling limit, Ann. Probab. 43 (2015), no. 2, 528–571. MR 3305999, DOI 10.1214/13-AOP881
- Federico Camia, Christophe Garban, and Charles M. Newman, Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 1, 146–161 (English, with English and French summaries). MR 3449298, DOI 10.1214/14-AIHP643
- Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov, Conformal invariance of spin correlations in the planar Ising model, Ann. of Math. (2) 181 (2015), no. 3, 1087–1138. MR 3296821, DOI 10.4007/annals.2015.181.3.5
- Dmitry Chelkak and Stanislav Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math. 189 (2012), no. 3, 515–580. MR 2957303, DOI 10.1007/s00222-011-0371-2
- Hugo Duminil-Copin, Maxime Gagnebin, Matan Harel, Ioan Manolescu, and Vincent Tassion, Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 6, 1363–1413 (English, with English and French summaries). MR 4371394, DOI 10.24033/asens.2485
- Hugo Duminil-Copin and Alan Hammond, Self-avoiding walk is sub-ballistic, Comm. Math. Phys. 324 (2013), no. 2, 401–423. MR 3117515, DOI 10.1007/s00220-013-1811-1
- H. Duminil-Copin, K. K. Kozlowski, D. Krachun, I. Manolescu, and M. Oulamara, Rotational invariance in critical planar lattice models, arXiv:2012.11672, 2020.
- Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion, Sharp phase transition for the random-cluster and Potts models via decision trees, Ann. of Math. (2) 189 (2019), no. 1, 75–99. MR 3898174, DOI 10.4007/annals.2019.189.1.2
- Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion, Continuity of the phase transition for planar random-cluster and Potts models with $1 \leq q \leq 4$, Comm. Math. Phys. 349 (2017), no. 1, 47–107. MR 3592746, DOI 10.1007/s00220-016-2759-8
- Monroe D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6 (1951), 12. MR 40613
- S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, Solving the 3d Ising model with the conformal bootstrap, Phys. Rev. D 86, (2012), 025022. arXiv:1203.6064, 2012.
- Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, and Alessandro Vichi, Solving the 3d Ising model with the conformal bootstrap II. $c$-minimization and precise critical exponents, J. Stat. Phys. 157 (2014), no. 4-5, 869–914. MR 3269694, DOI 10.1007/s10955-014-1042-7
- Jürg Fröhlich, Robert Israel, Elliott H. Lieb, and Barry Simon, Phase transitions and reflection positivity. I. General theory and long range lattice models, Comm. Math. Phys. 62 (1978), no. 1, 1–34. MR 506363, DOI 10.1007/BF01940327
- C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536–564. MR 359655
- Jürg Fröhlich, On the triviality of $\lambda \varphi ^{4}_{d}$ theories and the approach to the critical point in $d{>atop (—)}4$ dimensions, Nuclear Phys. B 200 (1982), no. 2, 281–296. MR 643591, DOI 10.1016/0550-3213(82)90088-8
- J. Fröhlich, B. Simon, and Thomas Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Comm. Math. Phys. 50 (1976), no. 1, 79–95. MR 421531, DOI 10.1007/BF01608557
- Robert B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of magnetization of an Ising ferromagnet in a positive external field, J. Mathematical Phys. 11 (1970), 790–795. MR 266507, DOI 10.1063/1.1665211
- Geoffrey Grimmett, The random-cluster model, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag, Berlin, 2006. MR 2243761, DOI 10.1007/978-3-540-32891-9
- Takashi Hara and Gordon Slade, Mean-field behaviour and the lace expansion, Probability and phase transition (Cambridge, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 420, Kluwer Acad. Publ., Dordrecht, 1994, pp. 87–122. MR 1283177
- E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift fur Physik 31 (1925), no. 1, 253–258. doi:10.1007/BF02980577.
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 339–364. MR 2112127, DOI 10.1090/pspum/072.2/2112127
- Neal Madras, A lower bound for the end-to-end distance of the self-avoiding walk, Canad. Math. Bull. 57 (2014), no. 1, 113–118. MR 3150723, DOI 10.4153/CMB-2012-022-6
- Jason Miller and Scott Sheffield, Quantum Loewner evolution, Duke Math. J. 165 (2016), no. 17, 3241–3378. MR 3572845, DOI 10.1215/00127094-3627096
- Lars Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. (2) 65 (1944), 117–149. MR 10315, DOI 10.1103/PhysRev.65.117
- R. O’Donnell, M. Saks, O. Schramm, and R. Servedio, Every decision tree has an influential variable, in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 31–39. 2005. arXiv:cs/0508071. doi:10.1109/SFCS.2005.34.
- Akira Sakai, Lace expansion for the Ising model, Comm. Math. Phys. 272 (2007), no. 2, 283–344. MR 2300246, DOI 10.1007/s00220-007-0227-1
- Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288. MR 1776084, DOI 10.1007/BF02803524
- Oded Schramm and Stanislav Smirnov, On the scaling limits of planar percolation, Ann. Probab. 39 (2011), no. 5, 1768–1814. With an appendix by Christophe Garban. MR 2884873, DOI 10.1214/11-AOP659
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. (2) 85 (1952), 808–816. MR 51740, DOI 10.1103/PhysRev.85.808
Bibliographic Information
- Martin Hairer
- Affiliation: École Polytechnique Fédérale de Lausanne, Switzerland; and Imperial College London, United Kingdom
- MR Author ID: 664196
- ORCID: 0000-0002-2141-6561
- Email: martin.hairer@epfl.ch, m.hairer@imperial.ac.uk
- Received by editor(s): April 5, 2023
- Published electronically: August 2, 2023
- Additional Notes: This work was supported by the Royal Society through a research professorship, grant number RP/R1/191065. Sections 3 and 4 of this review were previously published in the 2022 ICM laudatio for Hugo Duminil-Copin’s Fields Medal.
- © Copyright 2023 Martin Hairer
- Journal: Bull. Amer. Math. Soc. 61 (2024), 55-71
- MSC (2020): Primary 82B26, 82B43, 82B20
- DOI: https://doi.org/10.1090/bull/1802
- MathSciNet review: 4678571