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It is well known that many traditional applications of mathematics use tools
from linear algebra. It is less known that classical and recent tools from nonlinear
algebra are giving the theoretical basis for applications and computations in quite
different domains, including optimization, statistics, computational biology, com-
puter vision, signal processing, and complexity theory. This book is a somewhat
special invitation to explore these tools. Our first reaction when browsing it was,
“This is the book I wish I had read when I was a graduate student.”

1. Nonlinear algebra

The first interesting thing about the book is in its title, “nonlinear algebra”,
sounding a bit different from “non-linear”. As health extends beyond the mere
absence of illness, here nonlinear is to be understood as a proper subject, which
surpasses the mere negation of linearity. Even more since linearity appears as the
simple case of degree one in the nonlinear algebra world.

The term nonlinear algebra (spelled “non-linear”) was first introduced in the
setting of theoretical physics in the book [8]. The SIAM focus group on Applications
of Algebraic Geometry, initiated around 10 years ago, holds a biennial conference.
The last one, held in July 2023 in Eindhoven, The Netherlands, featured diverse
plenary lectures and 128 sessions of Minisymposia on different aspects of nonlinear
algebra [16] with the participation of a vibrant community of young researchers.
The maturity of the topic led to the creation of the SIAM Journal on Applied
Algebra and Geometry in 2016, which publishes a variety of emerging applications
using algebra, geometry, and topology tools.

Nonlinear algebra’s focus is on computation and applications, and the theoretical
results that need to be developed accordingly. Micha�lek and Sturmfels explain that
this name is not just a rebranding of algebraic geometry but that it is intended to
capture this focus, and to be more friendly to applied mathematicians, questioning
the historic boundaries between pure and applied mathematics. We summarize in
the following sections the different topics addressed in their book.
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2. From algebra to geometry and back

Basic mathematical objects as spheres or eigenvalues of matrices are described by
polynomial equations. Also, mathematical models in many domains are expressed
as sets of solutions to systems of polynomial equations. The advent of personal
computers and implementations of algorithms to compute with multivariate poly-
nomials opened up the possibility of explicit computations in algebra and geometry
which were outside the previous range of possibilities.

The first observation when dealing with polynomials over a field, e.g., with co-
efficients in Q,R,C, in a finite field, in the field of rational functions over a field,
etc., is that if two polynomials f1, f2 have a common zero p, then any linear com-
bination of them with polynomial coefficients g1f1 + g2f2 also vanishes at p. We
are then led to work with polynomial ideals, which are nonempty subsets of the
ring of polynomials K[x] = K[x1, . . . , xn] with coefficients in the field K, which
are closed under taking polynomial linear combinations. By the celebrated Hilbert
basis theorem, any ideal I ⊂ K[x] has a finite number of generators. This means
that there exist f1, . . . , fr ∈ I such that

I = {g1f1 + · · ·+ grfr : g1, . . . , gr ∈ K[x]}.

Note however that there is no simple translation of the concept of linear indepen-
dence: for any pair of polynomials f1, f2 we get the equality f2f1 + (−f1)f2 = 0.
The main tool for dealing with multivariate polynomial ideals are Gröbner bases
associated to any total well ordering of the set of monomials compatible with mul-
tiplication (known as a term order). They were introduced by B. Buchberger in his
1965 thesis written under the direction of W. Gröbner. We quote from the book
under review:

Gröbner bases for ideals are fundamental to nonlinear algebra, just
like Gaussian elimination for matrices is fundamental to linear al-
gebra.

The pioneering books [6,7] written by D. Cox, J. Little, and D. O’Shea and first
published in 1992 and 1998, respectively, showed that nonlinear algebra could be
made accessible not just to mathematicians who are not experts in the area, but
also to users of mathematics in engineering and computer science. Free and open-
source computer algebra systems for polynomial computations based on Gröbner
basis computations that started being developed in the 1980s, are now widely used
and still in active development, as Macaulay2 [11] or Singular, now embedded
in [17]. Also, several commercial software programs offer good implementations.
The inherent complexity of most nonlinear algebraic computations has also led
to the development of software for polynomial system solving based on numerical
algebraic geometry, using well tuned algorithms for homotopy continuation.

The subsets of Kn that occur as zeros of polynomial equations in n variables
are called (affine) algebraic varieties. If we endow Kn with the Zariski topology,
algebraic varieties are closed; this can be similarly done for any commutative ring
with unity. The translation between algebra and geometry is based on another
important theorem of Hilbert known as the Nullstellensatz. It says that when K
is algebraically closed, the polynomials g that vanish on the common zeros of all
the polynomials in an ideal I (which coincides with the zeros of all the polynomials
in any finite set of generators of I) are precisely those g for which a power gm lies
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in I. To understand why powers occur, just think of the ideal generated in the
polynomial ring in one variable by a polynomial f with multiple roots.

The notion of multiplicity has been extended to polynomial ideals as well as
the notion of primes and factorizations. Coefficients in Q allow for exact symbolic
computation, while general coefficients in R or C are approximated and manipulated
via numerical computations. Computing roots of polynomials and factorization is
not algorithmic in general, but there are several interesting implemented algorithms
that give important information. For instance, given a polynomial ideal in Q[x] it
is possible to symbolically compute the dimension of the algebraic variety V it
defines in Cn. Such a variety is the union of a finite number of irreducible algebraic
varieties and each irreducible variety is the closure of a differentiable manifold. The
algebraic definition of the dimension of V equals the maximal dimension of these
manifolds and corresponds to the maximum number of local free variables over the
variety. Algebraically, this can be done using the tools of Hilbert series and Hilbert
functions for an associated monomial ideal.

Ideals I in C[x] can be interpreted as systems of linear partial differential equa-
tions (PDEs) with constant coefficients. When I has finitely many complex zeros
(i.e., I has dimension 0), there is a translation between the multiplicities of I at
its zeros (the primary decomposition of I) and the shape of the holomorphic so-
lutions to the associated differential system. These solution spaces vary in a nice
way with parameter changes. When the dimension of I is positive, the precise
relation between the primary decomposition of I and the solution space of the as-
sociated system of PDEs is an important result in analysis known as the Ehrenpreis
fundamental principle.

The standard compactification of the affine space Kn is the projective space Pn
K ,

which can be defined by gluing n+1 affine patches or by identifying all points in the
same line through the origin in Kn+1 \ 0. There is a richer and many times simpler
theory of projective algebraic varieties. Indeed, affine varieties can be embedded in
projective space via the affine charts, and their closures are projective varieties.

The study of the topology of algebraic varieties in low dimension over the reals
poses challenging questions and leads to insights that are also useful for under-
standing the higher-dimensional case. For instance, the real projective plane P2

R
is

a surface that cannot be embedded homeomorphically in R3, so it is not possible
to produce a good picture. A smooth curve C in P2

C
is a orientable surface and its

genus g is computed in terms of the degree d of its (irreducible) defining equation.
In the real projective plane P2

R
, the curve C has at most g + 1 connected compo-

nents that disconnect the space when d is even, and there is one component with
connected complement when d is odd.

Elimination of variables corresponds to geometric projections. The computation
of Gröbner bases corresponding to lexicographic term orders provide an effective
way to eliminate variables in the multivariate case. We can use elimination to
compute over the complex numbers the closure of the image of a variety under a
polynomial or rational map, and in particular, the closure of the projection of a
variety. For instance, the projection onto the (a, b, c, d)-space of the variety V1 =
{(a, b, c, d, x, y) : ax+ by = 0, cx+ dy = 0} is the whole space since for any choice
of coefficients, setting x = y = 0 gives a solution. But if we consider for instance
the variety V2 = {(a, b, c, d, x, y, z) : ax + by = cx + dy = xyz − 1 = 0}, then
the closure of the image is now the variety D = {(a, b, c, d) : ad − bc = 0} cut
out by the determinant. Note that for instance the point (0, 1, 0, 1) lies in D but
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it does not belong to the image of V1 under the projection. Similarly, resultants
and discriminants (as the hyperdeterminants) can be computed via elimination of
variables. Another interesting application of elimination is to find the conditions
under which a given partial matrix can be completed with a rank restriction.

Over an algebraically closed field, images of projective algebraic varieties are
closed. In the affine case or over the reals, we have the following general results. A
subset S of Kn is said to be constructible if it equals a finite union of differences
of varieties. In particular, any algebraic variety is constructible. The Chevalley
theorem states that the image of a constructible set under a polynomial mapping is
a constructible set. WhenK = R, S is said to be semialgebraic if it can be described
as a finite union of the solutions sets of finite systems of polynomial inequalities
(either strict or not). In particular, real algebraic varieties are semialgebraic. It
is easy to see that every constructible set is semialgebraic, but the converse is
not true. The Tarski–Seidenberg theorem states that the image of a real algebraic
variety under a polynomial mapping is a semialgebraic set.

The weak form of the Nullstellensatz on an algebraically closed field K, states
that if a collection of polynomials f1, . . . , fr ∈ K[x1, . . . , xn] has no common zero
in Kn, there exists an identity g1f1 + · · ·+ grfr = 1 with polynomial multipliers gi
(the other implication trivially holds). In fact, this weak form is equivalent to the
general form of the Nullstellensatz via the Rabinowitsch trick : if f vanishes on the
common zeros of f1, . . . , fr, then the system fy−1 = f1 = · · · = fr = 0 in one more
variable y does not have any solution. It is then enough to write 1 as a polynomial
linear combination of these r + 1 polynomials and then substitute y = 1/f .

The Nullstellensatz is not true over R: consider for instance the polynomial
x2 + y2 + 1 ∈ R[x, y]. But there are real versions. The starting point is that a real
polynomial which is a sum of squares must be nonnegative, and a natural question
is whether the converse holds. Hilbert showed in 1893 that the answer is negative
if one asks for squares of polynomials. He proved that no counterexamples exist in
one variable or in degree 4 in two variables but his proof of the negative result was
not constructive. Motzkin proposed in 1965 the explicit counterexample of degree
6 in two variables M = x4y2+x2y4+1−3x2y2; see Figure 1. Artin showed in 1927

Figure 1. Real plots of the level curves of the Motzkin polynomial
M = c, for c = 1, 12 ,

1
8 ,

1
20 .
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that the answer is positive if one asks for squares of rational functions; indeed,

M =
x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2
.

Distributing the three terms of the factor (x2 + y2 +1), we see that the right-hand
side is a sum of four squares of rational functions. The real zeros of the Motzkin
polynomial are the four points (x, y) = (±1,±1); they are the singular points of
the complex curve M = 0, that is, the points were M and both partial derivatives
vanish. Artin’s result is derived from the weak form of the Positivstellensatz : if
an ideal in R[x] has no real points, there exist polynomials p1, . . . , ps such that
1 +

∑s
i=1 p

2
i ∈ I, i.e., −1 is a sum of squares modulo I. The strong form of the

Positivstellensatz can be seen as a generalization of the Farkas lemma holding for
polynomials of degree 1. The nice article [2] substantially extends Hilbert’s cele-
brated characterization of equality between nonnegative forms and sums of squares,
giving geometric insight into the different cases via the relation with projective va-
rieties of minimal degree.

3. Nonlinear algebra and combinatorics

The fruitful interaction of algebra and geometry with combinatorics occurs for
instance in tropical geometry, in the theory of toric varieties and in the theory of
matroids.

The tropical semiring R∪{∞} is endowed with the two nonstandard operations

u⊕ v = min(u, v), u� v = u+ v.

In other words, the tropical sum is the minimum and the tropical product is the
usual sum. The idea to perform products with sums has been historically successful
with the tool of logarithms. The tropical semiring R ∪ {∞} arises as the codomain
of a real valuation of a field K, which is a function val : K → R ∪ {∞} satisfying
val(a) � val(b) = val(ab), val(a) ⊕ val(b) ≤ val(a + b), and an additional property
saying val(a) = ∞ if and only if a = 0. A field with a valuation is an ultrametric
space where the metric is defined in terms of the norm |a| = e− val(a) for any nonzero
a ∈ K∗ = K\{0} and |0| = 0. Thus, one can use analytical and topological methods
to study K.

Given any field, we can define the trivial valuation as val(a) = 0 for any a ∈ K∗

and val(0) = ∞. An important example with a nontrivial valuation is the field
K = C{{t}} of Puiseux series with complex coefficients and rational exponents
with a common denominator. The valuation of a series c ∈ K is the smallest
exponent a of a term cat

a that appears in the series expansion of c (i.e., ca 
= 0).
Puiseux series were classically considered, as they provide local parametrizations of
complex curves in the plane around a singular point. A nontrivial classical result
is that the field of Puiseux series is algebraically closed. Another valued field with
interest in number theory is the algebraic closure of the p-adic numbers, for any
prime number p.

Given a Laurent polynomial f ∈ K[x±1] = K[x1, x
−1
1 , . . . , xn, x

−1
n ] (with integer

exponents not necessarily nonnegative) over a field K with a valuation, its tropical-
ization trop(f) is the polynomial over the tropical semiring obtained by replacing
each coefficient of f by its valuation and the classical operations of multiplication
and addition by their tropical counterparts. We will denote the tropical variables
by u = (u1, . . . , un). Thus, if f =

∑m
i=1 cix

ai , then trop(f) =
⊕m

i=1 val(ci)� u�ai ,
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which equals the minimum of the linear forms val(ci) + 〈u, ai〉 for i = 1 . . . ,m.
If this minimum is attained at least twice, u is said to be a zero of trop(f). It
is straightforward to check that if a point x ∈ (K∗)n satisfies f(x) = 0, then
u = (val(x1), . . . , val(xn)) is a zero of trop(f).1 Kapranov’s theorem asserts in par-
ticular that the converse is also true for u ∈ Qn when K is an algebraically closed
field with val(K∗) = Q, as the field of Puiseux series. A similar result holds for
ideals, known as the fundamental theorem of tropical algebraic geometry.

If f ∈ C[x±1] is a Laurent polynomial with complex coefficients, we can consider
the natural embedding C → C{{t}} and the previous result holds, considering the
valuations of the roots of f in the Puiseux series field. If f is not the zero polynomial,
its Newton polytope N(f) is the convex hull in Rn of the set of exponents {ai :
ci 
= 0, i = 1, . . . ,m}. It is a lattice polytope, a polyhedral convex body with integer
vertices. The zeros of trop(f) consist of the codimension 1 cones in the inner normal
fan of N(f). When f has coefficients over a field with nontrivial valuation, we also
get a (displaced) polyhedral object. We encourage the reader to look for a nice
tropical picture on the Web. Tropicalization of algebraic varieties and ideals carry
important combinatorial information on them, but one can also consider tropical
objects and varieties not coming from the algebraic world. This is a rich subject.
We refer to the book [14].

It is possible to consider vectors and matrices over the tropical semiring. Tropi-
cal linear algebra has many applications; indeed, this was one of the sources of the
theory. A first application is the computation of the length of the shortest path
in a weighted direct graph. This is achieved by computing tropical powers of the
adjacency matrix of the graph. The tropical determinant expresses the assignment
problem in dynamic programming. When A is a square matrix such that the di-
rected graph with adjacency matrix A is strongly connected, A has a single tropical
eigenvalue which coincides with the minimum (normalized) length of a directed
cycle in the graph.

Toric varieties are special algebraic varieties with interesting relations with lat-
tice points in polyhedra. They have dense parametrizations and allow for effective
computations. Even if they are very special, a famous quote of William Fulton
explains,

toric varieties have provided a remarkably fertile testing ground for
general theories in algebraic geometry.

Affine toric varieties are associated to rational polyhedral cones. Projective spaces
Pn
K (and also Segre and Veronese varieties) are examples of compact toric varieties;

they contain a dense torus consisting of the projective points with nonzero coordi-
nates, which is isomorphic to (K∗)n. This is a group that acts by coordinate-wise
multiplication. Affine toric varieties X = XA are rationally parametrized by mono-
mials with exponents in a finite subset A = {a1, . . . , am} of Zn. This means that X
is the closure of the image of the map t → (ta1 , . . . , tam), with t ∈ (K∗)n. For any

v, v′ ∈ Zm
≥0 with

∑m
i=1(vi − v′i)ai = 0, the binomial xv − xv′

vanishes on XA, and
such binomials generate the ideal of all the polynomials vanishing on XA. Denote
by P the convex hull of A. The closure XA in projective space of XA equals a
union of toric varieties associated to faces of P of all dimensions. If K = C, we can

1There is an equivalent formulation of the zero set of a tropical polynomial in a Gröbner-like
fashion.
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also consider the real nonnegative points XA≥0. This semialgebraic set is homeo-
morphic to P under the algebraic moment map sending (the class of) a point x to
the linear combination 1∑m

i=1 |xi|
∑m

i=1 |xi|ai.
In many applications, the affine or projective varieties we need to consider are

indeed toric varieties. This happens for instance in the realm of chemical reaction
networks and in particular, when dealing with many enzymatic networks in bio-
chemistry [5, Chapter 5]. But also, many times the occurrence of toric structures
can be hidden, and it is only visible after a suitable change of coordinates, as it hap-
pens when dealing with complex balanced chemical reaction networks (also called
toric dynamical systems for this reason), in the maximum likelihood estimation of
certain Gaussian models, or in certain group-based models in phylogenetics.

Matroids were independently introduced in the 1930s by T. Nakasawa and
H. Whitney to abstract the property of linear dependence. They occur prominently
in the work of J. Huh (see for instance the gentle introduction [12]). Independent
subsets in a matroid abstract not only linearly independent subsets in a vector
space but also acyclic subsets of a graph and algebraically independent subsets of
a field extension. Matroids have many equivalent definitions and can be studied
via their associated matroid basis polytopes. They are related to the geometry of
special subvarieties of the Grassmanians and to tropical geometry. There is also
an important notion of oriented matroids that generalizes positivity properties in
real vector spaces, and that is associated to the existence of positive solutions of
real polynomial systems [15].

The transition from linear algebra to nonlinear algebra has a counterpart in the
transition from linear programming to semidefinite programming. Linear program-
ming deals with the optimization of linear functions subject to linear constraints.
Thus, the feasible region is a polyhedron and the optimal solutions are on a face.
A symmetric matrix is called positive definite if all its eigenvalues are nonnegative.
A spectrahedron is a closed convex set defined by the intersection of the cone of
positive semidefinite matrices with a linear space. Semidefinite programming is
the computational problem of minimizing a linear function over a spectrahedron.
Given a polynomial f ∈ R[x] of even degree, computing the global minimum of f
on Rn, or equivalently, maximizing c such that f − c is nonnegative on Rn, is very
hard in general. Instead, maximizing c such that f − c is a sum of squares gives
a lower bound for the maximum, and it is a much easier question of semidefinite
programming. We refer to [1] for the basic ingredients of this area.

4. Group actions on tensors and everywhere

According to the Erlangen Program by F. Klein, a quantity is geometric if it
is invariant under the action of an underlying group of transformations. With the
words of Micha�lek and Sturmfels, “in short, geometry is invariant theory” (see [19]).
Moreover, group actions have become more and more important in all mathemat-
ics. One of the main themes of the book is to explore the utility of group actions
in nonlinear algebra. Assume a group G acts over an affine variety X with coor-
dinate ring K[X]. In geometric invariant theory, the quotient space X//G has the
coordinate ring given, by definition, by the subring K[X]G of polynomial invariant
by this action. For a finite group of matrices, the Hilbert series of K[X]G can be
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computed by the Molien formula. We do not reproduce it here; instead, we quote
again from the book under review:

It says we can count invariants by averaging the reciprocals of the
characteristic polynomials of all matrices in the group.

The paradise of group actions are homogeneous varieties, where the group acts
transitively, in other words the variety consist of a single orbit. On a homogeneous
variety the neighborhood of a point looks like the neighborhood of any other point.
In particular homogeneous varieties are smooth. The archetype of homogeneous
varieties is the Grassmannian G(k, n), another nonlinear object parametrizing all
linear subspaces of a fixed dimension k in an n-dimensional vector space. Grassman-
nians are ubiquitous in algebraic geometry since by functoriality many constructions
on G(k, n) can be transferred to any algebraic scheme. Any subspace of dimension
k in Cn is generated by the rows of a k×n matrix. The vector of maximal minors of
this matrix does not depend (up to multiplicative constant) on the generators but
only on the subspace. It defines an embedding of G(k, n) into the projective space

P(
n
k)−1 by the vector containing all its maximal minors, which is called the Plücker

embedding. It is a nontrivial fact that the equations defining the Grassmannian in
this projective space are quadrics, called Plücker quadrics. Up to GL(k)-action on
the left, the open part of G(k, n) given by matrices such that the left submatrix
corresponding to the first k columns is invertible, can be represented by

M =
[
I|A

]
.

Any maximal minor of M corresponds (up to sign) to a minor, of some size, of A.
Any Laplace expansion of det(A) gives a quadratic relation between the minors of
A, which, homogenized, gives rise to a Plücker quadric. Enumerative questions on
linear spaces are at the basis of the Schubert calculus, which can be understood
in modern terms by tensor products of GL-representations, described by Young
diagrams and by Pieri’s rule.

It is time now to speak about tensors and their geometry. The notion of tensor
is in principle a generalization of the notion of a matrix, indeed in the influential
and popular book [10], tensors are represented as multidimensional matrices, say
of format n1 × n2 × · · · × nd where the case d = 2 corresponds to classical matrices
of format n1 × n2. The 3 × 3 × 3 case corresponds to Rubik’s cube, but the first
new case is the format 2×2×2 which deserves a special attention. The hyperdeter-
minant of such tensor was explicitly computed by Cayley (see [10]), it is a degree
4 polynomial in the eight entries xijk (0 ≤ i, j, k ≤ 1) of the tensor, that vanishes
at the coefficients of a cubic surface in K3 (K any algebraically closed field) with

equation
∑

0≤i,j,k≤1 xijkz
i
1z

j
2z

k
3 when it is singular. It is the equation of the dual

variety of the Segre variety P1 × P1 × P1.
Basic attributes of matrices, such as eigenvectors and rank, can also be defined

for tensors. Why are tensors more difficult than matrices? The main reason relies on
the group action which performs linear change of coordinates. We explain this fact
in the hypercubic format. The space of square matrices Cn × Cn has dimension
n2 and it is endowed with the action of the group GL(n) × GL(n) which has
the larger dimension 2n2. This action has only finitely many orbits, classified
by the rank of the matrix. This means, as is well known, that every matrix is
equivalent to a canonical diagonal form with only 1, 0 appearing on the diagonal.

The space of tensors (Cn)⊗d has dimension nd, and it is endowed with the action
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of the group GL(n)d which has dimension dn2. This smaller dimension does not
allow, except for a few cases, to have finitely many orbits, and even to have a
dense orbit. Hence tensors must have much finer invariants than the rank. In
recent years there has been a lot of advances regarding tensors and their rank.
These advances include applications in phylogenetics, algebraic statistics, signal
processing, quantum information, convex algebraic geometry, and combinatorial
algebraic geometry. A readable introduction to tensors focusing on signal processing
and other applications can be found in the article by P. Comon [4]; a standard
textbook is [13] by J. Landsberg; B. Sturmfels wrote a nice survey [22]; for spectral
theory the standard reference has become the book by L. Qi and Z. Luo [18].

We come now to the notion of tensor rank. Every symmetric tensor in SymdCn

can be identified with a homogeneous polynomial of degree d in n variables. The
symmetric tensors which are powers of a linear form have (symmetric) rank 1 and

correspond to the Veronese variety. A symmetric tensor T ∈ SymdCn has symmetric
rank r if T is the sum of r symmetric tensors of rank 1 and r is minimal. The
interesting phenomenon is that symmetric tensors of symmetric rank ≤ r, for r ≥ 2
make a nonclosed variety. The first example is given by tensors in Sym3C2, where
tensors of rank ≤ 2 are the complement of the orbit GL(2) ·x2y. This orbit consists
of tensors of rank 3, thanks to the decomposition

6x2y = (x+ y)3 − (x− y)3 − 2y3.

The three cubes on the right-hand side show show that the rank is 3, indeed x2y can-
not be expressed by only two cubes. This phenomenon marks a difference between
matrices (where the locus of matrices of rank ≤ r is closed, given by the vanishing
of (r+ 1)-minors) and general tensors. Note however that x2y has symmetric rank
3 but it can be approximated by tensors of rank 2 by the limit

x2y = lim
ε→0

1

3ε

[
(x+ εy)3 − x3

]
.

We say in this case that x2y has symmetric border rank 2. The symmetric border
rank is less or equal than the symmetric rank; the previous example shows it can be
strictly less. This example with the limit also shows that x2y lies on a tangent line
to the Veronese variety v3(P

1) of rank 1 tensors at the point x3. These notions can
be generalized to the nonsymmetric case. The decomposable tensors v1⊗· · ·⊗ vd ∈
V1 ⊗ · · · ⊗ Vd are not symmetric for general vi, have rank 1, and correspond to
the Segre variety. Similar examples with tangent lines to the Segre variety can be
constructed, again the border rank of a tensor can be strictly smaller than its rank.

The flattenings of a tensor T ∈ V1 ⊗ V2 ⊗ V3 are defined as the linear maps
T̂ : V ∨

i → Vj ⊗ Vk with {i, j, k} = {1, 2, 3}. This means that the three-dimensional

matrix T has been flattened to the two-dimensional matrix T̂ , consisting of the
two-dimensional slices of T arranged side by side; see Figure 2. Moreover, this

Figure 2. The 2× 2 slices of a 2× 2× 2 tensor can be arranged
to give the 4× 2 flattenings .
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map behaves well under group action. It is elementary to check that the rank, and
even the border rank of T , is bounded by the matrix rank of T̂ . Young flattenings
generalize this classical flattening. This allows us to get finer estimates for the rank
and border rank of tensors. Let Mn be the space of n × n matrices. One striking
application of Young flattenings concerns the rank of the matrix multiplication
tensor corresponding to the map Mn ⊗Mn → Mn which sends the decomposable
tensor A ⊗ B ∈ Mn ⊗ Mn to the matrix product AB. This rank governs the
complexity of matrix multiplication algorithm for large size matrices, one of the
open challenges in complexity theory. The reader is invited to read [13] for more
advanced applications.

The spectral theory of matrices finds a nice interpretation in the realm of dynam-
ical systems. We briefly recall the dynamical interpretation of the singular pairs of
a matrix. Any m× n matrix B can be identified with the bilinear form B(x, y) =
yTBx where x ∈ Kn, y ∈ Km. The gradient map ∇B = (Bx, By) = (yTB,Bx)
can be seen as a self-map on the product of projective spaces

∇B : Pn−1 × Pm−1 ��� Pn−1 × Pm−1.

The gradient map is rational (so not regular) in the sense that it is not defined
at pairs (x, y) such that ytB = 0 or Bx = 0. Such points are called base points.
More interestingly, the fixed points of the gradient map ∇B satisfy the equations
Bx = λy, BT y = λx. In other words, the singular pairs of B corresponding to
λ 
= 0 are exactly the fixed points of ∇B. This nice dynamical interpretation
can be generalized for any tensor. In the simpler case of a symmetric tensor T ∈
SymdCn, the gradient map gives a nonlinear self-map ∇T : Pn−1 ��� Pn−1. Now
the eigenvectors of T are fixed points (λ 
= 0) and base points (λ = 0) of ∇T .
For general tensors the same construction defines singular tuples. The numbers of
singular tuples of a general tensor have been computed in [9].

5. The structure of the book

The book by Micha�lek and Sturmfels started as notes for a general lecture series
(called Ringvorlesung in German) on nonlinear algebra, which is also the name of
the research group that started at MPI Leipzig in early 2017. The 13 chapters
are chosen to cover 13 weeks of an introductory course, although this seems quite
ambitious. Indeed the authors warn us in the short but incisive preface:

Our presentation is structured into 13 chapters, one for each week
in a semester. Many of the chapters are rather ambitious in that
they promise a first introduction to an area of mathematics that
would normally be covered in a full-year course. But what we offer
is really just an invitation.

We definitely agree with this.
The book fulfills its role as an invitation to the realm of nonlinear algebra,

not only for students but also for working mathematicians in other areas, although
more advanced arguments naturally require further reading. By browsing this book
one can taste the flavour of a growing and developing topic. The strategic choice
of the 13 chapters is important in itself. The text is interactive and invites the
readers to google some key words to get further information and to experience for
themselves several paradigmatic examples with a computer algebra system. Also,
several interesting applications are sketched or exemplified.
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We refer to the book for definitions, proofs, and references of the mathematical
objects we mention in this review. The reader might also take a look at the pre-
vious books by Sturmfels [20, 21]. We have not included references to the recent
papers in the area because there are simply too many, but the reader could find
in the article [3] over two hundred references on applications of nonlinear algebra
to polynomial optimization, partial differential equations, algebraic statistics, inte-
grable systems, configuration spaces of frameworks, biochemical reaction networks,
algebraic vision, and tensor decompositions. Further references can be found in the
book [5].2

References

[1] G. Blekherman, P. A. Parrilo, and R. R. Thomas (eds.), Semidefinite optimization and con-
vex algebraic geometry, MOS-SIAM Series on Optimization, vol. 13, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society,
Philadelphia, PA, 2013. MR3075433

[2] G. Blekherman, G. G. Smith, and M. Velasco, Sums of squares and varieties of minimal
degree, J. Amer. Math. Soc. 29 (2016), no. 3, 893–913, DOI 10.1090/jams/847. MR3486176
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