Minkowski problems for geometric measures
HTML articles powered by AMS MathViewer
- by Yong Huang, Deane Yang and Gaoyong Zhang;
- Bull. Amer. Math. Soc. 62 (2025), 359-425
- DOI: https://doi.org/10.1090/bull/1858
- Published electronically: April 29, 2025
- HTML | PDF
Abstract:
This paper describes the theory of Minkowski problems for geometric measures in convex geometric analysis. The theory goes back to Minkowski and Aleksandrov and has been developed extensively in recent years. The paper surveys classical and new Minkowski problems studied in convex geometry, PDEs, and harmonic analysis, and structured in a conceptual framework of the Brunn–Minkowski theory, its extensions, and related subjects.References
- Murat Akman, Jasun Gong, Jay Hineman, John Lewis, and Andrew Vogel, The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity, Mem. Amer. Math. Soc. 275 (2022), no. 1348, vi+115. MR 4352469, DOI 10.1090/memo/1348
- Murat Akman, John Lewis, Olli Saari, and Andrew Vogel, The Brunn-Minkowski inequality and a Minkowski problem for $\mathcal A$-harmonic Green’s function, Adv. Calc. Var. 14 (2021), no. 2, 247–302. MR 4236203, DOI 10.1515/acv-2018-0064
- Murat Akman, John Lewis, and Andrew Vogel, Note on an eigenvalue problem with applications to a Minkowski type regularity problem in $\Bbb R^n$, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 47, 36. MR 4062045, DOI 10.1007/s00526-020-1697-7
- W. Ai, Y. Yang, D. Ye, The $L_p$ dual Minkowski problem for unbounded closed convex sets, arXiv2404.09804v1.
- A. D. Aleksandrov, On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sbornik N. S. 3 (1938), 27–46.
- A. D. Aleksandrov, On the surface area measure of convex bodies, Mat. Sbornik N. S. 6 (1939), 167–174.
- A. Alexandroff, Existence and uniqueness of a convex surface with a given integral curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 131–134. MR 7625
- A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. I, Vestnik Leningrad. Univ. 11 (1956), no. 19, 5–17 (Russian). MR 86338
- Ben Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161. MR 1714339, DOI 10.1007/s002220050344
- Ben Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), no. 1, 1–34. MR 1781612, DOI 10.2140/pjm.2000.195.1
- Ben Andrews and Xuzhong Chen, Surfaces moving by powers of Gauss curvature, Pure Appl. Math. Q. 8 (2012), no. 4, 825–834. MR 2959911, DOI 10.4310/PAMQ.2012.v8.n4.a1
- Ben Andrews, Pengfei Guan, and Lei Ni, Flow by powers of the Gauss curvature, Adv. Math. 299 (2016), 174–201. MR 3519467, DOI 10.1016/j.aim.2016.05.008
- Keith Ball, The reverse isoperimetric problem for Gaussian measure, Discrete Comput. Geom. 10 (1993), no. 4, 411–420. MR 1243336, DOI 10.1007/BF02573986
- Keith Ball, Convex geometry and its connections to harmonic analysis, functional analysis and probability theory, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, EMS Press, Berlin, [2023] ©2023, pp. 3104–3139. MR 4680354
- Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French). MR 254789
- Jérôme Bertrand, Prescription of Gauss curvature using optimal mass transport, Geom. Dedicata 183 (2016), 81–99. MR 3523119, DOI 10.1007/s10711-016-0147-3
- Gabriele Bianchi, Károly J. Böröczky, and Andrea Colesanti, The Orlicz version of the $L_p$ Minkowski problem for $-n<p<0$, Adv. in Appl. Math. 111 (2019), 101937, 29. MR 3998833, DOI 10.1016/j.aam.2019.101937
- Gabriele Bianchi, Károly J. Böröczky, Andrea Colesanti, and Deane Yang, The $L_p$-Minkowski problem for $-n<p<1$, Adv. Math. 341 (2019), 493–535. MR 3872853, DOI 10.1016/j.aim.2018.10.032
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- Károly J. Böröczky and Ferenc Fodor, The $L_p$ dual Minkowski problem for $p>1$ and $q>0$, J. Differential Equations 266 (2019), no. 12, 7980–8033. MR 3944247, DOI 10.1016/j.jde.2018.12.020
- Károly J. Böröczky, Pál Hegedűs, and Guangxian Zhu, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. IMRN 6 (2016), 1807–1838. MR 3509941, DOI 10.1093/imrn/rnv189
- Károly J. Böröczky and Martin Henk, Cone-volume measure of general centered convex bodies, Adv. Math. 286 (2016), 703–721. MR 3415694, DOI 10.1016/j.aim.2015.09.021
- Károly J. Böröczky, Martin Henk, and Hannes Pollehn, Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differential Geom. 109 (2018), no. 3, 411–429. MR 3825606, DOI 10.4310/jdg/1531188189
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), no. 3-4, 1974–1997. MR 2964630, DOI 10.1016/j.aim.2012.07.015
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), no. 3, 831–852. MR 3037788, DOI 10.1090/S0894-0347-2012-00741-3
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, Gaoyong Zhang, and Yiming Zhao, The dual Minkowski problem for symmetric convex bodies, Adv. Math. 356 (2019), 106805, 30. MR 4008522, DOI 10.1016/j.aim.2019.106805
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, Gaoyong Zhang, and Yiming Zhao, The Gauss image problem, Comm. Pure Appl. Math. 73 (2020), no. 7, 1406–1452. MR 4156606, DOI 10.1002/cpa.21898
- Károly J. Böröczky and Hai T. Trinh, The planar $L_p$-Minkowski problem for $0<p<1$, Adv. in Appl. Math. 87 (2017), 58–81. MR 3629263, DOI 10.1016/j.aam.2016.12.007
- José Luis Menaldi, Edmundo Rofman, and Agnès Sulem (eds.), Optimal control and partial differential equations, IOS Press, Amsterdam, 2001. In honour of Professor Alain Bensoussan’s 60th birthday; Including papers from the conference held in Paris, December 4, 2000. MR 3444826
- Simon Brendle, Kyeongsu Choi, and Panagiota Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017), no. 1, 1–16. MR 3765656, DOI 10.4310/ACTA.2017.v219.n1.a1
- Paul Bryan, Mohammad N. Ivaki, and Julian Scheuer, A unified flow approach to smooth, even $L_p$-Minkowski problems, Anal. PDE 12 (2019), no. 2, 259–280. MR 3861892, DOI 10.2140/apde.2019.12.259
- Paul Bryan, Mohammad N. Ivaki, and Julian Scheuer, Christoffel-Minkowski flows, Trans. Amer. Math. Soc. 376 (2023), no. 4, 2373–2393. MR 4557868, DOI 10.1090/tran/8683
- Luis A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, DOI 10.2307/1971510
- Luis A. Caffarelli, David Jerison, and Elliott H. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996), no. 2, 193–207. MR 1371649, DOI 10.1006/aima.1996.0008
- X. Cai, G. Leng, Y. Wu, D. Xi, Affine dual Minkowski problems, Preprint.
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Chuanqiang Chen, Yong Huang, and Yiming Zhao, Smooth solutions to the $L_p$ dual Minkowski problem, Math. Ann. 373 (2019), no. 3-4, 953–976. MR 3953117, DOI 10.1007/s00208-018-1727-3
- Haodi Chen and Qi-Rui Li, The $L_ p$ dual Minkowski problem and related parabolic flows, J. Funct. Anal. 281 (2021), no. 8, Paper No. 109139, 65. MR 4271790, DOI 10.1016/j.jfa.2021.109139
- Li Chen, Uniqueness of solutions to $L_p$-Christoffel-Minkowski problem for $p<1$, J. Funct. Anal. 279 (2020), no. 8, 108692, 15. MR 4116152, DOI 10.1016/j.jfa.2020.108692
- Shibing Chen, Shengnan Hu, Weiru Liu, and Yiming Zhao, On the planar Gaussian-Minkowski problem. part A, Adv. Math. 435 (2023), no. part A, Paper No. 109351, 32. MR 4658824, DOI 10.1016/j.aim.2023.109351
- Shibing Chen, Yong Huang, Qi-Rui Li, and Jiakun Liu, The $L_ p$-Brunn-Minkowski inequality for $p<1$, Adv. Math. 368 (2020), 107166, 21. MR 4088419, DOI 10.1016/j.aim.2020.107166
- Shibing Chen and Qi-Rui Li, On the planar dual Minkowski problem, Adv. Math. 333 (2018), 87–117. MR 3818073, DOI 10.1016/j.aim.2018.05.010
- Shibing Chen, Qi-rui Li, and Guangxian Zhu, On the $L_p$ Monge-Ampère equation, J. Differential Equations 263 (2017), no. 8, 4997–5011. MR 3680945, DOI 10.1016/j.jde.2017.06.007
- Shibing Chen, Qi-rui Li, and Guangxian Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2623–2641. MR 3896091, DOI 10.1090/tran/7499
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. MR 3264766, DOI 10.1090/S0894-0347-2014-00799-2
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$, J. Amer. Math. Soc. 28 (2015), no. 1, 199–234. MR 3264767, DOI 10.1090/S0894-0347-2014-00800-6
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278. MR 3264768, DOI 10.1090/S0894-0347-2014-00801-8
- Wenxiong Chen, $L_p$ Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006), no. 1, 77–89. MR 2204749, DOI 10.1016/j.aim.2004.11.007
- Zhengmao Chen, The $L_{p}$ Minkowski problem for $q$-capacity, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 4, 1247–1277. MR 4284519, DOI 10.1017/prm.2020.57
- Zhengmao Chen and Qiuyi Dai, The $L_ p$ Minkowski problem for torsion, J. Math. Anal. Appl. 488 (2020), no. 1, 124060, 26. MR 4079596, DOI 10.1016/j.jmaa.2020.124060
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- Shiing-shen Chern, Differential geometry and integral geometry, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 441–449. MR 120601
- Shiing-shen Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, J. Math. Mech. 8 (1959), 947–955. MR 114170, DOI 10.1512/iumj.1959.8.58060
- Kyeongsu Choi, The Gauss Curvature Flow: Regularity and Asymptotic Behavior, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–Columbia University. MR 3664920
- Kai-Seng Chou and Xu-Jia Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré C Anal. Non Linéaire 17 (2000), no. 6, 733–751. MR 1804653, DOI 10.1016/S0294-1449(00)00053-6
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Kai-Seng Chou and Xi-Ping Zhu, The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1888641, DOI 10.1201/9781420035704
- Bennett Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), no. 1, 63–82. MR 862712, DOI 10.1007/BF01389153
- E. B. Christoffel, Ueber die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. Reine Angew. Math. 64 (1865), 193–209 (German). MR 1579295, DOI 10.1515/crll.1865.64.193
- Andrea Cianchi, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 419–436. MR 2551138, DOI 10.1007/s00526-009-0235-4
- Andrea Colesanti and Michele Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J. 59 (2010), no. 3, 1013–1039. MR 2779070, DOI 10.1512/iumj.2010.59.3937
- Andrea Colesanti and Galyna Livshyts, A note on the quantitative local version of the log-Brunn-Minkowski inequality, The mathematical legacy of Victor Lomonosov—operator theory, Adv. Anal. Geom., vol. 2, De Gruyter, Berlin, 2020, pp. 85–98. MR 4312031, DOI 10.1515/9783110656756-006
- Andrea Colesanti, Galyna V. Livshyts, and Arnaud Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal. 273 (2017), no. 3, 1120–1139. MR 3653949, DOI 10.1016/j.jfa.2017.04.008
- A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang, and G. Zhang, The Hadamard variational formula and the Minkowski problem for $p$-capacity, Adv. Math. 285 (2015), 1511–1588. MR 3406534, DOI 10.1016/j.aim.2015.06.022
- Andrea Colesanti and Paolo Salani, The Brunn-Minkowski inequality for $p$-capacity of convex bodies, Math. Ann. 327 (2003), no. 3, 459–479. MR 2021025, DOI 10.1007/s00208-003-0460-7
- D. Cordero-Erausquin and B. Klartag, Moment measures, J. Funct. Anal. 268 (2015), no. 12, 3834–3866. MR 3341966, DOI 10.1016/j.jfa.2015.04.001
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Jingbo Dou and Meijun Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents, Adv. Math. 230 (2012), no. 3, 1209–1221. MR 2921178, DOI 10.1016/j.aim.2012.02.027
- Antoine Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301 (French). MR 745081, DOI 10.7146/math.scand.a-12035
- Antoine Ehrhard, Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 149–168 (French, with English summary). MR 850753
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938), 1–31.
- Yibin Feng and Binwu He, The Orlicz Aleksandrov problem for Orlicz integral curvature, Int. Math. Res. Not. IMRN 7 (2021), 5492–5519. MR 4241134, DOI 10.1093/imrn/rnz384
- Jiaqian Liu, The $L_p$-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 28, 23. MR 4358235, DOI 10.1007/s00526-021-02141-z
- Yibin Feng, Weiru Liu, and Lei Xu, Existence of non-symmetric solutions to the Gaussian Minkowski problem, J. Geom. Anal. 33 (2023), no. 3, Paper No. 89, 39. MR 4531066, DOI 10.1007/s12220-022-01139-z
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- William J. Firey, Christoffel’s problem for general convex bodies, Mathematika 15 (1968), 7–21. MR 230259, DOI 10.1112/S0025579300002321
- William J. Firey, Convex bodies of constant outer $p$-measure, Mathematika 17 (1970), 21–27. MR 267465, DOI 10.1112/S0025579300002667
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- William J. Firey, Intermediate Christoffel-Minkowski problems for figures of revolution, Israel J. Math. 8 (1970), 384–390. MR 271838, DOI 10.1007/BF02798684
- Michael E. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993), no. 2, 441–466. MR 1248680, DOI 10.1215/S0012-7094-93-07216-X
- Michael E. Gage and Yi Li, Evolving plane curves by curvature in relative geometries. II, Duke Math. J. 75 (1994), no. 1, 79–98. MR 1284816, DOI 10.1215/S0012-7094-94-07503-0
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. MR 1298719, DOI 10.2307/2118606
- R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. MR 1689343, DOI 10.2307/120978
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Richard J. Gardner, Daniel Hug, and Wolfgang Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom. 97 (2014), no. 3, 427–476. MR 3263511
- Richard J. Gardner, Daniel Hug, Wolfgang Weil, Sudan Xing, and Deping Ye, General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 12, 35. MR 3882970, DOI 10.1007/s00526-018-1449-0
- Richard J. Gardner, Daniel Hug, Sudan Xing, and Deping Ye, General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 15, 33. MR 4040624, DOI 10.1007/s00526-019-1657-2
- R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), no. 3, 505–528. MR 1623396
- Herman Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math. (2) 96 (1972), 245–276. MR 309021, DOI 10.2307/1970788
- Herman Gluck, Manifolds with preassigned curvature—a survey, Bull. Amer. Math. Soc. 81 (1975), 313–329. MR 367861, DOI 10.1090/S0002-9904-1975-13740-2
- Paul Goodey and Wolfgang Weil, Centrally symmetric convex bodies and the spherical Radon transform, J. Differential Geom. 35 (1992), no. 3, 675–688. MR 1163454
- Paul Goodey, Vladyslav Yaskin, and Maryna Yaskina, A Fourier transform approach to Christoffel’s problem, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6351–6384. MR 2833558, DOI 10.1090/S0002-9947-2011-05267-0
- Eric Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), no. 1, 77–115. MR 1658156, DOI 10.1112/S0024611599001653
- Bo Guan and Pengfei Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655–673. MR 1933079, DOI 10.2307/3597202
- Pengfei Guan and Yanyan Li, $C^{1,1}$ estimates for solutions of a problem of Alexandrov, Comm. Pure Appl. Math. 50 (1997), no. 8, 789–811. MR 1454174, DOI 10.1002/(sici)1097-0312(199708)50:8<789::aid-cpa4>3.0.co;2-2
- Pengfei Guan, Changshou Lin, and Xi-Nan Ma, The existence of convex body with prescribed curvature measures, Int. Math. Res. Not. IMRN 11 (2009), 1947–1975. MR 2507106, DOI 10.1093/imrn/rnp007
- Pengfei Guan, Junfang Li, and Yanyan Li, Hypersurfaces of prescribed curvature measure, Duke Math. J. 161 (2012), no. 10, 1927–1942. MR 2954620, DOI 10.1215/00127094-1645550
- Pengfei Guan and Xi-Nan Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553–577. MR 1961338, DOI 10.1007/s00222-002-0259-2
- Pengfei Guan and Lei Ni, Entropy and a convergence theorem for Gauss curvature flow in high dimension, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 12, 3735–3761. MR 3730513, DOI 10.4171/JEMS/752
- Pengfei Guan and Chao Xia, $L^p$ Christoffel-Minkowski problem: the case $1<p<k+1$, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 69, 23. MR 3776359, DOI 10.1007/s00526-018-1341-y
- Qiang Guang, Qi-Rui Li, and Xu-Jia Wang, Flow by Gauss curvature to the $L_p$ dual Minkowski problem, Math. Eng. 5 (2023), no. 3, Paper No. 049, 19. MR 4468377, DOI 10.3934/mine.2023049
- Q. Guang, Q.-R. Li, X.-J. Wang, The $L_p$-Minkowski problem with super-critical exponents, arXiv:2203.05099.
- Lujun Guo, Dongmeng Xi, and Yiming Zhao, The $L_p$ chord Minkowski problem in a critical interval, Math. Ann. 389 (2024), no. 3, 3123–3162. MR 4753082, DOI 10.1007/s00208-023-02721-8
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- Christoph Haberl and Franz E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600, DOI 10.1016/j.jfa.2009.04.009
- Christoph Haberl, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213, DOI 10.1016/j.aim.2010.02.006
- Christoph Haberl, Franz E. Schuster, and Jie Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), no. 3, 517–542. MR 2885586, DOI 10.1007/s00208-011-0640-9
- Binwu He, Gangsong Leng, and Kanghai Li, Projection problems for symmetric polytopes, Adv. Math. 207 (2006), no. 1, 73–90. MR 2264066, DOI 10.1016/j.aim.2005.11.006
- Yan He, Qi-Rui Li, and Xu-Jia Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 117, 13. MR 3551297, DOI 10.1007/s00526-016-1063-y
- Martin Henk, Achill Schürmann, and Jörg M. Wills, Ehrhart polynomials and successive minima, Mathematika 52 (2005), no. 1-2, 1–16 (2006). MR 2261838, DOI 10.1112/S0025579300000292
- Martin Henk and Eva Linke, Cone-volume measures of polytopes, Adv. Math. 253 (2014), 50–62. MR 3148545, DOI 10.1016/j.aim.2013.11.015
- Milena Hering, Benjamin Nill, and Hendrik Süß, Stability of tangent bundles on smooth toric Picard-rank-2 varieties and surfaces, Facets of algebraic geometry. Vol. II, London Math. Soc. Lecture Note Ser., vol. 473, Cambridge Univ. Press, Cambridge, 2022, pp. 1–25. MR 4381909
- Han Hong, Deping Ye, and Ning Zhang, The $p$-capacitary Orlicz-Hadamard variational formula and Orlicz-Minkowski problems, Calc. Var. Partial Differential Equations 57 (2018), no. 1, Paper No. 5, 31. MR 3735745, DOI 10.1007/s00526-017-1278-6
- Changqing Hu, Xi-Nan Ma, and Chunli Shen, On the Christoffel-Minkowski problem of Firey’s $p$-sum, Calc. Var. Partial Differential Equations 21 (2004), no. 2, 137–155. MR 2085300, DOI 10.1007/s00526-003-0250-9
- J. Hu, Y. Huang, J. Lu, Boundary regularity of Riesz potential, smooth solution to the chord log-Minkowski problem, (2024).
- Qingzhong Huang and Binwu He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012), no. 2, 281–297. MR 2946448, DOI 10.1007/s00454-012-9434-4
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math. 216 (2016), no. 2, 325–388. MR 3573332, DOI 10.1007/s11511-016-0140-6
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The $L_p$-Aleksandrov problem for $L_p$-integral curvature, J. Differential Geom. 110 (2018), no. 1, 1–29. MR 3851743, DOI 10.4310/jdg/1536285625
- Yong Huang and Yongsheng Jiang, Variational characterization for the planar dual Minkowski problem, J. Funct. Anal. 277 (2019), no. 7, 2209–2236. MR 3989144, DOI 10.1016/j.jfa.2019.02.010
- Yong Huang, Jiakun Liu, and Lu Xu, On the uniqueness of $L_p$-Minkowski problems: the constant $p$-curvature case in $\Bbb {R}^3$, Adv. Math. 281 (2015), 906–927. MR 3366857, DOI 10.1016/j.aim.2015.02.021
- Yong Huang and Lei Qin, The Gaussian chord Minkowski problem, Discrete Contin. Dyn. Syst. Ser. S 17 (2024), no. 2, 930–944. MR 4714535, DOI 10.3934/dcdss.2023118
- Yong Huang, Dongmeng Xi, and Yiming Zhao, The Minkowski problem in Gaussian probability space, Adv. Math. 385 (2021), Paper No. 107769, 36. MR 4252759, DOI 10.1016/j.aim.2021.107769
- Yong Huang and Yiming Zhao, On the $L_p$ dual Minkowski problem, Adv. Math. 332 (2018), 57–84. MR 3810248, DOI 10.1016/j.aim.2018.05.002
- Daniel Hug, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$ Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), no. 4, 699–715. MR 2132298, DOI 10.1007/s00454-004-1149-8
- David Jerison, A Minkowski problem for electrostatic capacity, Acta Math. 176 (1996), no. 1, 1–47. MR 1395668, DOI 10.1007/BF02547334
- David Jerison, The direct method in the calculus of variations for convex bodies, Adv. Math. 122 (1996), no. 2, 262–279. MR 1409423, DOI 10.1006/aima.1996.0062
- Huaiyu Jian and Jian Lu, Existence of solutions to the Orlicz-Minkowski problem, Adv. Math. 344 (2019), 262–288. MR 3897433, DOI 10.1016/j.aim.2019.01.004
- Huaiyu Jian, Jian Lu, and Xu-Jia Wang, Nonuniqueness of solutions to the $L_p$-Minkowski problem, Adv. Math. 281 (2015), 845–856. MR 3366854, DOI 10.1016/j.aim.2015.05.010
- Huaiyu Jian, Jian Lu, and Guangxian Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016), no. 2, Art. 41, 22. MR 3479715, DOI 10.1007/s00526-016-0976-9
- Daniel A. Klain, The Minkowski problem for polytopes, Adv. Math. 185 (2004), no. 2, 270–288. MR 2060470, DOI 10.1016/j.aim.2003.07.001
- Alexander Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math. 120 (1998), no. 4, 827–840. MR 1637955
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- Alexander V. Kolesnikov and Emanuel Milman, Local $L^p$-Brunn-Minkowski inequalities for $p<1$, Mem. Amer. Math. Soc. 277 (2022), no. 1360, v+78. MR 4438690, DOI 10.1090/memo/1360
- Liudmyla Kryvonos and Dylan Langharst, Weighted Minkowski’s existence theorem and projection bodies, Trans. Amer. Math. Soc. 376 (2023), no. 12, 8447–8493. MR 4669302, DOI 10.1090/tran/8992
- R. Latała, On some inequalities for Gaussian measures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 813–822. MR 1957087
- John L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977), no. 3, 201–224. MR 477094, DOI 10.1007/BF00250671
- John L. Lewis and Kaj Nyström, Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 765–813 (English, with English and French summaries). MR 2382861, DOI 10.1016/j.ansens.2007.09.001
- Hans Lewy, On differential geometry in the large. I. Minkowski’s problem, Trans. Amer. Math. Soc. 43 (1938), no. 2, 258–270. MR 1501942, DOI 10.1090/S0002-9947-1938-1501942-3
- Ai-Jun Li, The generalization of Minkowski problems for polytopes, Geom. Dedicata 168 (2014), 245–264. MR 3158042, DOI 10.1007/s10711-013-9829-2
- Ni Li, Deping Ye, and Baocheng Zhu, The dual Minkowski problem for unbounded closed convex sets, Math. Ann. 388 (2024), no. 2, 2001–2039. MR 4700389, DOI 10.1007/s00208-023-02570-5
- Qi-Rui Li, Infinitely many solutions for centro-affine Minkowski problem, Int. Math. Res. Not. IMRN 18 (2019), 5577–5596. MR 4012120, DOI 10.1093/imrn/rnx284
- Qi-Rui Li, Jiakun Liu, and Jian Lu, Nonuniqueness of solutions to the $L_p$ dual Minkowski problem, Int. Math. Res. Not. IMRN 12 (2022), 9114–9150. MR 4436203, DOI 10.1093/imrn/rnab013
- Qi-Rui Li, Weimin Sheng, and Xu-Jia Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3, 893–923. MR 4055992, DOI 10.4171/jems/936
- Qi-Rui Li, Weimin Sheng, and Xu-Jia Wang, Asymptotic convergence for a class of fully nonlinear curvature flows, J. Geom. Anal. 30 (2020), no. 1, 834–860. MR 4058539, DOI 10.1007/s12220-019-00169-4
- Qi-Rui Li, Dongrui Wan, and Xu-Jia Wang, The Christoffel problem by the fundamental solution of the Laplace equation, Sci. China Math. 64 (2021), no. 7, 1599–1612. MR 4280371, DOI 10.1007/s11425-019-1674-1
- Q.-R. Li, X.-J. Wang, A class of optimal transportation problems on the sphere, (Chinese), Scientia Sinica Mathematica, 48 (2018), 181–200.
- Yuanyuan Li, Nonuniqueness of solutions to the $L_p$ chord Minkowski problem, Calc. Var. Partial Differential Equations 63 (2024), no. 4, Paper No. 83, 22. MR 4728217, DOI 10.1007/s00526-024-02697-6
- Yan Yan Li, Degree theory for second order nonlinear elliptic operators and its applications, Comm. Partial Differential Equations 14 (1989), no. 11, 1541–1578. MR 1026774, DOI 10.1080/03605308908820666
- Jiaqian Liu, The $L_p$-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 28, 23. MR 4358235, DOI 10.1007/s00526-021-02141-z
- YanNan Liu and Jian Lu, A flow method for the dual Orlicz-Minkowski problem, Trans. Amer. Math. Soc. 373 (2020), no. 8, 5833–5853. MR 4127893, DOI 10.1090/tran/8130
- Yude Liu, Xinbao Lu, Qiang Sun, and Ge Xiong, The logarithmic Minkowski problem in $\Bbb R^2$, Pure Appl. Math. Q. 20 (2024), no. 2, 869–902. MR 4734884, DOI 10.4310/pamq.2024.v20.n2.a5
- Galyna V. Livshyts, An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math. 356 (2019), 106803, 40. MR 4008520, DOI 10.1016/j.aim.2019.106803
- Monika Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), no. 1, 159–188. MR 1991649, DOI 10.1215/S0012-7094-03-11915-8
- Monika Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6, 1409–1428. MR 2275906
- Monika Ludwig, Valuations on Sobolev spaces, Amer. J. Math. 134 (2012), no. 3, 827–842. MR 2931225, DOI 10.1353/ajm.2012.0019
- Monika Ludwig, General affine surface areas, Adv. Math. 224 (2010), no. 6, 2346–2360. MR 2652209, DOI 10.1016/j.aim.2010.02.004
- Monika Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133–161. MR 2772547
- Monika Ludwig, Anisotropic fractional perimeters, J. Differential Geom. 96 (2014), no. 1, 77–93. MR 3161386
- Monika Ludwig and Matthias Reitzner, A classification of $\textrm {SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI 10.4007/annals.2010.172.1223
- Monika Ludwig, Jie Xiao, and Gaoyong Zhang, Sharp convex Lorentz-Sobolev inequalities, Math. Ann. 350 (2011), no. 1, 169–197. MR 2785767, DOI 10.1007/s00208-010-0555-x
- Erwin Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. MR 380631
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979, DOI 10.1016/B978-0-444-89596-7.50010-9
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
- Erwin Lutwak, Dongmeng Xi, Deane Yang, and Gaoyong Zhang, Chord measures in integral geometry and their Minkowski problems, Comm. Pure Appl. Math. 77 (2024), no. 7, 3277–3330. MR 4764744, DOI 10.1002/cpa.22190
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123, DOI 10.1090/S0002-9947-03-03403-2
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Optimal Sobolev norms and the $L^p$ Minkowski problem, Int. Math. Res. Not. , posted on (2006), Art. ID 62987, 21. MR 2211138, DOI 10.1155/IMRN/2006/62987
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365–387. MR 2652465
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216, DOI 10.1016/j.aim.2009.08.002
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ dual curvature measures, Adv. Math. 329 (2018), 85–132. MR 3783409, DOI 10.1016/j.aim.2018.02.011
- Xiaokang Luo, Deping Ye, and Baocheng Zhu, On the polar Orlicz-Minkowski problems and the $p$-capacitary Orlicz-Petty bodies, Indiana Univ. Math. J. 69 (2020), no. 2, 385–420. MR 4084176, DOI 10.1512/iumj.2020.69.7777
- Lei Ma, A new proof of the log-Brunn-Minkowski inequality, Geom. Dedicata 177 (2015), 75–82. MR 3370024, DOI 10.1007/s10711-014-9979-x
- Mathieu Meyer and Elisabeth Werner, On the $p$-affine surface area, Adv. Math. 152 (2000), no. 2, 288–313. MR 1764106, DOI 10.1006/aima.1999.1902
- Emanuel Milman, A sharp centro-affine isospectral inequality of Szegö-Weinberger type and the $L^p$-Minkowski problem, J. Differential Geom. 127 (2024), no. 1, 373–408. MR 4753504, DOI 10.4310/jdg/1717356160
- H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, 198–219. Gesammelte Abhandlungen, Vol. II, Teubner, Leipzig, 1911, pp. 103–121.
- Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447–495 (German). MR 1511220, DOI 10.1007/BF01445180
- Stephanie Mui, On the $L^p$ Aleksandrov problem for negative $p$. part A, Adv. Math. 408 (2022), no. part A, Paper No. 108573, 26. MR 4455361, DOI 10.1016/j.aim.2022.108573
- Fedor Nazarov, On the maximal perimeter of a convex set in ${\Bbb R}^n$ with respect to a Gaussian measure, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 169–187. MR 2083397, DOI 10.1007/978-3-540-36428-3_{1}5
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. MR 1311248
- Vladimir Oliker, Embedding $\mathbf S^n$ into $\mathbf R^{n+1}$ with given integral Gauss curvature and optimal mass transport on $\mathbf S^n$, Adv. Math. 213 (2007), no. 2, 600–620. MR 2332603, DOI 10.1016/j.aim.2007.01.005
- V. Oliker, Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature, Sem. Inst. Matem. Appl. Giovanni Sansone (1983), 1–64.
- A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnosteĭ, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 244909
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 478079
- Lei Qin, Nonlocal energies of convex bodies and their log-Minkowski problems, Adv. Math. 427 (2023), Paper No. 109132, 19. MR 4597954, DOI 10.1016/j.aim.2023.109132
- Lei Qin, The chord log-Minkowski problem for $0<q<1$, Proc. Amer. Math. Soc. 152 (2024), no. 6, 2647–2655. MR 4741256, DOI 10.1090/proc/16747
- D. Ren, Topics in Integral Geometry, World Scientific, Singapore, 1994.
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 433364
- Christos Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata 177 (2015), 353–365. MR 3370038, DOI 10.1007/s10711-014-9993-z
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Rolf Schneider, Das Christoffel-Problem für Polytope, Geometriae Dedicata 6 (1977), no. 1, 81–85 (German). MR 470865, DOI 10.1007/BF00181582
- Rolf Schneider, Curvature measures of convex bodies, Ann. Mat. Pura Appl. (4) 116 (1978), 101–134. MR 506976, DOI 10.1007/BF02413869
- Rolf Schneider, A Brunn-Minkowski theory for coconvex sets of finite volume, Adv. Math. 332 (2018), 199–234. MR 3810252, DOI 10.1016/j.aim.2018.05.018
- Rolf Schneider, Pseudo-cones, Adv. in Appl. Math. 155 (2024), Paper No. 102657, 22. MR 4685152, DOI 10.1016/j.aam.2023.102657
- Carsten Schütt and Elisabeth Werner, Surface bodies and $p$-affine surface area, Adv. Math. 187 (2004), no. 1, 98–145. MR 2074173, DOI 10.1016/j.aim.2003.07.018
- Vadim Semenov, The Gauss Image Problem, ProQuest LLC, Ann Arbor, MI, 2023. Thesis (Ph.D.)–New York University. MR 4639119
- Vadim Semenov, The Gauss image problem with weak Aleksandrov condition, J. Funct. Anal. 287 (2024), no. 11, Paper No. 110611, 35. MR 4790421, DOI 10.1016/j.jfa.2024.110611
- Weimin Sheng, Neil Trudinger, and Xu-Jia Wang, Convex hypersurfaces of prescribed Weingarten curvatures, Comm. Anal. Geom. 12 (2004), no. 1-2, 213–232. MR 2074877, DOI 10.4310/cag.2004.v12.n1.a11
- W. Sheng, K. Xue, Flow by Gauss curvature to the $L_p$-Gaussian Minkowski problem, arXiv:2212.01822
- Alina Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, DOI 10.1006/aima.2001.2040
- Alina Stancu, On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem, Adv. Math. 180 (2003), no. 1, 290–323. MR 2019226, DOI 10.1016/S0001-8708(03)00005-7
- Huaiyu Jian and Jian Lu, Existence of solutions to the Orlicz-Minkowski problem, Adv. Math. 344 (2019), 262–288. MR 3897433, DOI 10.1016/j.aim.2019.01.004
- Sun Yijing and Long Yiming, The planar Orlicz Minkowski problem in the $L^1$-sense, Adv. Math. 281 (2015), 1364–1383. MR 3366869, DOI 10.1016/j.aim.2015.03.032
- Sun Yijing and Zhang Duanzhi, The planar Orlicz Minkowski problem for $p=0$ without even assumptions, J. Geom. Anal. 29 (2019), no. 4, 3384–3404. MR 4015442, DOI 10.1007/s12220-018-00114-x
- Kaising Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867–882. MR 812353, DOI 10.1002/cpa.3160380615
- Elisabeth Werner, On $L_p$-affine surface areas, Indiana Univ. Math. J. 56 (2007), no. 5, 2305–2323. MR 2360611, DOI 10.1512/iumj.2007.56.3099
- Elisabeth Werner and Deping Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3, 762–780. MR 2414321, DOI 10.1016/j.aim.2008.02.002
- Elisabeth Werner and Deping Ye, Inequalities for mixed $p$-affine surface area, Math. Ann. 347 (2010), no. 3, 703–737. MR 2640049, DOI 10.1007/s00208-009-0453-2
- Yuchi Wu, Dongmeng Xi, and Gangsong Leng, On the discrete Orlicz Minkowski problem, Trans. Amer. Math. Soc. 371 (2019), no. 3, 1795–1814. MR 3894035, DOI 10.1090/tran/7350
- Yuchi Wu, Dongmeng Xi, and Gangsong Leng, On the discrete Orlicz Minkowski problem II, Geom. Dedicata 205 (2020), 177–190. MR 4076825, DOI 10.1007/s10711-019-00471-z
- Dongmeng Xi and Gangsong Leng, Dar’s conjecture and the log-Brunn-Minkowski inequality, J. Differential Geom. 103 (2016), no. 1, 145–189. MR 3488132
- Dongmeng Xi, Hailin Jin, and Gangsong Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math. 260 (2014), 350–374. MR 3209355, DOI 10.1016/j.aim.2014.02.036
- Dongmeng Xi, Deane Yang, Gaoyong Zhang, and Yiming Zhao, The $L_p$ chord Minkowski problem, Adv. Nonlinear Stud. 23 (2023), no. 1, Paper No. 20220041, 22. MR 4533537, DOI 10.1515/ans-2022-0041
- Jie Xiao, The sharp Sobolev and isoperimetric inequalities split twice, Adv. Math. 211 (2007), no. 2, 417–435. MR 2323533, DOI 10.1016/j.aim.2006.08.006
- Jie Xiao, On the variational $p$-capacity problem in the plane, Commun. Pure Appl. Anal. 14 (2015), no. 3, 959–968. MR 3320160, DOI 10.3934/cpaa.2015.14.959
- Jie Xiao, The $p$-affine capacity, J. Geom. Anal. 26 (2016), no. 2, 947–966. MR 3472824, DOI 10.1007/s12220-015-9579-5
- Jie Xiao, The $p$-affine capacity redux, J. Geom. Anal. 27 (2017), no. 4, 2872–2888. MR 3707996, DOI 10.1007/s12220-017-9785-4
- Jie Xiao, Exploiting log-capacity in convex geometry, Asian J. Math. 22 (2018), no. 5, 955–979. MR 3878146, DOI 10.4310/AJM.2018.v22.n5.a8
- Jie Xiao, Prescribing capacitary curvature measures on planar convex domains, J. Geom. Anal. 30 (2020), no. 2, 2225–2240. MR 4081346, DOI 10.1007/s12220-019-00180-9
- Fengfan Xie, The Orlicz Minkowski problem for general measures, Proc. Amer. Math. Soc. 150 (2022), no. 10, 4433–4445. MR 4470186, DOI 10.1090/proc/14722
- Fengfan Xie, The Orlicz Minkowski problem for cone-volume measure, Adv. in Appl. Math. 149 (2023), Paper No. 102523, 18. MR 4583682, DOI 10.1016/j.aam.2023.102523
- Sudan Xing and Deping Ye, On the general dual Orlicz-Minkowski problem, Indiana Univ. Math. J. 69 (2020), no. 2, 621–655. MR 4084182, DOI 10.1512/iumj.2020.69.7844
- Ge Xiong, Extremum problems for the cone volume functional of convex polytopes, Adv. Math. 225 (2010), no. 6, 3214–3228. MR 2729006, DOI 10.1016/j.aim.2010.05.016
- Ge Xiong, Jiawei Xiong, and Lu Xu, The $L_p$ capacitary Minkowski problem for polytopes, J. Funct. Anal. 277 (2019), no. 9, 3131–3155. MR 3997631, DOI 10.1016/j.jfa.2019.06.008
- Yun Xu, Jin Li, and Gangsong Leng, Dualities and endomorphisms of pseudo-cones, Adv. in Appl. Math. 142 (2023), Paper No. 102434, 31. MR 4484788, DOI 10.1016/j.aam.2022.102434
- Jin Yang, Deping Ye, and Baocheng Zhu, On the $L_p$ Brunn-Minkowski theory and the $L_p$ Minkowski problem for $C$-coconvex sets, Int. Math. Res. Not. IMRN 7 (2023), 6252–6290. MR 4565712, DOI 10.1093/imrn/rnab360
- Gao Yong Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777–801. MR 1254193, DOI 10.1090/S0002-9947-1994-1254193-9
- Gaoyong Zhang, Dual kinematic formulas, Trans. Amer. Math. Soc. 351 (1999), no. 3, 985–995. MR 1443203, DOI 10.1090/S0002-9947-99-02053-X
- Gaoyong Zhang, A positive solution to the Busemann-Petty problem in $\mathbf R^4$, Ann. of Math. (2) 149 (1999), no. 2, 535–543. MR 1689339, DOI 10.2307/120974
- Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183–202. MR 1776095
- Yiming Zhao, Existence of solutions to the even dual Minkowski problem, J. Differential Geom. 110 (2018), no. 3, 543–572. MR 3880233, DOI 10.4310/jdg/1542423629
- Yiming Zhao, The dual Minkowski problem for negative indices, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 18, 16. MR 3605843, DOI 10.1007/s00526-017-1124-x
- Yiming Zhao, The $L_p$ Aleksandrov problem for origin-symmetric polytopes, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4477–4492. MR 4002557, DOI 10.1090/proc/14568
- Baocheng Zhu, Sudan Xing, and Deping Ye, The dual Orlicz-Minkowski problem, J. Geom. Anal. 28 (2018), no. 4, 3829–3855. MR 3881992, DOI 10.1007/s12220-018-0002-x
- Baocheng Zhu, Jiazu Zhou, and Wenxue Xu, Dual Orlicz-Brunn-Minkowski theory, Adv. Math. 264 (2014), 700–725. MR 3250296, DOI 10.1016/j.aim.2014.07.019
- Guangxian Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014), 909–931. MR 3228445, DOI 10.1016/j.aim.2014.06.004
- Guangxian Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015), no. 1, 159–174. MR 3356071
- Guangxian Zhu, The $L_p$ Minkowski problem for polytopes for $p<0$, Indiana Univ. Math. J. 66 (2017), no. 4, 1333–1350. MR 3689334, DOI 10.1512/iumj.2017.66.6110
- Du Zou and Ge Xiong, The $L_p$ Minkowski problem for the electrostatic $\mathfrak {p}$-capacity, J. Differential Geom. 116 (2020), no. 3, 555–596. MR 4182897, DOI 10.4310/jdg/1606964418
Bibliographic Information
- Yong Huang
- Affiliation: Institute of Mathematics, Hunan University, Changsha, 410082, People’s Republic of China
- Email: huangyong@hnu.edu.cn
- Deane Yang
- Affiliation: Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York 10012
- MR Author ID: 198075
- ORCID: 0000-0002-4655-1428
- Email: deane.yang@courant.nyu.edu
- Gaoyong Zhang
- Affiliation: Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York 10012
- MR Author ID: 270301
- Email: gaoyong.zhang@courant.nyu.edu
- Received by editor(s): November 15, 2023
- Received by editor(s) in revised form: July 22, 2024
- Published electronically: April 29, 2025
- Additional Notes: The first author was partially supported by NSFC Grants (12171144,12231006). The second and third authors were partially supported by NSF Grant DMS–2005875.
- © Copyright 2025 by the authors
- Journal: Bull. Amer. Math. Soc. 62 (2025), 359-425
- MSC (2020): Primary 52A38
- DOI: https://doi.org/10.1090/bull/1858
- MathSciNet review: 4926873